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A parametrized version of the generalized pseudopotential theory (GPT) of Moriarty is proposed
for the special case of the noble metals. Copper is taken as an example. To define the parametriza-
tion, we consider separately the contributions which in the GPT are defined as the simple-metal lim-
it (SML), the s-d coupling, and the overlap. The perturbation expansion is done from the basis of
the atomic d states, and the d bands of the noble metal are considered to be completely filled. The
SML is represented as an empty-core potential of radius r„and the s-d —coupling calculation is
done exactly, but the mean energy Ed of the d band relative to the conduction band is considered to
be adjustable. The two parameters r, and Ed are determined from particular points of the band
structure. The results are found to be consistent with the large-L band-gap value and the width of
the resonance of copper. The SML of the form factor, and the total form factor obtained, are in

good agreement with those of the ab initio GPT. By means of the optimized random-phase approxi-
mation, we analyze the influence of the overlap on the liquid structure. We find that the expression
for the overlap pair potential of Moriarty gives a good estimation of the liquid structure factor.
Conversely, this quantity is used to adjust the overlap pair potential. Further concluding tests of the
parametrization are done by calculating the entropy Cz, the compressibility, and the resistivity of
the liquid. It is found that the parameters r„E~, and those of the overlap are almost insensitive to
volume changes with temperature in the solid and liquid under normal pressure. We conclude that
the parametrized approach gives a good picture of the electron-ion and interionic interactions
without losing the essence of the GPT. The method cannot replace the ab initio calculation, but
could be useful in the investigation of noble-metal properties in systems which are not easily tract-
able in a detailed theory.

I. INTRODUCTION

The extension of the pseudopotential theory of simple
metals in order to include the effects of the transition-
metal d bands has received considerable attention over the
past decade. ' The transition series end with the noble
metals, which have a maximum electron occupation in the
d bands. Copper, silver, and gold, in particular, have been
studied by Moriarty ' ' and Dagens ' in a series of works
in which they, respectively, extend to the noble metals the
well-known schemes of the orthogonal-plane-wave (OPW)
pseudopotential and the resonant model potential.

In the first approach, Moriarty has considered the
OPW expansion supplemented by an expansion on the
basis of the atomic d states. The most recent version of
Moriarty's generalized pseudopotential theory (GPT) con-
nects the pseudoatom approach and the density-functional
formalism. ' In the case of the noble metals, Moriarty
has shown that the assumption of a completely filled d
band leads to difficulties and has proposed possible im-
provements.

Dagens's resonant model potential (RMP) avoids some
of the difficulties which are encountered in the GPT, ow-
ing to a parametrization procedure. There are several
ways to accomplish this parametrization; for instance, by
fitting the band-structure data or by matching the

screened RMP to the Hartree-Fock-Slater self-consistent
potential. s Some of the advantages of the RMP are due to
the fact that the simple-metal contribution and the
resonant part of the model are well separated. From
Dagens's work it is clear that the simple-metal contribu-
tion to the potential can be described using a standard
model potential, either local or nonloqal, depending on the
degree of refinement which is sought. The important ori-
ginality of the model lies in the resonant part, which is
constructed with the assumption of ultralocalized d wave
functions so that no overlap occurs between the wave
functions of neighboring ionic sites. Such a procedure
by-passes the intricate overlap calculations which have to
be done in the case of the GPT. Nevertheless, it seems
more difficult to find a parametrization of the RMP
which rigorously agrees with the nonoverlapping condi-.
tion in the liquid state.

Many attempts using a simpler scheme have been pro-
posed in the literature to avoid the lengthy calculations
which are associated with the GPT and RMP. Unfor-
tunately, such simple approaches conceal the physics of
the d-electron behavior. An intermediate theory has re-
cently emerged with the work of Wills and Harrison on
the interionic interactions in transition metals. " To
describe the trends in the transition-metal series, these au-
thors show that a two-parameter model can be convenient.
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One parameter is the radius r, of the empty-core model
which characterizes the interactions of the conduction
electrons with the bare ions. The second parameter is an
effective d-state radius rd which is obtained from the d-d
coupling between neighboring sites. Moreover, the value
of rd is mainly a characteristic of the free atom rather
than that of the d band itself. The pseudopotential of
Wills and Harrison belongs to the class of the semiempiri-
cal models often invoked by Heine, ' and is transferable to
different physical contexts provided that r, and rd are
somewhat adjusted. Although we are not concerned with
the tight-binding approach, it may be useful to underline
that Pettifor' '" has developed a hybrid-NFE-tight-
binding model Hamiltonian (where NFE denotes nearly
free electron), and has pointed out that the description of
the structure trends across the transition series necessi-
tates only two d-resonance parameters.

Although very different, the approaches of Wills and
Harrison and Pettifor have an important common feature:
both need only a small number of parameters to reproduce
the transition-metal properties. We believe that a
parametrization procedure can also be useful in the frame-
work of the GPT or the RMP.

The main purpose of this paper is to show that besides
the full ab initio GPT, such a simple parametrization can
be reached by considering separately the three principal
contributions of the GPT which are, respectively, associ-
ated with the free-electron-like states, the s-d coupling,
and the overlap. To do this, we shall by-pass most of the
detailed charge-density calculations in using the band-
structure data for the two first contributions. and consid-
ering properties depending on interionic interactions to
adjust the overlap contribution.

