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Magnetoplasma oscillations in a small conducting sphere
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The eigenmodes of a free-carrier lossless magnetoplasma in a small conducting sphere (or ellip-

soid) are calculated and discussed in detail. In particular, we determine the motion of carriers, the
charge densities, and the electric and magnetic moments associated with these modes of oscillation.
The modes fall into three classes of surface, heliconlike, and bulk magnetoplasmons. The interac-
tion of the modes with an external electromagnetic field is calculated and the expressions for the
power absorption are given. Our eigenmode approach is more complete and gives a better physical
insight into the nature of magnetoplasma oscillations in the Rayleigh limit than the study of magne-

toplasma oscillations forced by an external electromagnetic field.

I. INTRODUCTION

Since the pioneering paper of Mie, and especially in
the last two decades, there has been considerable interest
in the electronic plasma oscillations in small metallic
spheres (see Ref. 2 and references therein). Relatively less
effort was devoted to the study of the plasma oscillations
in the presence of the external static magnetic field. In
metals the effect of the magnetic field on high-frequency
plasma oscillations is usually negligible, since it is deter-
mined by the parameter to, /co& (co, and co~ are the cyclo-
tron and plasma frequencies, respectively), which for met-
als assumes very small values (at H = 1 T, co, /co& —10 ).
However, for the free-carrier plasma in semiconductors
this parameter can easily achieve values of the order of 1.
Moreover, both in metals and semiconductors there exist
low-frequency excitations with co&co, observed in the
bulk ' and in small samples.

The study of magnetoplasma modes and their interac-
tion with electromagnetic radiation in small samples is
therefore interesting for semiconductors and, in the low-
frequency regime, for metals as well. This implies that
the magnetoplasma resonances of interest lie in the mi-
crowave or far-infrared spectral region. In this region the
only competitive absorption mechanisms are the excita-
tions of transverse-optical phonons (reststrahlen) and
free-carrier processes due to the presence of crystal imper-
fections (e.g., impurities), which give a slowly varying ab-
sorption background. Thus, in high-mobility materials
the magnetoplasma resonances can be observed in mi-
crowave or far-infrared —absorption experiments.

From these resonances in semiconductors one can deter-
mine the carrier concentration and their effective mass, as

well as the dielectric constant of the lattice. From an ex-

perimental point of view, such magnetoplasma resonances
are particularly convenient because the resonance condi-
tion can be easily obtained by sweeping the static magnet-
ic field. The use of microwave cavities in these experi-
ments allows excitation of the plasma either by electric or
magnetic fields oriented arbitrarily with respect to the dc
magnetic field. The magnetoplasma modes can be also
excited by inelastically scattered electrons (electron-
energy-loss spectroscopy).

The papers published so far have been concerned with
the theory of magnetoplasma oscillations forced by the
external electromagnetic radiation. " This approach
has two important drawbacks. First, the physical picture
of the excited magnetoplasma eigenmodes remains ob-
scure. Second, the simplifying assumptions concerning
the form of the exciting field exclude some of the possible
eigenmodes, i.e., those not excited by a field of a simple
form. In the present paper we avoid these deficiencies by
first deriving a more complete set of the magnetoplasma
eigenmodes (free oscillations) of a small (semi)conducting
sphere, and only then calculating their interaction with
the external electromagnetic field. This approach, used
previously for the case of vanishing magnetic field, ' '
also allows for the quantization of the magnetoplasma
modes.

We make the following simplifying assumptions in our
treatment. We assume the radius of the sphere to be small
compared to the wavelength of incident radiation, but
large compared to the Thomas-Fermi screening length.
The first assumption allows neglect of the retardation ef-
fects, ' ' while the second justifies the use of the jellium
model for the plasma. ' Furthermore, the energy band of
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the carriers is assumed to be spherical and parabolic. In
our treatment we neglect the plasma —LO-phonon cou-
pling' present in ionic semiconductors, i.e., we assume
that the plasma and optical-phonon frequencies are well
separated. Finally, the damping of the carrier motion is
neglected, i.e., we assume that the free oscillations of the
ideal plasma are not damped.

In Sec. II the basic equations for the electric potentials
and the frequencies of the eigenmodes are derived. In Sec.
III their solutions in the absence of the static magnetic
field are briefly discussed. In the presence of the static
magnetic field there occurs an important class of tnagne-
toplasma modes, viz. , modes with a vanishing space-
charge density. These modes are discussed in Sec. IV. In
Sec. V we discuss all high-frequency modes, including
those with nonvanishing space-charge density, in the case
of a weak static magnetic field. In Sec. VI we formulate
the Hamiltonian of the interaction of the spherical mag-
netoplasma with external ac electromagnetic fields. The
absorption of radiation by the magnetoplasma is calculat-
ed and discussed in Sec. VII. In Sec. VIII we compare our
results with the results of the forced-oscillation ap-
proaches.

Finally, in order to determine the effect of a stnall
departure from sphericity of the sample, in Appendix A
we calculate the frequencies of all the above magnetoplas-
ma modes for a small conducting ellipsoid.

II. BASIC EQUATIONS

Let us consider a sphere of radius rp filled with an ideal
electron (or hole) plasma placed in a uniform compensat-
ing background having a dielectric constant e and unit
permeability. The free carriers of charge q and equilibri-
um- concentration n are assumed to have an isotropic,
energy-independent effective mass m*. The system is
placed in a static uniform magnetic field Bp.

In the following we shall consider small collective oscil-
lations of the spherical plasma, using the jellium model.
The position of an oscillating carrier (i.e., the position of a
volume element of the plasma) can then be written as the
sum of the equilibrium position r (r 4 rp) and a small dis-
placement vector g(r, t) which is a continuous function of
r. In all equations we shall keep only terms linear in g.
The interaction between carriers within the plasma will be
described in terms of a self-consistent electric field E(r, t)
and magnetic field B(r,t). These fields vanish for vanish-
ing g', and are therefore at least linear in g.

