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Optical absorption by a small conducting sphere: Bulk magnetoplasmons
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The absorption of electromagnetic radiation at the plasma frequency co~ is calculated in the Ray-
leigh limit for a spherical, lossless plasma in a weak, uniform magnetic field 80. In the quasistatic
approximation for the electromagnetic fields produced by the free oscillations of the plasma in the
sphere, the general form of the Hamiltonian is derived. The plasma eigenmodes ~ith a nonvanish-
ing space-charge density are analyzed and only one of them is found to interact with the external
fields. This mode, characterized by spherically symmetric space- and surface-charge densities, can
be excited only by the ac magnetic field parallel to 80.

I. INTRODUCTION

The oscillations of a free-carrier magnetoplasma in
small (semi)conducting samples have been extensively
studied, both theoretically and experimentally (see, e.g.,
the references in our previous paper').

In our previous paper' (hereafter denoted I) we exam-
ined the eigenmodes of the magnetoplasma in a small con-
duting sphere (or ellipsoid). Then we calculated the ab-
sorption of the external electromagnetic field due to in-
teraction with these modes. We have concentrated on the
case of the modes with vanishing (exactly or up to first
order in the cyclotron- to plasma-frequency ratio co, /co~ )

space-charge density. However, the eigenmode analysis in
revealed that there exist oscillations with arbitrary

space-charge density (inside the sphere), whose frequency,
up to first order in co, /co&, equals co&. The analysis of
these "bulk magnetoplasmons" and their interaction with
the external electromagnetic field is the purpose of the
present paper.

The resonance which we consider was observed in
electron-energy-loss experiments. In the optical experi-
ments, however, it can only be excited in the presence of
the external magnetic field (see Sec. VI) and, to our
knowledge, has not yet been observed. The co& resonance
in semiconductors occurs in the infrared spectral region,
and in high-mobility materials it should be observable
(provided it is separated from the optical phonon's ener-
gies). In metals it could be observable in the x-ray region,
since in the visible and uv range the interband transitions
dominate the absorption spectrum.

We make the same basic assumptions as in I. The ra-
dius of the sphere is assumed to be small compared to the
wavelength of radiation of frequency co~, but large com-
pared to the Thomas-Fermi screening length. The energy
band of carriers is assumed to be spherical and parabolic.
The jellium model for the plasma is adopted and the
damping of the carrier motion is neglected.

In Sec. II we briefly quote (after I) the basic equations
for our problem. In Sec. III we examine these equations
for the frequency equal to coy up to first order in co, /co~.
Within this accuracy, the mz modes are degenerate. Some
additional conditions which enable us to choose them are
derived in Sec. IV from the analysis of the magnetoplas-
ma Hamiltonian. In Sec. V we specify the basis for the
electric potential inside the sphere. The absorption at the
co& frequency is calculated in Sec. VI and the (unique) ab-
sorbing mode is described. In Sec. VII some higher-order
corrections in co, /co~ to the basis equations are analyzed.

II. BASIC EQUATIONS

We consider a sphere of radius ro placed in a static uni-
form magnetic field Bo. The sphere is filled with an ideal
electron (or hole) plasma neutralized by a uniform non-
magnetic background with dielectric constant e. The car-
riers of charge q and effective mass m* have equilibrium
concentration n.

Studying the collective oscillations of the free plasma
within the jellium model, we can express the position of
an oscillating carrier (an element of the plasma) as the
sum of the equilibrium position r and a small displace-
ment vector g(r, t) which is a continuous function of r.
The carriers produce the volume-charge density
p(r, t) = 4nnqV g(r, t) and—the surface-charge density

o(ro, t)=nqro g'(ro t) .