In a previous paper' we showed that the determina-
tions of the GPT and RMP at the solid-state density are
good starting points to investigate the disordered state.
Since we are mainly interested in the liquid state, the re-
sults of our parametrized GPT will be principally com-
pared to experiments concerning the liquid properties.
The parametrization procedure could be applied to all no-
ble metals, but in the following it will be developed only
for copper, since its band-structure data' ' as well as
many measurements of its liquid properties have been ex-
tensively investigated.

This paper is arranged as follows. In Sec. II we present
the main quantities of interest for a parametrized GPT
and discuss the adjustment procedure for the simple-metal
and s-d —coupling contributions. In Sec. III we derive the
pair interionic interactions and discuss the adjustment of
the overlap contribution. In Sec. IV we calculate various
structural, thermodynamical, and transport properties.
The comparison to the previous ab initio approaches of
the GPT or RMP is done when necessary throughout this
work.

II. PARAMETRIZATION OF THE GPT
FORM FACTOR

The essence of the GPT lies in the fact that the sma11-
core approximation is no longer valid for, the d states
which are not exact eigenstates of the crystal Hamiltonian

and which form bands which hybridize with the nearly-
free-electron band. To determine the energy of these
bands, we must calculate the extra potential —6V "seen"
by a d electron when going from the free atom to the met-
al, and the hybridization operator b, which is defined
b 1,5

k+q d 6 +5 d d k

k ~ 6 d d
Eg —Ed

(2)

where Ed = (d
~

T + V
~

d ) is the mean d-band energy rel-
ative to the minimum energy of' the free electron, and
Eq =A: /2 is the free-electron kinetic energy (all relations
given throughout the text are given in the atomic-unit sys-
tem, i.e., with e =fi=m =1).

In relation (2) 'U is the single-site contribution to the to-
tal self-consistent potential V in the metal. The

~
a) cor-

respond to the core states including the basis set of d
states chosen for the calculation.

Several important changes have been introduced in the
last GPT development of Moriarty. These changes im-
prove or optimize the formalism through the elimination
of large cancellations between terms. Thus we note the
following.

(i) The difference in the exchange potential when going
from the free atom to the metal is not assumed to be a
constant, but is taken as r dependent.

(ii) The potential due to the charge distributions of the
neighboring ions in the metal is not spherically averaged.
Thus, the extra potential V can be separated into volume-
and structure-dependent parts: 5 V=5 V""+5V"

(iii) The orthogonalization-hole distribution no&(r) is
not the usual simple-metal definition no~(r), and in-
cludes the orthogonalization-like nature of one of the hy-
bridization contributions. It is now defined by

n QQ ( r )=n Q+ ( r ) h2(k, r)dk,
(2~)3 k &kF

where the function h2(k, r) is given by Eq. (22) of Ref. 2.
These modifications are basic improvements of the ear-

lier theory, ' and, moreover, allow a computationally effi-
cient representation of the principal quantities, i.e., the
form factor, the energy-wave-number characteristic, and
the overlap potential. This last development of the GPT
(Ref. 2) applies very well to the simple metals and to met-
als which, respectively, correspond to the empty- and
filled-d-band limits of the GPT. However, in the case of
the noble metals, the filled-d-band limit seems inadequate
because the hybridization empties out about 0.5 electron
per atom from the d band, a value which is not small

b, =5V-id) —(d i5V id) .

The simple-metal pseudopotential form factor can be
extended to the transition metal, and the new expression
reads"
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when compared to the chemical valence Z=1 of the noble
elements. To improve the GPT for the noble metals,
Moriarty has suggested either a rigorous reformulation or
an ad hoc adjustment of the CAPT formalism. In the first
case, the GPT is modified by allowing the d states to un-
fill and a self-consistent valence to be achieved in zero or-
der. In the second case, the filled-d-band scheme is con-
served, but an adjustable core shift is introduced. Here we
shall explore the route of parametrization. We use the ex-
pansion on the basis of the atomic d states rather than
pseudoatom d states, and we include the previously men-
tioned changes. Therefore, the terms involved in cases
(i)—(iii) differ from those of Moriarty and will be detailed
in the next sections. Since we start from a delocalized e-
state basis, we expect a good electron density and band
structure in the noble metals, but, on the other hand, we
do not expect that the criteria 5V'" &~5V" ' will be well
satisfied, as discussed in Ref. 2. To avoid this difficulty,
we must consider the mean d-band energy as an adjustable
parameter.