The linearized equation of motion for a carrier in a
lossless plasma is

~ ~

m'g'(r, t)=qE (r, t)+ —gXBp .
C

The electric field inside and outside the sphere, denoted by
E and E+, respectively, satisfies the quasistatic Maxwell
equations

The boundary conditions on the surface of the sphere,
which complete our set of equations, are

r, XE+(r,, t)=1'pXE (rp t),
rp. E+(ro, t) =ero.E (rp, t)+4~o(rp, t),

(5a)

(Sb)

e(rococo lc) «1,
(cor/c) «1

(7a)

are satisfied. These conditions allow us to decouple the
equations for the electric and magnetic fields. Condition
(7b) limits the range of validity of our equations outside
the sphere to the so-called near zone.

Solving Eq. (1), we obtain

g(r)=—,2 E (r) —i ' zXE (r)
m*(co —co, )

~c
z[z E (r)]

CO

where Bo was chosen parallel to the z axis,
cp, =(q&o/m*c) is the cyclotron frequency, and where we
assumed that co&

i
cp,

~

. Equation (4) allows us to express
the electric fields in terms of scalar potentials defined by
E+—(r) = —V@—(r). With the use of the solution (8), Eqs.
(2), (3), and (5) can be written as

c) N
(cp —cd —cp, )V @ (r)+(coqcp, /co) =0,

c)z

V @+(r)=0,
@'+«o)=C' (ro»

(cp —cp, )ro.VN+(ro) =e(co —co~ —cp, )ro.VC (rp)

+ e(cp&co& /cp ) z2 cicI& (r)
Bz

+ie(co~co, /cp) y
8@ (r)

0(rp, t) =nqro g(rp. , t)

is the surface charge density and rp= ip/r p'

In the following we shall look for the eigenmodes of the
system described by Eqs. (1)—(5). We shall thus assume
the harmonic time dependence of the fields and displace-
ments, e.g., g(r, t) =g(r)e '"' and E(r, t) =E(r)e
where g'(r) and E(r) are complex amplitudes.

The quasistatic approximation [Eq. (4)] is valid if (for
harmonic fields) we neglect terms proportional to
e(role) (cp cd)—inside the sphere and to (cpr/c) outside

sphere, where co~ =(4~nq /m*e)'i is the plasma
quency. As it turns out later, this is justified if the condi-
tions

eV.E (r, t) = 4mqn V g—(r, t), r.& ro

V.E+(r,t)=0, r &rp

VXE—(r, t)=0, r &rp and r&rp .

(2)

(3)
c)@ (r)

(12)
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V&&B (r)=(4'/c)j(r),
VXB+(r)=0,
V B+—(r)=0,

(13a)

(13b)

(13c)

where the current density j(r) is determined by the set of
equations for the electric field, j(r)= inq(0—$(r), with
g(r) given by Eq. (8). The boundary condition for B(r) is

B+(rp)=B (rp), (13d)

where the surface current density was neglected, since it is
of second order in g.

III. ZERO-MAGNETIC-FIELD MODES

Let us first consider the simplest case of the vanishing
external magnetic field, i.e., (o, =0. In the case (o&(o~,
from Eqs. (9)—(12) we obtain the well-known normal-
mode frequencies' '

1/2
4mnq

m*[e+(l + 1)/I]

and the corresponding potentials

I

+'i (r)=((I/ro)gi (rlro) g Ci Yi (& (ti) .

(14)

Here the spherical coordinates were introduced,
gi+(x)=x and gi (x)=x ', Yi~ are orthonormalized
spherical harmonics, ' and CI

— are arbitrary complex di-
mensionless coefficients. To every frequency coI there cor-
respond (2l+1) independent modes of motion, i.e., each
frequency is (2l+1)-fold degenerate. It is worth noting

These equations form a complete set determining the po-
tentials and eigenfrequencies for the spherical magneto-
plasma. In the sections which follow we shall consider
some special classes of solutions of these equations.

Although for our purposes it is sufficient to determine
E(r), for the sake of completeness let us also write the set
of equations for the magnetic field amplitude B(r) in the
quasistatic approximation: and then Eq. (11) leads to

(ro) =0 . (17)

Thus, the oscillations with the frequency (pz ( & (pi) corre-
spond to a vanishing potential (and field) outside the
sphere, while the potential inside the sphere is arbitrary
provided it vanishes on the surface of the sphere. Both
space- and surface-charge densities associated with these
modes are, in general, nonzero. The mz resonance was ob-
served for metallic particles in electron-energy-loss mea-
surements.

An external magnetic field applied to the system can ei-
ther modify the zero-field modes considered above or give
rise to new heliconlike normal modes. In the low-
magnetic-field range (

~
(o,

~
&&(0&) we shall then expect

two types of solutions for Eqs. (9)—(12): high-frequency
solutions, corresponding to co=ml or co=co&, and low-
frequency solutions, corresponding to (o-

~

(p,
~

.

IV. VANISHING SPACE-CHARGE-DENSITY MODES

In the presence of an arbitrary magnetic field it is diffi-
cult to find exact general solutions of Eqs. (9)—(12).
However, in the preceding section we found that an im-
portant class of oscillations (the (oi modes) was character-
ized by a vanishing space-charge density. Let us therefore
make such-an additional assumption in (9)—(12), i.e., let
us demand that both terms in Eq. (9) vanish separately.
The potentials inside and outside the sphere then satisfy
the Laplace equation, whose solution can be written as

a) 1

@+—(r)=(q/ro)g g Cimgi (r/ro)Yim(~~(ti) (18)
1=0 m= —I

In addition, the following equation must be satisfied:

that the space-charge density for these modes vanishes, so
that the only source of the electric field in the excitations
is the surface-charge density.