These densities enter into two quasistatic Maxwell equa-
tions and two boundary conditions (at the surface of the
sphere, i.e., for r=ro, ro= r/r o)f—oor the self-consistent
electric field. Looking for the normal oscillations of the
plasma, we assume a harmonic time dependence of the
fields and displacements [e.g., g'(r, t ) =g'(r) e '"'),
then these four equations reduce to the following closed
system (see paper I):
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In the derivation, the solution of linearized equation of a carrier motion (for co&co, ),

CO CO

g(r)= —, 2 VP (r) i —zXVQ (r) — z[z VP (r)]
m (co —co~ ) Q7 Ci)

was used. Here, P+(r) and P (r) denote the (complex)
electric-field-potential amplitudes inside and outside the
sphere, respectively. Bo was chosen parallel to the z axis,
co, =(qBp /m*c) and cop

——(4m.nq2/m*e)'~~.
The set of equations (1)—(4) determine the eigenfre-

quencies and the potentials. In our previous paper we
considered the solutions with the space-charge density
vanishing exactly or up to first order in co, /co&. In these
cases Eq. (2) reduces to b.@ =0 and in the limit of the
vanishing magnetic field Bp the frequencies tend either to
zero (heliconlike modes) or to

ae+(r)
7o

co c)@p (r)
81"

1= 2p'oE'
COp

co, c)C&p (r)

cop c)P

V N) (r)=0,
co)V 4p (r)=0,
e+, (rp) =+i (rp), (12)

(13)

III. BULK MAGNETOPLASMONS

Up to first order in co, /co& we can look for the solutions
of Eqs. (1)—(4) in the form

CO=M& +CO~,

@+—(r) =C~p(r)+ @+-, (r),
where the @p(r) are the potentials in the absence of the
magnetic field, while co~ and 4&& (r) are the corrections of
first order in co, /co&. Inserting these expansions into the
set (1)—(4), we obtain to zeroth order from (1) and (4),

4&p (r) =—0,
and then, from (3),

4p (rp) =0, (9)

while @p (r) inside the sphere remains arbitrary.
In the first order in co, /co~, Eqs. (1)—(4) yield, respec-

tively,

cot=[4mnq i/m*(el+i+1)]'~2, i=1,2, . . .

(surface magnetoplasmons).
The remaining class of solutions of Eqs. (1)—(4), i.e.,

the oscillations with arbitrary space-charge density, in-
volves (see I) the modes with co~co& when Bp~0 (bulk
magnetoplasmons). They will be studied in the following
section in the case of a weak magnetic field Bp, i.e., for

~
co~

~
/co& ((1.

4&~(r, t)= —,
' g+k(r)bk(t)+c. c.

k
(14)

where @k(r) form a complete set of smooth functions de-
fined inside the sphere and vanishing on its surface,

@k(rp) =0,
while bk(t)=bke ~ are the time-dependent, complex
amplitudes. According to Eq. (5) the displacement corre-
sponding to the potential @~(r, t) has the form, up to first
order in co, /co&,

where the spherical coordinates were introduced. In the
case co»0 we obtain the Laplace equation for @p, which,
together with (9), implies that Np (r)=0. Owing to the
linearity and homogeneity of the system (1)—(4), this
means that N (r)=0. Therefore there are no nontrivial
solutions with co»0. In the case co&

——0, we obtain, from
(10)—(13), that @& (r) fulfills the same conditions as Np,
so that up to first order the total potential vanishes out-
side the sphere and on its surface, being arbitrary inside
the sphere.

Some additional conditions for Np and @& can be ob-
tained from Eq. (2) to second and third order in co, /co&,
but we shall postpone discussion of them until Sec. VII.
Up to first order in co, /co&, we deal with a degenerate
case, i.e., all eigenmodes have the same frequency co& and
arbitrary potential N (r) vanishing on the surface of the
sphere.

The real (denoted by the subscript R), time-dependent
potential for the considered oscillations can be written as
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g~(r, t)= —,
' g ~ V i— z&&V

k m COp Np

IV. HAMILTONIAN

We shall now derive the general form of the Hamiltoni-
an of the spherical magnetoplasma in the quasistatic ap-
proximation. The Lagrangian of the free plasma placed
in the uniform magnetic field is

Lp = T—U+ (nqB p /2c )

x f,„ d'r Iz&& [r+g~(r, t)] I g~(r, t),
(17)

If the functions @k(r) are to describe different modes,
they should satisfy some orthogonality conditions. We
shall find these conditions by studying the Hamiltonian of
the free (unperturbed) plasma.