A. Simple-metal limit

The simple-metal limit (hereafter denoted SML) of the
form factor is immediately obtained from (2) when 6=0.
It is well known that in many s-p metals, a simple way, to

I

obtain the form factor is to start from the crude but suc-
cessful Ashcroft empty-core model w„= (Z—lr)B(r—r, ). B is the Heaviside step function and r& is the
model radius which is close to the ionic radius. ' There-
fore we suggest that the form factor (2) can be simplified
by modeling the SML using the empty-core potential. In
using this assumption in the case of noble metals, we ad-
mit that the effects associated with the orthogonalization
hole, the nonlocality, and the partial cancellation inside
the core can be all modeled from wz, provided that the
radius r, is suitably adjusted. Such a representation of
the SML may seem oversimplified. However, we observe
that Dagens has found it convenient to represent the SML
of the RMP from the local model potential of Shaw, and
that Wills and Harrison also consider the ion —free-
electron interaction in transition metals by means of the
empty-core model. Using this model in the first term of
(2), the form factor can be written as

w( k, q)=w~(q)+U, (q)+wR(k, q)+wR(k, q), (4)

where wz(q) is the Fourier transform of the empty-core
bare-ion pseudopotential. wR ( k, q ) and wR ( k, q ) are,
respectively, the last two terms of (2). v, (q) is the part of
the Fourier transform of v(r) that has not been included
in wz(q). After straightforward calculations, the form
factor can be written as

1 4~w(k, q)= w~(q)+ [1—G(q)][noH(q)+An, (q)] +wR(k, q)+wR(k, q),e"'(q) q

where

(5)

e"'(q) =1— [1—G(q)]X
2k~

with
r 1-x' 1+xx(x)= — +

2 2x 1 —x

Here, we represent the local-field exchange-correlation function G(q) by the approximate Vashista-Singwi relation. '

The comparison of this local-field approximation with others has been done by Singwi and Tosi. In expression (5),
11 QH (q) is the Fourier transform of n oH ( r) given in (3). Owing to the use of the local model for the SML, the
"orthogonali'zation-hole" density reduces to the second term of (2). We can write

1 dk~ d, q. -,
d (k Id)(d Ib,

I
k)+(d Ib. Ik)(k Id)lloH q —

3 k k dk d e d (kIEId)(d IKIk)
«d —Ek)'

2«+ q I
d & « I

~
I

k &

The function 5n, (q) appearing in (5) is the contribution of the s-d coupling to the screening charge, given by

wR(k, q)
5n, (q)= dk

27T3 k (kF Ek —Ek+q

1 dk
wR(k, q)

k&kF Ek Ek

The first term of Eq. (5), w„/e"', is the SML contribu-
tion to the form factor, which here is reduced to the stan-
dard local expression. In (5) we have clearly separated
this contribution from all those remaining which come
from the s-d coupling, which we now consider.

B. s- d coupling

The s-d —coupling contribution to the form factor is
very important in the noble metals. For instance, it is re-
sponsible for the large band gap at the I point of the Bril-
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louin zone which is given by

I. i L—2 =2w(kL, —2kL ),
where —2kl corresponds to the primitive translation in
reciprocal space in the [111]direction. This gap is about
0.2 a.u. in copper, and only 0.01 a.u. in prototype s-p met-
als such as Mg and Al. Therefore the s-d —coupling
contribution must be examined carefully.

For a given choice of the d-state basis, the s-d coupling
depends on the extra potential 5V(r) centered on each
site. In the following the origin r=0 is arbitrarily locat-
ed at the site i. It is important to note that there are
several ways to separate 5V( r ) into 5V""(r ) and

5 V""(r)= up, (r)— V„„,f(r)+ g —+4@„,,
j&i

where

~P'xc iMxc(+core++4s) Pxc(+c'ore++unif) r (10)

5V" '(r) components, but that, in the CAPT, 5V""(r )

must be 1 order of magnitude larger than 5V"'"'(r) to
develop tractable expansions.

From the general expression of the self-consistent po-
tential and our choice of d-state basis, a natural separa-
tion of 5V(r ) is the following:

5V" '(r)= —g u„„,(
~ rj —r

~
)+u„„(

~
rj —r

~
) ——+u„,(

~ rj —r
~

)
J+I J

g e' ' " [1—G(q)][noH(q)+" (q)l
1 iq.(r —r. ) 4~

p J

uxc iMxc( ficore + ~unif ) Pxc(fiunif ) (12)

where p„, is the effective exchange-correlation potential
that is calculated using Kohn-Sham exchange and the
Singwi-Tosi interpolation scheme for the correlation ener-
gy. It is expressed by the functional

These two relations are written in the notation of Ref. 2
and contain the local densities corresponding to the core
state n,«, (r), to the valence electron in the free atom,
nq, (r), and to the uniformly distributed valence charge in
the metal, n„„;f. The potentials v„„, v4„and V„„;f are,
respectively, those associated to these three previous den-
sities. v„„, is the nuclear charge density and v„, is the
difference:

In this work the atomic. -d-state basis is obtained from
the Roothan-Hartree-Pock tables of the 4s '3d' configu-
ration. The direct potential u4s(r) is derived by solving
the Poisson's equation, and is simply expressed in terms of
the radial part R4O(r) of the 4s wave function:

ups(r) =— x R40(x)dx + xR4O(x)dx .
y p T

In Fig. 1 we have reported 5V""(r)—5V(0) and the vari-
ous contributions to this quantity. It is clear that the
exchange-correlation contribution almost cancels the v4,
potential, so that the behavior of 5V"'(r) principally
comes from the r dependence of V„„;f(r). Therefore, the
assumption of a constant exchange-correlation contribu-

1+9 43n'~
p„,(n) = —0.984n '~ —0.005 98

(0 0795+n' )
(13)

In Eq. (11), N is the number of ions and ns(q) is the
Fourier transform of the total screening charge: 0.3

ns(q) =2[w~ (q)+ us(q)]X(q)+5fis(q) . (14)

We have introduced the term g.~,. (1/rJ. ) in Eqs. (10) and
(11) so that we can write

r2
V„„;f(r)+g —= V(0)—

j+i J 2rws

0.2O

9
C

Ld
0.1

. ~ .M

~ 1

where rws is the Wigner-Seitz radius. The potential V(0)
on the site i is the Coulomb potential due to all the j ions
and the uniform compensating background. To a good
approximation, it is given by the constant V(0)
=1.5«ws.