Let us now consider the case when co=mz. Equation
(10) together with Eq. (12) gives

4&+(r) =—0,

()4 () q~
rp g=2 m = —[~ —2)

. 1/2

(I2 m 2)1/2[(I 1)2 m 2]1/2Y
2l —3

(19)

This equation leads to vanishing of all C~, except for
those with

(pi~, =(oi I [I+((o,/2(oi) ]' —( /(2or)s(gOnm I,
m=+l . (22)

m =+1,+(l —1) . (20)

The continuity condition (11) gives Ci =Ci, and then
the second boundary condition (12) leads to a set of equa-
tions [(p +(o (o,sgnm —(o(oi.—( I/l)(o, (pisgnm]Ci =0 . (23)

For m = +(l —1), Eq. (21) can be divided by
(p —(o, sgnm +0 and reduced to

[(21—1)(l + 1)(o ((o —(o, )+l(2l —1)e(o ((o —(o~ —(o, )

+m(2I —1)e(o,(o~(p+(l —m )e(o, (o~]Ci =0 (21)

for every Im satisfying (20). For I =0, Eq. (21) leads to
Coo ——0 (since (o&

~
(o,

~

). For m =+I, we obtain nonzero
CI if the frequency is equal to '

For l =1 we then obtain only one (positive and different
from

~

(o,
~

) frequency,

(24)

For l )2 the exact expressions for the roots are rather
cumbersome (they can be obtained from Cardan's formu-
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las) and we shall write only their approximate forms in
the case of a weak magnetic field, i.e., f

co,
f

&&cdp. Up to
second order in co, /cop, we obtain the high-frequency
solutions in the form

m (/ —1)(/+3) ~,
~lm1=~l —

l
~~+

2l 8l col

/ & 2,m =+(/ —1), (25)
$2,s„~ z(r) = K&& r +('i /2)sgnq(co, /co2) (K r)z,
where

(31)

~(r, t) motion. The surface-charge density o~ (r, t) ob-
tained from Eq. (28) is consistent with this picture and
represents an oscillating electric dipole moment.

For the simplest (/ =2) mode from the second class of
solutions, Eqs. (8), (26), and (27) yield [up to terms
(cd, /cop )']

and, for m = —(/ —l)sgnq, the low-frequency solutions
K=i

2 (x—iysgnq) .
. 12 fq f

Ul CO

(32)

~lm 2 l l col

(27)

up to the multiplicative factor Ci~. The surface-charge
density, which is the source of the "driving force" for the
plasma oscillations, is given by

cTt~(rp) =[(e/+/+1)/4mrp]&bt~(rp) . (28)

This formula is obtained from the boundary condition
(5b) and is generally valid for the harmonic potentials (27)
[and also for (15)]. It is clear that every /m mode
possesses an oscillating (2/)th electric multipole moment.

The above results show that, for the vanishing space-
charge-density magnetoplasma modes, two classes of solu-
tions exist: those with frequencies tending to cdt when
Bp~O, i.e., (22), (24), and (25) (denoted by the index
r=l), and those with frequencies tending to zero when
Bp~O, i.e., (26) (denoted by r=2). In order to gain some
physical insight into the plasma oscillations corresponding
to these solutions, we shall now examine the motion of the
carriers for the simplest modes in both classes, i.e., for
r=/=1 and for r=/=2.

For /=1 the exact frequencies are given by Eqs. (24)
and (22) for m =0 and m=+1, respectively. The dis-
placements gt corresponding to the Nt potentials have
the following forms for / =1:

1/2

k, +i, i(r)=

fi, p, i(r)=

3
Sm.

3
4m

Q'

m rp(+cd& +& &
—co' )cd& +& ~

1/2
g
2 2 Z

~0~1,0, 1

(x+iy),

where Eqs. (27) and (8) were used. The corresponding
linearized current density is given by general formula

jt,(r) = inqcdl, g—t,(r) . (30)

We thus see that all carriers move in the same way: circu-
larly in the plane perpendicular to Bo for m =+1, and
linearly along Bp for m =0. The resulting current is that
of a rigid oscillation of uniformly charged sphere (on the
compensating background) whose center is performing the

/ & 2, m = —(/ —1)sgnq . (26)

The potentials corresponding to any of the frequencies
given by Eqs. (22)—(26) are of the form

The current density j2c,s„~ 2 for
f
co,

f
/cop &&1 looks as

if a uniformly charged sphere was rotating around K,
which, in turn, performed a rotation with a frequency

f
co,

f
/2 in the cyclotron-resonance-active (CRA) sense in

the plane perpendicular to Bo. This mode then possesses
a rotating magnetic dipole moment. It is worth noting
that if the second term in (31) is neglected the surface-
charge density (and thus also the electric quadrupole mo-
ment) of the mode vanishes.

V. HIGH-FREQUENCY MODES

Solving Eqs. (9)—(12) for an arbitrary dc magnetic field,
we assumed a vanishing space-charge density, which a1-
lowed us to decouple Eq. (9). Another situation when Eq.
(9) can be simplified arises in the case of a weak magnetic
field (

f
co,

f
&&cdp) and co-cop or co-coi, if we retain only

terms up to first order in co, /cop.
Let us first consider the case

(cdt —cop+2coico')V 4 (r) =0, (34)

c)@+(r)
ro

cdt cop +2cdlco' —
c)C& (r)=E

2 ro
6)l +2colco Br

2
copcdc c)+ (r)

3 (35)

while Eqs. (11) and (10) remain unchanged. As coi —cop is
of zeroth order, the expression in parentheses in Eq. (34)
cannot vanish. Thus Eq. (34) becomes

V24 (r) =0, (36)

and so 4& (r) and 4&+(r) are given by expression (18). In-
serting it into Eqs. (11) and (35), we obtain Cpp ——0, and
for / & 1 we have nonzero Ct

+— only if

Pl
Cote i=Cot

2I
(37)

where again the index 1 denotes a high-frequency solu-
tion. The corresponding potentials are given by Eq. (27).