U=(nq/2) f d r[@z(r+gz(r, t), t) &1&—z(r, t)]

-=(nq/2) f d r g'tt(r, t) Ve~(r, t) . (19)

V 0& (r t) = V g(r t),4~qn
E'

V 4+(r, t)=0,

(20)

(21)

with the boundary conditions on the surface of the sphere

4+(rp, t) =4 (rp, t), (22)

We subtracted here the contribution of the positive back-
ground. In. the second part of Eq. (19) only the terms up
to second order in ga were retained. The potential
&jt (r, t) in the potential energy U should be expressed in
terms of g'z(r, t). This will be derived below for an arbi-
trary carrier displacement, using only the Maxwell equa-
tions.

The quasistatic approximation allows us to introduce
the complex electric potentials @—+ (r, t ) which satisfy the
Poisson equation

with kinetic energy
4

T=(nm*/2) f d rgb(r, t)'
and potential energy

(18)

BN+(r, t) c}@ (r t)
Br

4~nqr—p.g(rp t) . (23)

The general regular solutions of Eqs. (20) and (21) can be
written as

@ (r, t)= — f, d'»', ' + g g Ct (t)(r/r, )'Y, (8,P), (24)

a) 1

Ct+(t)(rlrp) ' 'Yt (8,$),
1=0m= —1

(25)

wh««he Ct (t) a« the complex amplitudes and the Yt~ are the orthonormalized spherical harmonics. Inserting ex-
pressions (24) and (25) into Eqs. (22) and (23), we can express Ct~(t) in terms of g and its derivatives. Using the we])-
known formula

1

=4~ Q g i~, ~7m(8' 0')Ytm(8 0)r —r' . . . 2l+1 r',+'

where r & (r & ) denote the smaller (larger) of the lengths r and r', and noting that

(26)

d r'g(r', t) V', =4mrp g'(rp, t)
Br "'&"o '

j
r —r'

j

oo I—4~ g g — rp Y~~(8,$) fdr'g, (r', t).V'[r' Y&~(8',P')], (27)
1=0m= —1 + 0

we obtain (after some manipulation) Ct—(t) expressed only in terms of the displacement field g(r, t )as'
4rrnrp (l+ 1)(e. 1) 3 . 1

(2l+ 1)E dobro *O,t YEm 6, + (i+1+el)rp+', f d r g(r, t) V[r Y(~(8,$)]

We omit the expression for Ct (t) since it is not necessary for further calculation. Inserting Eq. (28) into Eq. (24) and
taking the real part of the potential, we obtain the desired result,

N„(r,t)=, d r'g~(r', t) V'
e "&'0 jr —r

~

4vrn e—1 l+1 r'
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where expansion (26) was used. Now the Hamiltonian can be derived from I.p in a standard way (with the replacement
of the derivatives by the functional derivatives) with the use of Eqs. (17)—(19). This leads to

2

Hp —— d r pz(r t)—7Z

2'
2

oo l

+ (e 1—) g g 2&, f d r g'z(r, t).V[r Y~ (8,$)]
p ( (21+1)(i+1+el)rp

(30)

where pz(r, t) is the canonical momentum conjugate to
the displacement g'R(.r, t), and the last two terms represent
the potential energy U. The Hamilton equations for Hp
lead to the equation of motion consistent with Eq. (1) of I.

The general form of Hp describes, in particular, the
vanishing-space-charge modes analyzed in I, i.e., for
V.g'=0 expression (30) can be easily reduced to formula
(46) of I.

Let us now restrict ourselves to the case of the con-
sidered cp& oscillations for which the condition @~(r, t )=0
is satisfied. This condition implies that Nz (rp, t )

—=0,
which, with the use of Eq. (29), turns out to be equivalent
to

(33)

(@kl@k)

f d r V@k V&5k
P

3)mc
VC'k'(zxVdk ) =6kk"

2cop

demanding that Hp assume the form

Hp ——g fmqbk (t)bk(t),
k

we obtain the desired orthogonality conditions for the
C&k(r) functions

f d r hatt(r, t) V[r'Y( . (8,$)]=0 . (31) (34)

Here, again, expansion (26) was used. This restriction,
imposed on the previously arbitrary displacement g( r, t ),
leads to the vanishing of the last term in the Hamiltonian
Ho.