The assumption that 5V""(r) exerts a larger influence
than 5V" '(r) means that the strength of the s-d cou-
pling is principally determined by the passage of a 4s-
localized density in the atom to a uniform density in the
metal.

I I

0 6
r (a.u. )

FIG. 1. Contributing terms to 5V""(r). v4, (r) —v4, (0): dot-
ted line. Ap„,: dotted-dashed line. r /2r ~s. dashed line.
5V""(r)—5V(0): solid line. r~s denotes the Wigner-Seitz ra-
dius.
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FIG. 2. Variation of 6V""(r)—5V(0) with atomic volume.
Solid at T=O K, 0=79.68 a.u. : solid line. Liquid at T=1356
K, 0=89.54 a.u. : dashed-dotted line. Liquid at T=1873 K,
A=93.44 a.u. : dashed line.

I I

2 3

F
l~

FIG. 3. Radial s-d —coupling matrix element (k
I
4

I

d )„d.
Present calculation: solid line. Pseudoatom GPT: dashed line.
RMP: dashed-dotted line. The GPT and RMP curves are taken
from Fig. 8 of Ref. 2.

tion underestimates 5V""(r), mainly at distances close to
or above the Wigner-Seitz radius.

Since we need the extra potential in the liquid state, we
have examined in Fig. 2 the change of 5V""(r)—5V(0)
with volume by comparing the curves corresponding to
the solid at the temperature 0 K and normal pressure, and
to the liquid at the melting point (1356 K) and at the
higher temperature of 1873 K. We remark that the
curves do not deviate very much from a quadratic form.
This fact is useful for obtaining convenient algebraic ex-
pressions for the s-d —coupling matrix elements and for
saving computation time (see Appendix). A way to check
our assumption that 5V( r ) is principally defined by
5V"'(r) is to calculate —(d

I
5V""(r)

I
d ), since the shift

from the atomic d energy level Ed is given by

E„—E„'= (d I5V(r) Id&. — (17)
/

We find Ed —Ed =0.165 a.u. , a value which is of correct
magnitude when compared to that (0.280 a.u. ) obtained by
Hodges et al. from their renormalized-atom approach.
Nevertheless, the difference indicates that the criterion
5V""(r)»5V" '(r) is not well satisfied.

Our intention is to correct this defect by the adjustment
of Ed, so that we keep the OPT formalism, assuming the
11ybrldlzatloll opcl'atol flllly determined fl 0111 5V ( I'),
while the terms appearing in 5V" '( r ) are explicitly dis-
tributed following the GPT.

In Fig. 3 we have reported the k dependence of the ra-
dial part of the matrix element (k

I
b,

I
d ). We compare

it with the corresponding results obtained in the cases of
the RMP and pseudoatom OPT. In the present approach
the ( k

I
b,

I
d )„d are less extended in k space than in the

two other approaches, which correspond to more localized
d states. The magnitude of ( k

I
6

I
d )„d can be checked

if the width of the resonance, Wd, Ed, and the corre-
sponding band-structure potential are known, since we
have the relation

~d 4kd I ( kd
I

~
I
d &rad I (18)

where kd +2Ed. Using ——our fitted value for Ed (see the
next section), we have compared our Wd estimation with
other sources in Table I.

C. Determination of Ed and r,

TABLE I. Width of the resonance in a.u. {double rydbergs).

This work

0.0117

GPT'

0.0138

Rg
Band-structure calculation

0.0142 0.0087

'Reference 6.
References 26 and 27.

In the derivation of the form factor, we must scale Ed.
relative to the conduction band. This is a source of diffi-
culties. For instance, the pseudoatom approach does not
place well Ed relative to the I ) point of the conduction
band. In our case we do not expect a good location of I"

I
since we use the Ashcroft model. This problem is in-
herent in the good determination of both diagonal and
off-diagonal matrix elements of the pseudopotential when
using a single-parameter model. This has already been
discussed in simple metals, where one finds rather dif-
ferent values of r, when fitting the off-diagonal matrix
element to the I. band gap and the diagonal term to the
observed equilibrium density, or to the bulk modulus.
We have decided to by-pass the previous difficulties by
fitting Ed from the total conduction-bandwidth EF—I I

given in the literature. As shown by Moriarty, ' the non-
locality of the simple-metal contribution to the energy
difference EF —I I is small and of order 0.01 a.u. in
copper, so that our local assumption is not expected to be
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TABLE II. Volume dependence of the mean d-band energy
in a.u.