The Laplace equation (36) is valid up to first order in
co, /cop, which means that the space-charge density for the
modes considered is at least of second order. In, some
cases, namely for m=+/+(/ —1), it can vanish exactly.

(33)

where co' is a small correction of the order of co, . Equa-
tions (9) and (12) then become, respectively,
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One easily checks that the frequencies (22), (24), and (2S)
obtained in the preceding section fall within co, /co& accu-
racy into the appropriate frequencies (37). The surface-
charge density is still given by (28).

Equation (37) shows that the degeneracy of the cot

modes occurring in the Bp——0 case has been lifted by the
magnetic field, i.e., for a given l we obtain a ladder of
2l+ 1 equidistant levels.

Let us now consider the second type of high-frequency
modes, with

It
CO=CO&+CO

where co"-co,. In addition to Eqs. (10) and (11), we ob-
tain, from (9) and (12) up to first order in co, /co&,

small oscillations of the plasma with a vanishing space-
charge density, i.e., either vanishing exactly or up to terms
linear in co, /co&. The general complex displacement and
the potential can be written as

g(r, t)= g g g C, ,(t)g,(r),
v=1,2 l=1 m= —l

oo le+(r, t)—= y y y Ct (t)et—(r),
v.=1,2 l=1 m =—l

(41)

k,(r) =
e 1+1( 2 2)0 1m' c

respectively, where Ct~,(t) are complex dynamic variables
and

to"V @ (r)=0, (39)

B@+(r)
Br

co" B4 (r)=2t ro
r=rp co& Br r=r0

X V (iso—, /tot, )zX V

r=r0
(40)

(43)

For cu"&0 we obtain Ct~ =0 for every l, m. For co"=0,
Eqs. (11) and (40) lead to conditions (16) and (17). Thus,
to first order in roc/~&, both the frequencies and poten-
tials remain unchanged in the presence of the magnetic
field [although g'(r) is changed]. In particular, the poten-
tial outside the sphere vanishes. These modes and their
interaction with electromagnetic field are discussed in de-
tail in the following paper.

Summarizing our analysis of normal modes of oscilla-
tions for a spherical magnetoplasma, we find that all pos-
sible modes with frequencies approaching the zero-
magnetic-field solutions when 80~0 have been examined.
They were analyzed up to first order in co, /co~, although
some were obtained for arbitrary 80. The modes with fre-
quencies tending to zero when 80—+0 were investigated
only in the case of zero-space-charge density, but for arbi-
trary magnetic field.

In an actual experimental situation the sample may not
be ideally spherical. To take this possibility into account,
in Appendix A we analyze the influence of small non-
sphericity on all modes under consideration, assuming an
ellipsoidal shape of the sample.

In the following sections we shall turn to the calcula-
tion of the absorption of electromagnetic radiation associ-
ated with the generation of the magnetoplasma cot~,
modes considered above.

VI. THE HAMILTONIAN

In order to formulate the classical Hamiltonian describ-
ing our system, we shall confine ourselves to the case of

U= —,
'

nq f d r @~(r+g'z(r, t), t)
0

f d r pe�(r,t).V4~ (r, t), (44)

where the subscript R denotes the real part. Here we have
taken into account that the carrier with an equilibrium
position r is situated at r+ fz, and only terms up to
second order in g'~ were retained.

For a vanishing space-charge density, U can be
transformed into a surface integral

(rp/2) fdQ@~ (rp, t)os(rp, t) .

In order to express U only in terms of g'~, the dependence
of Ct~,(t) on the displacements must be found. Insertion
of Eqs. (6) and (42) into the boundary condition (Sb) leads
to

)fc

QCt~, (t)= t fd r g(r, t) Vr'Yg~(8, $),
0 IIo

where we took into account that V g(r, t)=0.
With the help of Eqs. (42) and (4S) we can now obtain

from (44) the required form of U, and the Hamiltonian of
the system then becomes

while 4t— are given by Eq. (27). We note that V g'&, —0
only up to first order in co, /co& for r= 1, m&+l, +(l —1),
and exactly in all other cases. The potential energy of the
plasma has the following form:

oo I 2

Hp ——(n/2m*) fd rI pz(r, t)+(m*co, /2)[r+gz(r, t)]Xzj +(nm'/2)g g 2t, fd r gz(r, t) Vr Yt (8,$).
l=1 m= —l I~O

(46)

where pz is the canonical momentum conjugate to gz. The Hamilton equations (with functional derivatives) for Hp,
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(47)
~=1,2 I =1 m = —I

with the use of (45), lead to equations of motion consistent with (1).
The Hamiltonian Ho can be expressed in terms of the dynamic variables Ct~,(t). Using the transformation (41) and

oo I

p(r, t)=(m'co, /2)zXr —m' g g g C, ,(t)[t'co, ,g', ,(r)+(~, /2)g', ,(r)Xz],

we obtain, after some tedious calculation,

Ho ——g %cut, bt*,(t)bt, (t),
I, m, v

I

for v=1, m =+(I—1), or for v=2, l )2,
m = —(1 —1)sgnq, with lower sign and co, replaced by

~
co,

~

. For ~=1 and arbitrary l, m, we have the approxi-
mate formula

Bt,(t) =Ct,(t)/yt,

4~ ~lm1rp

q "nl(co~ ~+co~ )
(49)

for m =+I, and

4m ~i,rp

q4n

' 1/2

t~&m&+2~~~im~+ ~c t'
22 '+

2(~t~~+~. ) ~t~~

—1/2

(50)

and all nondiagonal terms turn out to cancel, as well as all
terms proportional to C~,(t)C~, (t) or CI*,(t)C~' ~(t).
The Hamiltonian Ho thus becomes a sum of independent
oscillators with the co~, the frequencies. The coefficients
yt, are given by the following exact formulas:

1/2

2m*a i3A'rp

3 Im1
q4nt

1/2

(51)

H =HP+H1+H2,

with

valid up to the first order in co, /co&. With that accuracy,
Eqs. (49) and (50) reduce to (51) for r= 1,
m =+1,+(I —1).