At this point we return to Eq. (16), which will now be
treated as a transformation to new dynamical Uariables
bk(t). Inserting Eq. (16) and the corresponding transfor-
mation for the momentum,

CO

pR(l, t)= zXr

This equation holds within cp, /cd accuracy. One can
check, that for arbitrary smooth functions vanishing on
the surface of the sphere, (@k

~

4'k ) has all the properties
of the scalar product, if

~

co,
~

/co& & —', . As we assume

~
co,

~
/co& && 1, this condition is obviously fulfilled.

The C&k basis, orthonorrnal in the sense of the scalar
product (34), can be chosen in various ways. Some indica-
tion for the convenient choice of this basis can be obtained
from the analysis of the interaction Hamiltonian.

Let us therefore consider our system placed in a weak
electromagnetic radiation field oscillating with a frequen-
cy m„. The vector potential inside the sphere is

i V+ zXV @k(r)bk(t)+cc.q . ~c
2cop k 2cop

A(r, t) = A(r)exp( i co„t) . —

(32)
Choosing the vanishing —scalar-potential gauge for the ra-
diation field, we obtain the full Hamiltonian in the form

into Eq. (30) (with the last term dropped), we obtain Hp
expressed in terms of bk(t). Demanding that bk(t)
represent the normal coordinates of the free plasma, i.e.,

H =Ho+H),
with the interaction Hamiltonian

(35)

H& ——— r pz r t + m co, 2 r+ ~ r t &x .Re A r e (36)

where the terms quadratic in A were dropped as they
describe the photon scattering, and not the (one-photon)
absorption. In Eq. (36) the term of order (gz/rp)Hy was
neglected, as was also done in I.

We are interested in frequencies cp„close to the frequen-
cy of the modes co&. Therefore, due to the quasistatic con-
dition (rptp~/c) &&1 [see Eq. (7) of I], the vector poten-

tial A(r) is slowly varying on the rp distance and can be
expanded around the center of the sphere. As the Hamil-
tonian Hp is correct up to first order in rpcoz/c, H~ can
only be written with the same accuracy. Thus, expanding
A(r) in Eq. (36), we must retain only the terms up to first
order in rpro„/c. The coefficients of this expansion can be
expressed by the radiation fields in the absence of the
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sphere: E"(r) and B"(r). We obtain (see I)

A~(r) = — E„"(0)—, Ep—,r B„"(0)
E'+ 2 co~

[Ep „(0)+E"„(0)]r„,26+ 3 2co
(37)

rpe & df„(x) df„*(x)
dxx =6~ ~

877'flcop 0 dx dx
(41)

where we introduced the functions f„(x)—:f„00(xra)
(0&x & 1). The continuity of Vf„00 at r=0 and condi-
tion (15) give, respectively,

Re[8,"(0)e " ]8~c

X y f d'r 4k(r) bI, (t)+cc.
k

(38)

Condition (15) and Eq. (37) were used here.
Formula (38) for H~ indicates that the only co& modes

that can be excited by the external electromagnetic field
are those with

where c@ is the totally antisymmetric Levi-Civita tensor
and the comma denotes differentiation.

Now transformations {16)and (32) can be inserted into
Hamiltonian (35), which for HD obviously leads to expres-
sion (33), while for H&, after a simple calculation, we ob-
tain

df„(x)
dx

=0, (42)

f„(1)=0 . (43)

Therefore we search for a set of functions f„(x),complete
in the class C of differentiable functions vanishing for
x=1 and with derivatives which vanish at x=0. The
derivatives df„(x)Idx should be orthogonal with the
weight w(x)=x . These functions can be found among
the polynomials, and their construction is the following.

Let us consider a complete set of polynomials G (x)
(m =0, 1,2, . . . ) defined for —1&x & 1, orthogonal with
the weight w(x)=x . It can be easily shown that due to
w( —x)=w(x), the G~(x) satisfy the following condition
(see Ref. 5):

(39)
G ( —x)=(—1) G (x) . (44)

Searching for the most convenient choice of the 4k
basis, we shall therefore try to minimize the number of
the basis functions satisfying condition (39).