I

~ ~

. Solid
Liquid
Liquid

Atomic
volume

79.68
89.54
93.44

EF—I )

0.347
0.312
0.297

0.157 (0.165', 0.127 )

0.162 (0.149')
0.157

00

$ 0"
4

~ -0.1

/
X

'GPT, Ref. 6.
RMP, Ref. 7.

critical in the present determination of Ed, which is
solved from

EF ~1 zkF+ g(&kF l~ld&&d
l
kF&+c c. )

d

+g
d 2 kF —Ed

(19)

where c.c. is the complex conjugate. The ' values of
EF—I

&
as a function of lattice spacing have been given

by Davis et al. ' We have linearly extrapolated these
values to estimate Ed in the liquid state from Eq. (19).
Our results are reported in Table II. It is interesting to re-
mark that the value of Ed is almost insensitive to the
atomic volume in the investigated range.

There are several ways to obtain r, from a fitting pro-
cedure. We pursue our adjustments on the band-structure
data 'by considering, as Dagens does for the RMP, the
I, ,' —r, difference, which is expressed by

L2 I I 2kL+&kL
l
wA+us+wB

I
kL &

—
&
—kL

l
w~+u, +WB l kL &

—&ol w, +u, +w, lo&,

which reduces to

I I I

1 2 3
q/k

FIG, 4. Form factor of solid copper. Simple-metal limit
(6=0) of the GPT: present parametrized approach, solid line;
Moriarty's ab initio approach (Ref. 6), crosses. Total form fac-
tor (h&0): present parametrized approach, dashed line;
Moriarty's ab initio approach (Ref. 6), dotted line. The half-
band-gap value is indicated by an open square [optical measure-
ments (Ref. 29)] or an open circle [band-structure calculation
(Ref. 16)].

-0.2
0

essentially due to our SML representation. The first
relevant point revealed by Fig. 4 is that we reasonably
reproduce the SML of the GPT from the empty-core-
model assumption in place of the full OPW expansion. In
fact, in simple metals, for instance, potassium (which has
s-p core states similar to those of copper), the empty-core
radius is close to the ionic radius. ' The SML representa-
tion of copper is different. Considering the d states to be
corelike states leads to a value of r, which is far from the
copper ionic radius, —1.8 a.u. We also remark that the
disappearance of the usual orthogonalization-hole density
n oH(r) due to our choice of a local model for the SML is
not very drastic, at least for the derivation of the form
factor.

The second relevant point concerns the s-d coupling.
We obtain a fair agreement with Moriarty's curve, and
our solid-state form factor agrees very well with the value
0.0875 a.u. of the half-L band gap measured in copper.

L2 —I ( ———,
'

kL —[w„(2kL )+.u, (2kI )] . (21)

According to the previous values of Ed, 5V"", and the
band-structure value of L2 —I ~,

' we find r, almost in-
sensitive to the change of lattice spacing in the solid be-
tween 0 K and room temperature. We obtain r, =1.21
a.u. and keep this value for the liquid state.

0.1
X

D. Analysis of the form factor

We now turn to the total form factor. Owing to the lo-
cal simple-metal-limit assumption, the nonlocality entirely
comes from the s-d —coupling contribution. In Fig 4we.
have represented the on-Fermi-sphere form-factor values
and the corresponding SML result. We compare our re-
sults to the first work of Moriarty, where he also used an
atomic d-state basis. A slightly different screening func-
tion was used by Moriarty, since we employ the Vashista-
Singwi local-field exchange-correlation scheme instead of
that of Singwi et al. However, the difference between
the two are unimportant for the form factor. Indeed, the
difference between our form factor and Moriarty's is

o

$ U

$-o.~

I

2
q/kF

FIG. 5. Volume dependence of the form factor. Solid
(0=79.68 a.u.): parametrized, dashed line; ab initio GPT (Ref.
6), dotted line. Liquid (0=89.54 a.u.): parametrized GPT,
solid line; ab initio GPT (Ref. 31), crosses.
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We have considered the volume dependence of the form
factor assuming (in agreement with Sec. II C) that E~ and
r, are constant. Therefore, this dependence is included
only in the screening charge, 5V"', and the Fermi wave
vector appearing in the various integrals. Here, again
(Fig. 5), we find that the change of the curves with
volume agrees fairly well with the ab initio calculations.
This increases our confidence in the previous hypothesis
concerning r, and E~.

III. INTERIONIC INTERACTIONS

where V,i(r) is the overlap potential. F~(q) is the
energy-wave-number characteristic and Z' is the effective
valence. In our case the correction to the chemical
valence reduces to the hybridization contribution of Eq.
(3) that we obtain,

20 f ~ (k~6. (d)(d ~4[k)
(2n. ) " F g (Ek Eg)—

(23)

1 ——f F~(q) dq +V„(r),2 sin(qr)
7T q

In the GPT formalism, the pairwise interionic interac-
tions can be expressed by

r

ZV(r)= (22)
r

In the solid, we find Z*=1.235. Thus, in the present
case, 0.23 electron per atom is emptied out from the d
band through hybridization, while Moriarty obtains 0.4.
F~(q) can be expressed in terms of the previous quantities
appearing in the form factor:

Qq 1 wii(k, q) wii(k, q)
F~(q)=—,[w~(q)+v, (q)] X(q)+ [wz(q)+v, (q)] f dk —f dk

4mZ Ek —Ek+q F Ek —Ek+q

-
I
wa(k q) I

'
F Ek —Ek+q

2wii(k, q)w~(k, q)+ I
wR(k q) Idk

k&kF Ek —Ek+q

2 I [1—G (q) ] I
n. (q) I

'+«q)
I
noH(q)