Let us now consider our system placed in a weak elec-
tromagnetic radiation field oscillating with a frequency co.
Assuming the vector potential inside the sphere
A(r, t) =A(r)e '"' and choosing the vanishing-scalar-
potential gauge for the radiation field, we obtain the full
Hamiltonian in the form

H& ———(qn/m*c) J d r I pR(r, t)+(m*co, /2)[r+gR(r, t)]XzI Re[A(r)e '"'] (53)

and

H2 —— (qn/m*c) —J d r IpR(r, t)+(m*ro, /2)[r+gR(r, t)]XzI [gR(r, t).V]«[A(r)e '"'] . (54)

We dropped here the terms quadratic in A since we are
interested in (one-photon) absorption processes and not in
photon scattering. ' As was previously done, we used
r+gR for the actual position of the carrier and, expand-
ing A(r+gR ) up to first order in g'R, we obtained H

&
and

H2. Assuming that condition (7) is satisfied, and H2
term is roughly of the order of (gR/ro)H ~.

One should realize that the carriers in the surface layer
may not obey Eq. (41) since there may be surface reflec-
tions and other surface features which were not taken into
account in our theory. The number of these carriers is ap-
proximately 4n.rongR, while in the entire sphere we have
3 7Tr pn carriers. Therefore our accuracy is of the order of

gR/ro, and the term Hqshould thus be d'ropped. This
does not mean that our surface-charge density o.(ro t) is
incorrect; it arises from the movement of the carriers in
the bulk and does not depend on what we assume about
the surface.

Let us now consider the vector potential A(r) which
enters the perturbing Hamiltonian 01. It should be ex-
pressed by the vector potential A"(r) (or the fields) in the

2

rp

K y(2)A~„+
rp

(56)

where the summation convention is used, and where the
coefficients A„"' ', A„"'", A~',„', etc. , are of the same order,
and harp/c is a dimensionless expansion parameter. We
ean also expand A'(r) in this parameter:

absence of the sphere, as these quantities are measured in
the experiment. We can write

A(r) = A"(r)+ A'(r), (55)

where A'(r) is the vector potential arising from the pres-
ence of the (nonconducting) sphere with the dielectric con-
stant e. Assuming that k '~~rp, where k '=c/co is the
spatial variation of A"(r), we can expand A"(r) around
the center of the sphere:
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I"oG0A'(r)=A' '(r)+ A" "(r)
r=0 (see Appendix B), so that the resulting vector poten-
tial inside the sphere is

I'ohio+
c

2

As(2)(r)+. . . (57)

As our theory of the magnetoplasma modes is based on
the quasistatic approximation [see Eq. (7)], clearly only
the first two terms of the expansions (56) and (57) should
be taken into account. With the use of the Maxwell
equations the functions A' '(r) and A'"(r) can be ex-
pressed by 3&' ', 3&'", and then by the radiation fields at

Ap(r) = — —Ep(0) ——,Ep „r„8,"(0)
E+2 co

[E„",(0)+E',,„(0)]r, ,26'+ 3 2'
where cz is the totally antisymmetric Levi-Civita tensor
and the comma denotes differentiation.

Inserting Eqs. (41), (47), and (58) into Eq. (53), we ob-
tain the perturbing Hamiltonian in terms of the oscillator
amplitudes in the form

—Iq nro 1g 1 Imv Imr
2m co Im ~ &Im~ —&c

2c

5r

2E+3 2
(59)

2&
3

COc1+ 5m l(5pl —i5p2) — 1—

where the argument r =0 of E"and 8"was omitted, and
1/2 2

5,(5„,+i5„2)+v'2 1 — 2' 5 05p3
Ct) ) )~ co ]o&

(60)

1mrFp 2&
15

' 1/2

[ s2 m sgnq )

]/2
2 Cuc

5m 0 5vl5p 1 + I (5vl5p2 5p 15v2) 5v25p2+ 2m p p p JM

2
Cuc

1 —
2 6 35@3

~2O~

2
COc ~c

(5p1 + I 5p2)5v3+ 1 2 5p3(5vl+ I 5v2)
Ct)2~&

+&, ) 1+ Cuc

(5p, —i 5p2)5„3+
2

1—
C02

5p3(6, l i 5,2)—

+5 2 1—COc

(5pl+l5p2)(5vl+l5v2)+5m 2 1+ (5„,—i 5„2)(5vl i 5,2)— (61)

(62)
I

1 3q «o 1
3

d "(t)=- , Dv ') Im. him. (t)+C C.
2 m*(e+.2) col,—co,

Im 1 9 n o ~1m~l I"
Im~

Pv (t)= 2 2 EvpaFpv 1 Imr&lmr(t)+C. C.
2 2m*c ~Im~ ~c

Equations (60) and (61) show that (due'to the condition
ro «k ') only terms with 1=1,2 appear in H„ i.e., only

~ and co2 modes can be excited by external elec-
tromagnetic radiation.