It should be noted that transformations (16) and (32)
are, in general, incomplet'e, as only some normal coordi-
nates bk(t) appear in these expressions, namely those cor-
responding to the co& modes. However, we observe that
the utilization of the full transformation [containing, e.g. ,
bt~, (t) corresponding to the cot~, modes of I] would lead
to some additional terms in Ho as we11 as in H&, indepen-
dent of our variables bk(t). These additive terms in the
Hamiltonian clearly do not affect the calculation of the
absorption by the co& modes, and for this purpose use of
transformations (16) and (32) is justified.

V. DETERMINATION OF THE 4k FUNCTIONS

g(x) = f dx = f, dxya„G, „+,(x)

We observe that, choosing only the antisymmetric func-
tions G~(x) (i.e., with odd m), we obtain the set of poly-
nomials complete in the interval [0,1] in the class of func-
tions vanishing at x=O. Obviously, the orthogonality
condition on [0,1],

1

dxx G2„+)(x)G2„+)(x)~ 5„„, (45)

will be also satisfied. Now if we define

f„(x)=f dx G2„+,(x), 0&x &1 (46)

all the conditions (41)—(43) will be fulfilled. The com-
pleteness of the f„(x) functions [defined by (46)] in the
class C follows from

= g a„f„(x) (47)

@'„t~(r)=f.t~(r)I't~(&, P), (40)

where, for every l, m, the functions f„t~(r) (n =0, 1,2, . . . )

form a complete set of functions defined in the interval
0(r (r0, and vanishing at r =ra. We note that the only
N„t~ functions satisfying (39) are those with I =m =0. In
order to obtain the Nk basis, we now must orthogonalize
the set (40) (e.g., with the use of the Gramm-Schmidt pro-
cedure) in the sense of the scalar product (34).

Let us start with the orthogonalization of @„00 func-
tions, for which the condition (34) reduces to

We shall now specify the potentials @k(r) continuous
(together with their gradients) inside the sphere and satis-
fying conditions (15) and (34).

Equation (15) suggests that it is convenient to separate
the radial and the angular dependence in @k(r). In view
of the "interaction condition" (39), we shall start with a
complete set of linearly independent functions of the form

G2„[x,—1, —l, u ]—=P„[x,O, l, u' ],
G2„+i[x,—1,1,u ]—=xg„[xz,0, 1,u i ] .

(48)

The first symbol in square brackets denotes the argument,
the second and the third represent the interval, and the
last denotes the weight. Being interested in antisymmetric
G, we must find only the P„[y,O, 1,u ~ ] functions,
which turn out to be

g(x) here is an arbitrary function belonging to C. In the
second equality the completeness of G2„+,(x) in the class
of functions vanishing at x=0 was used. Thus we only
have to determine the G~ functions.

We now utilize the theorem that the complete set of
polynomials G~ orthogonal on the interval [—1, 1] with
the weight x can be constructed from the complete set of
polynomials P„on the interval [0,1] as
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~F( n—+ l,n+a+ l,c+1;x),

F( n —l—,n+ —,', —,;1)=0,
we obtain

(51)

(52)

f„(x)=—3(2n+ —,
' )'i'I'(n+ —, )

(n+ -', )(n+1)!r(-,' ) ro~

&&F( n —l,n+ ——', , —', ;x ) . (53)

The normalizing factor was chosen to satisfy the ortho-
gonality condition (41). This completes the determination
of the first set of the C&k functions, namely those equal to
f„(r/ro )I'oo.

Now we should continue our procedure by subsequent
orthogonalization of the remaining 4„t~ functions, i.e.,
those with l&0, to all previously determined @„oo func-
tions. However, it is easy to check that, for /&0,

(54)

P„[y,0, 1,u i ]=F( n—,n+ —,', —,';y) .