I

'I (24)

Although tedious, the numerical evaluation of (24) is
straightforward. We use Animalu's method to obtain the
principal-value, integrals. A step of kz/40 was found
convenient within the standard Simpson method. We find
that the upper limit of 4k+ is sufficient to ensure good
convergence for the s-d —coupling integrals in the range
k & k~. An important remark concerns the tentative
work that we have done using a semilocal assumption in
order to avoid the angular integration in the s-
d —coupling integrals. We find in this case very unsatis-
factory results when calculating V(r), namely a large
overestimation of the repulsive part when compared to the
full nonlocal results. Contrary to what happens in the
simple-metal case, the presence of the resonant term

wii(k, q ), which is strongly energy dependent, does not al-
low a simplified local approach for the s-d coupling.
Therefore we have no longer pursued this route.

In Fig. 6 we compare the present parametrized OPT
F~(q) with Moriarty's results. ' ' The differences be-
tween the two sets of curves are due to the parametriza-
tion and the new formalism employed which we discussed
at the beginning of Sec. 2. Before discussing the overlap
contribution to V(r), which we intend to fit, it is interest-

ing to present the partial pair potential associated with
FN(q). It corresponds to the simple-metal-limit contribu-
tion plus the s-d —coupling effect. It is compared to the
equivalent Moriarty potential in Fig. 7. Th'e well-known
Friedel oscillations have an amplitude proportional to the
form factor at q =2kF. Therefore, the fact that the os-
cillations are more pronounced in Moriarty's potential is

0.5
U"

0.2 5

X ~ X 0
X

I
X

2 3
~ I a a~~

q/k

FICi. 6. Normalized energy-wave-number characteristic of
solid and. liquid copper. The symbols are the same as in Fig. 5.

l

consistent with his larger form factor at q =2kF (Fig. 4).
The overlap contribution V"(r) has been fully investi-

gated in Moriarty's work. In the V"(r) expression of Ref.
2, we can distinguish three groups of terms: A first group
contains the overlap integrals associated with the orbitals
of neighboring sites (d'

~

dj), and the interatomic matrix
elements (d'

~ V„, (r —R;)
~

d~), to which correspond the
familiar ddo. , ddt. , and dd5 tight-binding matrix ele-
ments. The second group includes the s-d —coupling in-
tegral over neighboring sites. The third group contains
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V"(r)=a 1+1 —1 +Pl'
2

Xexp —y
~NN

(25)

where a, P, y, and l are defined in Ref. 6.
Expression (25) is not consistent with our derivation of

5V""(r) from relation (10). Nevertheless, it is a good
guess for a fit. Moreover, since we want to work with
only few parameters, a simple two-parameter form, such
as the one used by Cordon, "

V"(r)=A e

FIG. 7. Interionic interaction without the overlap contribu-
tion in solid copper. Parametrized CAPT, dashed line; GPT (Ref.
6), crosses.

a
I

C)

2 ~

the core-overlap terms, and its expression depends on the
formalism which is employed to describe the core density
and the exchange correlation. In the spirit of this work,
we do not intend to derive V"(r), since the parametriza-
tion of the SML has been already done to avoid the
inner-core-density calculation, which is needed fo'r the
third group of terms in V"(r) Moreov. er, in the evalua-
tion of the second group of terms, the exact expression of
5V"'(r —rJ ) is simplified to obtain a tractable derivation
of the integrals. A similar problem has been encountered
and discussed by Ducastelle in his study of transition
metals through the tight-binding approach, where he fi-
nally chooses to adjust the overlap potential energy from
the bulk properties of the metals. Here we retain the ana-
lytic form proposed by Moriarty. It corresponds to an ex-
act GPT calculation with atomic d states, done at the
near-neighbor (rNN) and second-neighbor distances in the
solid. V"(r) reads

will also be convenient for our purposes. The adjustment
of the parameters 3 and A, can be done from the data on
various interionic-interaction-dependent properties, for in-
stance, the phonon spectra or the elastic constants. Here
we use the liquid structure factor and the isothermal
compressibility to perform the adjustment. It is first in-
teresting to show how the SML of the pair potential
[b, =0, V"(r)=0] is modified by the s-d coupling [b,&0,
V"(r)=0], and by the overlap potential defined by rela-
tion (25). We see in Fig. 8 that the s-d coupling modifies
the SML result in two ways: First, the repulsive core of
the potential is reduced by 10%%uo, and, second, a repulsive
barrier is formed at a distance of 6.5 a.u. Adding V"(r)
restores the repulsive core close to the SML result. How-
ever, in using relation (25) we have assumed a solid-
density V"(r) rather than a liquid-density one, because it
is not our purpose here to undertake the lengthy calcula-
tion of V"(r) for the liquid density, following Moriarty's
work. Therefore the influence of V '(r) shown in Fig. 8
is only qualitative. In fact, a liquid-density V"(r) is
presumably less repulsive than the solid-density V (r),
and the changes due to V"(r) are less marked than those
indicated by Fig. 8. In the case of the liquid state we do
not expect the differences between the various pair poten-
tials away from the first minimum distance to be very im-
portant in the liquid state, since the mean kinetic energy
per ion is 6.7 10 a.u. at the melting point, and is thus
largely above the amplitude of the details in the tail of the
potential. This remark holds also for Fig. 7. We thus
conclude, at this step, that the most influential part of the
pair potential is the repulsive core, and that the careful
determination of both the s-d coupling and overlap is
needed.