At this point it is interesting to calculate the electric
and magnetic multipole moments associated with various
modes. Applying the quasistatic formula for the magnet-
ic dipole moment

p' '(t)= CI (t) d'r r&(jI,(r)+c.c. ,4c

I

with jI,(r) given by (30), and for the "spherical" electric
multipole moments

2/' 1
qI "(t)= r'+' JdQ[C&I+ (r) Cl,(t) +.cc] *II

8~

(63)

with Aim given by (27), we obtain [also using (22), (23),
and (37)]

(64)

(65)
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r

172 (2e'+ 3 ) CO]~~ —Co~

(66)

which represent the electric dipole, magnetic dipole, and electric quadrupole moments of the lynch mode, respectively.
With the help of Eqs. (64)—(66) the interaction Hamiltonian (59) can be rewritten in the following way:

H
&

——g I (i cot /c )d '(t)Re{A ~ '"') —p '(t)Re(B~ '"') +{icot /12c )Q&„'(t)Re[(A& „+A"
z )e '"']I, (67)

where all fields are taken at r=0. Using the Poisson
brackets with the full Hamiltonian Ho+ H l,
time derivatives of the moments dv and QI,

' c» be
determined to be eqllal to —tcotppg~d~ and &~tpn~Qpv

respectively, plus corrections linear in A'. As the terms
quadratic in A' are dropped in H~, we can substitute

d„and Q &„' for —icot~P ' and —
isn't Qz™'in (67),

respectively. Equation (67) then assumes the form of the
standard multipole expansion of the interaction Hamil-
tonian in the adopted gauge with vanishing scalar poten-
tial. Thus, the interaction of the modes with external
electromagnetic radiation is determined by their macro-
scopic moments.

VII. ABSORPTION

In order to calculate the optical absorption associated
with the excitation of the modes, the full Hamiltonian
H =Ho+H~ can be quantized in a standard way, by re-
placing bt~ (t) and bt', (t) amphtudes by annihilation and
creation operators b~ and b~, respectively. These
operators satisfy the standard commutation rules for Bose
operators.

The first-order perturbation calculation in Hl shows
that absorption occurs only if the radiation frequency co is
equal to one of the cot~, frequencies. The corresponding
net (i.e., with stimulated emission subtracted) power Pt~,
absorbed by the sphere is nonzero only for / = 1 and l =2
and 1s g1ven by

2 2 2 4 2 '2
3~]miX]m &0 roti

(co)=5(~—col,), 2, 5„2 1—
~imi

IE,"I'5,+ g 1—
a=+I

2

I
E„" iaEy"

I
'5—

~In &

(68)

2 2 4 4
5~2mB'2m% ro~2

P2 (co) =5(co—cop, )[1—5,p(1 —5,s„q)] 3072A'(coq, —co, )
2

8 2e+3 ~c
X '—

a=+1
'2+

+2mv

2

[Ey" +E"y+ia(E»»+E»«)]+ (By"+iaB») 5

+4 1—
I E«,y+Ey, «+ta(E», Ey",y) I 5m'~ (69)

The result is temperature independent due to the cancella-
tion of the plasmon occupation functions for transitions
with plasmon absorption and emission. The power does
not depend on A, indicating that ihe same result could be
obtained by a classical calculation. This could be expect-
ed, as Planck's constant cancels out of the conservation
equations relating photon and plasmon energies and the z
components of the angular momenta. In case of the
electron-plasmon interaction (characteristic energy-loss
experiments) this is no longer true. Equations (68) and
(69) are consistent with the adopted jellium model, as they
depend only on charge and mass densities, and not on in-
dividual carrier parameters.

Let us point out several specific conclusions which fol-
low from the expressions for the power absorbed.

The uniform electric field excites only the col l modes,
i.e., the only modes possessing the electric dipole moment
[see (64)]. The electric field parallel to 80 excites only the

mode, while the CRA and cyclotron-resonance-
inactive CRI circularly polarized fields excite the co»I or
67) 1 &

modes.

l

The uniform magnetic field excites only m2 modes
with m =0,+1, since according to (65) these are the only
modes possessing the magnetic dipole moment (they also
possess the electric quadrupole moments). The magnetic
field paralleI to Bo excites only the cozol mode, while the
CRA-polarized magnetic field excites the co&,s„~2 and

,g„& ] modes. The CRI-polarized field excites only the
2, sgnq 1 mode.
A nonuniform electric field [i.e., E"(0)=0, VE"(0)~0]

excites only co2 modes, i.e., the only modes possessing
an electric quadrupole moment [see (66)]. Changing the
orientation of a given nonuniform electric field in space,
one can excite each of the ~2 ~ modes with arbitrary m,
as well as the co2,z„& 2 mode.

one can see from (68) and (69) that P~, and P2~, are
proportional to ro and ro, respectively. It follows, in par-
ticular, that the total absorption of a system of nonin-
teracting spheres of a given total volume is independent of
ro for ~=col~~, but lllcleases wltll ro for co=~2~~.

It is interesting to estimate the relative intensities of the
lines which should not be affected by the presence of weak
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damping of the carriers motion. Assuming all com-
ponents of the fields to be of the same order, @=10,
e(corolc) = —,, and

~
co,

~
/co& ———,', we obtain

f dcoP2~) f dcoP)~)-4 X10

Thus for
~
co,

~

&&co& the absorption for the frequencies
with l =2 is much weaker than for those with l =1.

VIII. CONCLUSIONS

An analysis of free magnetoplasma oscillations of a
small conducting sphere yielded an infinite number of
lmv. eigenmodes, all with a vanishing space-charge density
(exactly, or up to first order in co, /co&). The frequencies
of these modes fall into two classes: those tending to zero
for 80~0 (x=2) and those tending to coi (v= 1). The
first class corresponds to helicon waves in an infinite
medium, and the second to surface magnetoplasmons on a
plane boundary. In addition, there also exist eigenmodes
with nonvanishing space-charge density (bulk magneto-
plasmons) which are discussed in detail in the following
paper. The external electromagnetic radiation, acting as
a perturbation, leads to transitions between the levels of
the quantized magnetoplasma. The absorption, however,
turns out to be classical, i.e., it does not depend on A'. In
the quasistatic approximation adopted in the present pa-
per only nine of the lmr modes interact with the external
electromagnetic radiation. However, the remaining modes
could be excited in some other way, e.g., they might be ob-
servable in characteristic-energy-loss experiments.