F(a,b, c;y ) is the hypergeometric function that, in (50),
reduces to the Jacobi polynomial (see, e.g., Ref. 6). Insert-
ing Eqs. (49) and (50) into (46), and using the relations

d n(n+a)F( n—,n+a, c;x)=-
dx c

The first-order perturbation calculus in H& shows that
absorption occurs only if the radiation frequency is equal
to the plasma frequency. The corresponding net power
P(to„) absorbed by the sphere (i.e., with stimulated emis-
sion subtracted) is given by

5 2 2

i8,'i 5(a), —co~) . (57)
180c2

P(to„)=

C ooo(r) =—

This result is temperature independent due to the partial
cancellation of .the plasmon occupation factors for transi-
tions with photon absorption and stimulated emission.
The power does not depend on A, which indicates that (S7)
could be obtained classically (cf. paper I). This formula
is also consistent with the adopted jellium model because
it contains only charge and mass densities and there are
no individual carrier parameters.

The absorption occurs due only to the ac magnetic field

component parallel to Bo and vanishes for Bo——0. We
also observe that the power absorbed does not depend on
e. For the system of noninteracting spheres of a given to-
tal volume, the power increases with ro. Assuming that

~

co,
i /co& ———,, e(torero/c) = —,', and @=10, it turns out

that the power given by (57) is of the same order as the
power Pz~, of I.

Let us now analyze the only mode which interacts with
the external electromagnetic field, i.e., the one with
n =l=m =0. From Eq. (40), with the use of (53) and
(55), we obtain the potential inside the sphere as

5%co 1— (58)
2rpg ro

Therefore, the further orthogonalization procedure will
m.ix only the @„t functions with l&0. As all these func-
tions have a vanishing space integral (39), the Nk func-
tions, which are their linear combinations, also have this
property, i.e., they represent the modes which do not in-
teract with the external radiation. Therefore, their expli-
cit construction is not necessary for calculating the ab-
sorption.

2q 5AM'

ol to& 2r 06
2 3Oooo(r t)=

cue —le
X e, —I'. sin8 c~ boooe

Ct)p

and from Eq. (16) the corresponding displacement
1/2

(59)

VI. ABSORPTION

F( —1,—', , —', ;x )=1—x (55)

that the volume integral in (38) vanishes for all n except
n =0. Thus,

3 1/2r oea)c 5~p y
—ECtlyt

Hi —— Re(8,"e " )booo(t)+c. c. (56)15' 2ros

The interaction Hamiltonian H„Eq. (38), can now be
evaluated with the use of the @„oo functions obtained in
the preceding section. It follows from the orthogonality
condition for the Jacobi polynomials, with the use of

Therefore the potential of the mode is spherically sym-
metric and the corresponding electric field is radial. The
trajectory of the carrier is elliptical in the plane tangent to
the cone defined by 8=const.

The space-charge density turns out to be uniform inside
the sphere and is compensated by the surface-charge den-
sity, which also does not depend on the position. This is
consistent with the fact that the electric field outside the
sphere vanishes.

The magnetic dipole moment associated with the mode
considered can be also calculated. Using the formula

(60)

Therefore, out of all the @„oomodes, only that with n =0
interacts with the external fields.

At this point the full Hamiltonian H =Ho+Hi [with
Ho given by (33)] can be quantized by replacing the am-
plitudes bk(t) and bk(t) by the annihilation and creation
operators bk and bk, respectively. They satisfy the stan-
dard commutation rules for Bose operators.

where the linearized current density is given by

jooo(r, t ) = tne~pgooo(r, t )—,
we obtain

3
' 1/2er Dc', 5Acop

oooo(t) = — e,booo(t) .
15c 2roe

(61)

(62)
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Thus, the magnetic moment is parallel to Bo. We also ob-
serve that the interaction Hamiltonian can be written as

II~ ———Re[pooo(t)]. Re(B'e "
) . (63)

Therefore, as far as the interaction with the external elec-
tromagnetic field is concerned, the mode can be represent-
ed solely by its macroscopic magnetic dipole moment.