IV. LIQUID STRUCTURE AND RELATED
PROPERTIES

—2 ~
I

~o
r {a.u. )

I

15

FICx. 8. Interionic interaction in liquid copper at T= 1356 K
and A=89.54 a.u. The results correspond to the parametrized
GPT with r, =1.21 a.u. , Ed ——0.157 a.u. , and V"(r) defined by
expression (25). SML: dashed line; SML plus s-d coupling, dot-
ted line; SML plus overlap, solid line. The arrows indicate the
maximum and minima of the pair-correlation function (Ref. 35).

The link between the interionic interactions and proper-
ties such as structure, entropy, constant-volume heat
capacity, etc. has proved to be very well realized for liquid
metals, by the use of the optimized random-phase approx-
imation, or ORPA. This method of perturbation from
the hard-sphere fluid, as a reference system, has been ex-
tensively reviewed. ' .It has been applied to a variety of
liquid metals, and to the analysis of the structural
trends of these liquid metals. The basic expression that
we use for the structure factor is
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S(q) = 1

1 —[C (q)+B(q) —uz(q)lkz'T]
(27)

S(q) = l +B(q) .
1 [C (—q) ug(q—)lkgT]

(27')

However, we have found that (27) agrees better with the
result of a Monte Carlo computation than (27').
Nevertheless, this is only true for S(q). The price to pay
in using (27) instead of (27 ) lies in the pair-correlation
function g(r) obtained from the Fourier transform of

I

where C (q), B(q), and uz (q) are, respectively, the
Fourier transforms of the direct hard-sphere correlation
function C~(r), the "blip function" associated with the
soft-sphere perturbation expansion B(r), and the optim-
ized long-range pair potential uz(r); Here we inject a
cautionary note concerning the use of formula (27), which
is an extension of the soft-sphere scheme ' to the case of
potentials with a tail. In the ORPA expansion of Ander-
sen et al. , the structure factor is expressed by

So(q) = 1

1 —[C (q)+B(q)]
(2&)

Once the structure factor is obtained, it is straightforward
to calculate the excess entropy per ion by computing

(27). Because of the presence of B(q) in the denominator,
we cannot obtain an exact zero value for g(r) when r is
close to the origin. However, since this defect is spread
out by the Fourier transform, it has only a minor influ-
ence on S(q). Nevertheless, the success of (27) as well as
its limitation in various cases needs further investigation
from a more rigorous mathematical analysis.

The choice of the reference hard-sphere system, the op-
tirnization method and the technical requirements to com-
pute (27) are exactly the same as those discussed in our
previous paper. ' To estimate the influence of the long-
range part of the pair potential, we can consider the re-
sults obtained when we neglect the part of the potential
for distances beyond the first minimum position ro. In
this case, the soft-sphere structure factor reduces to'

SE S~e () S~
'

S~+ f g~(r)u„(r)r dr+ f 1 — +ln
8 8 4~' dq

constant Q

S« is the zero-order free-electron entropy. E~ is the
Carnahan-Starling hard-sphere expression for the free en-
ergy. Sz(q) is the structure factor corresponding to
(27), but with B(q)=0. g~(r) is the hard-sphere pair-
correlation function and S (q) is the corresponding struc-
ture factor.

The constant-volume heat capacity is obtained from the
derivative of S@ versus temperature at constant volume,
to which we add the ideal-gas contribution:

BSE
Cv ——T + —,'kg . (30)

A further test on the form factor and the liquid structure
can be done through the electron-transport properties, and

I

here we shall consider the liquid metal resistivity using
the standard Ziman formula:

~,. n
pL, =—

2 3 6 ~ k~q 'Sqq' q

where S(q) and w(kF, q) are connected through the
determination of the pair potential and the ORPA pro-
cedure.

A. The liquid structure

We first consider the influence of the s-d coupling and
overlap on the liquid structure by deriving the three struc-
ture factors which correspond to the potentials of Fig. 8.
These structure factors are presented in Fig. 9 and can

l
X

sP~
O X~X

P, a e

q (a.u. )

0
0

I

2 3
q (a.u.)

FIG. 9. Contributions of the s-d coupling and overlap to the
liquid structure factor of copper at 1356 K. SML, dashed line;
SML plus s-d coupling, dotted line; SML plus overlap of rela-
tion (25), solid line.

FIG. 10. Structure factors near melting temperature. Theory
(ORPA and total pair potential of Fig. 8, T=1356 K and
Q =89.54 a.u. ), solid line; experiments, neutrons (Ref. 46)
(crosses); x rays (Ref. 35) (circles).
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TABLE III. Characteristics of the structure factor associated with the various pair potentials. I, simple-metal-limit results; II,
SML plus the s-d —coupling influence; III, result II plus the unfitted overlap contribution; IV, result III, but with adjustment of the
overlap by V"(r)=A e ~"

( A = 1.43 && 10 a.u. and A, =4.55 a.u.); V, result III, but at a temperature of 1873 K; VI, result IV, but at
1873 K; VII, result III, but assuming the solid-phase pair potential at 0 K and ignoring its change with volume.