Some of our results can be compared with the theory of
Ford, Furdyna, and Werner' (FFW), and the later results
of Ford and Werner" (FW). FFW and FW use a classical
approach, based on the Maxwell equations, where the
external fields are included from the very beginning, i.e.,
they consider the forced motion of the plasma. Their
theory also includes phenomenological damping. For the
external fields FFW use only uniform magnetic or electric
fields. Thus, they do not obtain the electric quadrupole
resonances (our v= 1,1=2 case) which can be excited by a
linearly varying electric field. In the case of the magnetic
excitation FFW neglect the electric field outside the
sphere, and, likewise, for the electric excitation the mag-
netic field outside the sphere is neglected. In the case of
electric excitation this approximation yields an error of
second order in pro/c. For the magnetic excitation the
approximation affects the boundary condition for the to-
tal current density at the surface of the sphere, leading to
an error of zeroth order in (coro/c) (note that for this ex-
citation there exists a nonvanishing surface-charge densi-
ty). One can observe directly that the lowest-order solu-
tion of FFW does not fulfill the boundary condition for
the tangent component of the electric field at the surface
of the sphere. In our treatment both the electric and the
magnetic fields outside the sphere are included —we
neglect only contributions of order (coro/c) and higher in
our quasistatic approximation. Our results should there-

fore coincide with the zero order in (coro/c), no-damping
results of FFW in the case of the electric excitation, but
not in the case of the magnetic excitation.

The above remarks also suggest that the corrections of
order of e(co&/co) (corolc) calculated by FFW are com-
parable to the errors due to their approximation concern-
ing fields outside the sphere.

In the electric excitations of FFW one can recognize
our v=1, l=1, m =0, +1 modes. The resonant frequen-
cies of FFW which can be inferred from their expressions
for the power absorbed agree with ours given by Eqs. (22)
and (24). Similarly, our Eq. (68) for the power absorbed
coincides with the corresponding formula of FFW (note
here that FFW use the convention co, & 0 for electrons).

The magnetic excitation of FFW corresponds to our
r =2, l =2, m = —sgnq mode. The resonant frequencies
obtained from the expressions of FFW for the power ab-
sorbed do not agree with ours inferred from Eq. (23) for
1=2. In particular, for

~
co,

~
&&co& our formula (26) does

not agree with the resonant frequency of FFW, in that the
factor ( I —1)/l = —,

'
is replaced by ——,. It should be also

noted that the approximation used by FFW precludes the
excitation of the high-frequency modes r = 1, / =2,
m =0, +1 by the uniform magnetic field. For these
modes the electric field outside the sphere is particularly
essential.

In their later paper" Ford and Werner give the formal,
rigorous solution for the problem of a gyrotropic sphere
of arbitrary size and for arbitrary dc magnetic field.
However, they were able to obtain analytical results only
in the Rayleigh limit and for

~
q/k

~
&&1, where q and k

are the wave numbers of radiation inside and outside the
sphere, respectively. In that case FW reproduce the for-
mulas of FFW. The condition

~
q/k

~
&&1 is not fulfilled

in many important cases. For instance, in the limit of
lossless plasma and for Bo——0 it reduces to
e(1 co~/co )—&& 1 and does not hold for co =co& or co =co&.
Only in the case when the condition

~
q/k

~
&&1 may be

relaxed (zeroth-order approximation for the electric exci-
tation of FW and FFW) are the expressions of FW accu-
rate. Still their results in the general case can be useful
for a numerical treatment.
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APPENDIX A: MAGNETOPLASMA OSCILLATIONS
IN AN ELLIPSOID

1

Retaining all assumptions made for the sphere, we ob-
tain the same set of equations (1)—(4) determining carrier
displacements and fields inside and outside the ellipsoid.
Equations (5) and (6) should now be taken at the surface
of the ellipsoid with the unit vector normal to the surface
rq instead of ro.
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In the zero-magnetic-field case we choose the system of
coordinates along the principal axes of the ellipsoid and
solve the Laplace equations in ellipsoidal coordinates.
Apart from the co=coz mode we obtain frequencies of the
vanishing space-charge-density modes in a fairly compli-
cated form which will not be presented here.

In the presence of an arbitrarily oriented external mag-
netic field Bp we choose the z axis along Bp, as shown in
Fig. 1, so that Eqs. (9) and (10) remain unchanged, while
the boundary conditions (11) and (12) assume the form

1. Vanishing space-charge-density modes

Demanding that both components of (9) vanish
separately, we obtain

(rp/q)@ (r)=C, (r/rp)'&, (8,$)
oo l'Ci'»(rlrp)' &i~ (8,$), (A5)

l'=1 m'=+I',
+(I'—1)

(rp/q)&+(r)=Ci (r/rp) "+"&~ (O, P)

++(r)=@ (r),
(ro —co, )ri V&&+(r)=e(pi —co~ —cp, )ri VN (r)

(A 1) + g g C ~' (r/r )
—(1"+ i)

1"=1 m"= —I"

+e( cp& cp~ /co ) (ri z )
BC& (r)

Bz

+i@(rpprp, /co)ri [z X V.4 (r)],
(A2)

where r runs on the surface of the ellipsoid. Introducing
spherical coordinates, we can express r as a function of 8
and P from the equation of an ellipsoid, so that (A 1) and
(A2) depend only on 8 and P.

%'e shall now introduce two nonsphericity parameters:

rli ——1 —(rp/a )

ilz ——1 (rp/b )— (A4)

where a, ro, and b are the semiaxes, and we choose
b &rp &a. In the following we assume ili,

~
r)2 ~

&&1 and
confine ourselves to the first-order perturbation calculus
in

hali

and F12, i.e., we linearize (Al) and (A2) in these pa-
rameters.