VII. HIGHER-ORDER CORRECTIONS

So far we have searched for the solutions of the system
(1)—(4) considering only the zeroth- and first-order terms
in co, /co~ in the expressions for the frequencies and poten-
tials [see (6) and (7)]. Higher-order terms were neglected
in our equations [see (10)—(13)]. However, if these terms
are taken into account, it turns out that Eq. (2), to second
and third order in co, /mz, yields some additional condi-
tions on +o and @&,namely

, a'e,
(2c02co& ci)~)A—@o +ci)~ =0,' aZ2

(64)

c02 =co~ /3co~
2 (66)

Q)3=0 . (67)

The remaining 4k potentials do not, in general, satisfy
these equations. In particular, none of the C&„00 (n&0)
functions satisfies them. Therefore, they may not
represent the correct eigenmode oscillations. Neverthe-
less, any of the correct eigenmode potentials must be a
linear combination of the Nk functions (they form a com-
plete set). Since all Nk except @ooo have a vanishing space
integral f d r 4„~~ and, therefore, do not yield any elec-
tromagnetic absorption [see Eq. (38)], all the correct
eigenmodes except 4„OO do not interact with the external
radiation. Thus, the fact that our Nk functions do not, in
general, fulfill Eqs. (64) and (65), does not influence the
results for the power absorption.

For the purpose of analyzing other means of plasma ex-
citation (e.g., the characteristic-energy-loss experiments),
it would be interesting to find all eigenmode potentials
satisfying (64) and (65), but this would seem a difficult
task.

$2@
2co3coqbA&o +(2co2co~ —co, )AN) +co, =0 . (65)

aZ2

Here, co2 and co3 are the second- and third-order correc-
tions to the frequency co, i.e., co—:coz+co2+co3. These
equations should be satisfied by the eigenmode potentials
and lift the degeneracy of the co~ modes.

One can easily check that the 4&ooo potential (58) fulfils
Eqs. (64) and (65), provided that

VIII. CONCLUSIONS

Considering the magnetoplasma oscillations in a small
conducting sphere in our previous paper, paper I, we re-
stricted ourselves to the case of the vanishing space-
charge density (exactly or up to first order in co, /co~).
The modes were classified into two groups: surface mag-
netoplasmons with the frequencies coI~ ~

(l = 1,2, . . . , m = —I, . . . , l) and the heliconlike magneto-
plasmons with the frequencies co~ 2 [l=2,3, . . . ;

m = —(l —1)sgnq] (see paper I). Each of these modes was
characterized by its macroscopic electric and/or magnetic
multipole moment. In the adopted quasistatic approxima-
tion, nine of these modes (those with I =1,2) interact with
the external radiation.

In the present paper we analyzed the oscillations with,
in general, nonvanishing space-charge density (bulk mag-
netoplasmons). Within co, /co~ accuracy their frequency
equals ~~. The only mode interacting with the external
fields is the Oooo mode possessing a magnetic dipole mo-
ment parallel to Bo and giving no electric field outside the
sphere. We found that within third-order accuracy in
co, /co~ its frequency is co~ [1+(ro, /3coz ) ] [see (66) and
(67)]. This mode can be excited only by the ac external
magnetic field parallel to Bo, and only if Bo&0. We note
that the modes considered in I can be excited by the ac
uniform electric field (those with l= 1) or by the ac uni-
form magnetic and ac linearly varying electric fields
(l =2). The detailed polarization rules are given in I.

The resonance at co=coz does not appear in the results
of Ford, Furdyna, and Werner, reproduced by Ford and
Werner in the Rayleigh limit of their general theory of
the absorption by a gyrotropic sphere. The condition on
the wave number inside (q) and outside (k) the sphere,

~

q/k
~

&& I, limiting the validity the analytical results of
Ford and Werner, is not fulfilled for the co& modes [for
the lossless plasma and

~
co,

~ &&i' we obtain

~

q/k
~

—=e(co, /co~) ]. However, the numerical analysis
of the general expressions of Ford and Werner should re-
veal the co& resonance.

Comparing the power absorption for the modes con-
sidered in both papers, we found that it is the strongest
for the co&~ &

electric dipole resonance, while all other reso-
nances, including the N„oo mode, yield weaker absorption.
For reasonable values of the semiconducting sample pa-
rameters, we estimated that the electric dipole absorption
peak should be about 20 times higher than other peaks.
Nevertheless, the resonance at co„should be observable ex-
perimentally.
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