I~ =~im~+~Im~ ~ (A7)

where roi is given by (22)—(26), while co'i, is linear in il i
and F12. Inserting (A5)—(A7) into (Al) and (A2), and
keeping only terms linear in g~ and g2, we obtain two
equations in 8 and P. Integrating these equations with
spherical harmonics F& (8,$) leads to a system of linear
equations for (C/ /C& ) and (CI" /CI ). The value of
coI, can be obtained using only the equation with
(l,m ) =(l,m). For m =+1and v= 1 we obtain

(roi i
—rp )(2l + 1 )coi

~lm1= 8'(Op, gp),
2(21 +3)[@mrs,cop —2roi~, (le+1+ 1)]

(AS)

and for m =+(l —1) (and arbitrary r) we obtain

X&i- -(8,$),
where l) 1, m =+I,+(I —1). Here the Ci are the zero-
order amplitudes, while CI ~ and CI" - are linear in g~
and g2. %'e also have

ro,~~(ro,'~, rp,')[41/e—(21 +3)+1 (roi /rpi~—,) )

2I2(rp, rp~/rpi ) +mrs (rp~/dpi~~) 2'&m~V—+(t+I)/e'] I

(A9)

z'

where

W(OQ Pp) =i) i( 1 —3 sin Opsin Pp)+ r)2( 1 —3 cos Op)

(A10)

FIG. 1. Coordinate systems showing the relative orientation
of the ellipsoid and the magnetic field. The z direction is taken
along the static magnetic field 80. The surface of the ellipsoid
is determined in primed coordinates by (x'/ro)
+(y'/a) +{z'/b) =1, where ro, a, and b are the principal
semiaxes. The direction of 8 relative to the principal axes of
the ellipsoid is determined by angles 80 and QQ.

The factor depending on Op and pp achieves the largest ab-
solute values when Bo is along the shortest or the longest
semiaxis of the ellipsoid, and it vanishes for Bo in
(+1,+ 1, + 1) directions in the principal-axes system of the
ellipsoid.

Equations (AS) and (A9) can be used to obtain the
eigenmode frequencies in an ellipsoid without the magnet-
ic field. In that case the system of coordinates should be
chosen along the principal axes of the ellipsoid, i.e., we set
Op ——0 or OQ —pp m/2 (see Fig. 1). Expressions for the
eigenfrequencies in spheroids (ili ——0 or F12

——0) may be
found in Ref. 27. The general formula for roi is correct
in this paper, but there are some errors in the expansion in
terms of the eccentricity of the ellipse generating the
spheroid. If this expansion is performed properly, the re-
sults coincide with ours.
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2. High-frequency modes

Assuming co-co~ &&
I
co,

I
and keeping only the first-

order terms in co, /co&, ri~, and si2 (i.e., neglecting all their
products), we obtain the co=co& mode and co=cot~ fre-
quencies given by the zeros of a (2l + 1) && (2l + 1) deter-
minant. In order to obtain analytical formulas for col~
one must assume that the perturbation given by the mag-
netic field 80 is stronger than that arising from nonsphe-
ricity, i.e., that the magnetic field first splits the (2l + 1)-
degenerate mode ~=mz~ into mI ] modes, and then the
nonsphericity slightly modifies these frequencies,

neglected, they become, respectively,

e„„q[Aq'„'(r +)—Ap „'(r )]=0,

roq[A„' '(r +) eA~' —'(r )]=(e—1)roqAp' ',

(81)

(82)

(83)

(84)

(85a)

ro&[A'„'"(ra+) e—A'„'"(ro )]=(e 1—)rozro, A„"',", (85b)

I~ =~im I+~~m ] (A 1 1) A&' '(r) —+0 for r~ae . (86)

so that we deal with a nondegenerate perturbation cal-
culus. The potentials inside and outside the ellipsoid are
then given by (A5) and (A6), respectively, with the restric-
tion on m abandoned and the summation over
m'= —I', . . . , I'. A procedure similar to the one used in
subsection 1 above leads to

Here, ro+ and ro denote r tending to ro from outside and

inside the sphere, respectively.
The solutions of Eq. (81) for et=0 and a= 1, satisfying

(82), (83), and (86), can be sought in the form

A& (r) =aug(ro r)+ro(m—&r
3 —3m r r&r )g(r —ro),

(2l + 1)(3m —l —l)co~i

41(el + l + 1)(2l —1)(2l +3 )
8 (80 0) (A12)

(87)

The factor depending on the orientation of 80 is the same
as in (A8) and (A9). For

I
co,

I
/co~ &&1, (A8) and (A9)

reduce to (A12) for m =+l and m =+(l —1), respective-
ly. The validity of (A12) is restricted by the condition
that the shift arising from nonsphericity should be much
smaller than the splitting caused by Bo. This leads to the
inequality

Ico, I/co t» Iri; I/2e, i =1,2. (A13)

For large values of e — this will be satisfied for
I
ri;

I
=

I
co,

I /co~ or even higher. It follows from (AS),
(A9), and (A12) that

I
coi i I

/coin i-
I g I

/e
I vvi~2

I
/cot~2-

I
ri; I

. Thus, for e&&1 the effect of non-
sphericity on high-frequency modes is very small.

APPENDIX 8 VECTOR POTENTIAL
INSIDE THE SPHERE

We must express the expansion coefficients A' ' in Eq.
(57) (a=0, 1) in terms of A"' ' of Eq. (56). The wave
equation, the gauge, and the boundary conditions (at the
surface of the sphere and at infinity) can be separated in
orders of roco/c, and if the terms quadratic in roco/c are

a„=m„=—[(e—I)/(@+2)]A„"' ',
a„„=d„=—[(e—1)/(2@+3)][Ap'„"+A„"~ '] .

(89)

(810)

The total vector potential inside the sphere can now be
written as

6+2 2C

2c 2@+3
(811)

where (55)—(57) and (87)—(810) were used. With the use
of (56) the coefficients Ap(') and Ap". ) can be easily ex-
pressed by the fields in the center of the sphere„which
leads to (58).

(88)

where 8(x) is the Heaviside step function and d„,=d„„
d =0. Outside the sphere, A' ' and A'" represent the
dipole and the quadrupole fields, respectively. The con-
stant coefficients in (87) and (88) can be determined with
the use of Eqs. (84) and (85) and the result is
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