I
II
III
IV
V
VI
VII

' T (K)

1356
1356
1356
1356
1873
1873
1356

g = (m./6Q)o.

0.507
0.388
0.467
0.494
0.429
0.457
0.469

p =B(q =m. /o. )/0
0.390
0.082
0.076
0.063
0.068
0.056
0.084

So(0)

0.0171
0.0482
0.0246
0.0193
0.0343
0.0269
0.0241

S(0)

0.0176 (0.0214')
0.0590 (0.0214')
0.0220 (0.0214')
0.0212 (0.0214')
0.0315 (0.0283')
0.0305 (0.0283')
0.0199 (0.0214')

max

1.82 (2.81", 2.55')
1.83 (2.81" 2.55')
2.35 (2.81", 2.55')
2.75 (2.81 2.55')
2.05 {2.40b 2.05c)
2.35 (2.40 2.05')
2.33 (2.81b, 2.55')

'Experimental data of S(0) deduced from the compressibility (Ref. 47).
"Observed maximum value of S{q) from neutron diffraction (Ref. 46).
'Observed maximum value of S{q)from x-ray spectrometry (Ref. 35).

also be compared to measurements reported in Fig. 10. In
Table III we have reported for each case the value of the
hard-sphere packing fraction g of the reference system,
the softness parameter p, the low-q-limit values So(0) and
S(0), and the maximum value of the structure factor. In
the simple-metal-limit approximation (denoted I in Table
III), the potential is very soft. This is shown by the value
p=0.39, which is very large indeed. In this case, the
"blip-function" expansion is probably not sufficiently ac-
curate, and the results should be certainly improved by us-
ing an higher-order expansion. It is clear, anyway, from
Figs. 9 and 10, that the SMI. leads to a very poor descrip-
tion of S,„and S(q) at large wave numbers. On the
other hand, the low-q limit of S(q) does not exceedingly
deviate from the experimental value reported in Table III.
The modification of S(q) due to the s-d coupling is
marked at low q since, as indicated in row II of Table III,
the low-q limit is about 3 times larger than the value ob-
tained from the compressibility XT using the well-known
relation S(0)=k& TXT/Q. Such a modification at low q
comes both from the decrease of the repulsive core diame-
ter (or equivalently ri) and the decrease of the softness of
the core (or, equivalently, p). Finally, if we consider the

influence of the overlap defined approximately by Eq.
(25), we reobtain a curve (Fig. 9) which is in reasonable
agreement with the experiment, either at the melting tem-
perature (Fig. 10) or at higher temperature (Fig. 11).
There is, in these cases, a fair agreement of the low-q lim-
it of S(q) with the data (row III of Table III). The
r'emaining differences between experiment and theory
principally concern the maximum value of S(q) and the
shift of the calculated values towards high q (Figs. 10 and
11). We think that such differences do not come from the
volume dependence of V(r) since we have found that the
liquid structure factor is almost unchanged if it is derived
from the pair potential of the solid state, i.e., ignoring any
volume dependence in the pseudopotential and in the
overlap terms. This is shown by comparing rows III and
VII of Table III. Moreover, the results obtained in Sec.
IID indicate that both r, and Ed can be considered to be
volume independent, in accordance with the band-
structure data. Therefore we attribute most of the
remaining differences between theory and experiments in
Figs. 10 and 11 to the overlap term. Such differences do
not uniquely come from the use of a solid-density V"(r)
rather than a liquid-density one. Owing to our previous
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FIG. 11. Structure factor at 1873 K. Theory (ORPA and to-
tal pair potential at 0=93.44 a.u. ), solid line; experiments, neu-
trons (Ref. 46) (crosses); x rays (Ref. 35) (circles).

FIG. 12. Influence of the overlap on the pair potential. Re-
sult with unfitted overlap, dashed line; result after the fit to the
structure factor [ V"(r)=1.43)&10 e 'r j, solid line. The ar-
rows indicate the maxima and minima of the pair-correlation
function (Ref. 35).
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FIG. 13. Structure factor near melting temperature.
Parametrized OPT with U '(r) = 1.43 && 10 e ', continuous
line; experiment (Ref. 46), crosses.
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FIG. 15. Pair-correlation function of the liquid near melting
temperature: SML (dashed line); SML plus s-d coupling (dotted
line); SML plus overlap, U"(r) =1.43&(10 e ""(solid line); ex-
periment (Ref. 35), crosses.

comment of Fig. 8, a less repulsive V"(r) would also im-

ply a decrease of the softness p and a corresponding
lowering of S,„ in row III of Table III, increasing the
deviation with the observed structure factor. Following
the aim of this work, in which we attempt to define a sim-
ple parametrized approach of the GPT, we will fit the
overlap term by using the simple expression (26). The two
parameters A and A, are adjusted in order to reproduce the
experimental value of S(0) and the maximum of S(q).

However, we recall that S,„has no unique determina-
tion among the different experiments; for instance, the
dispersion is about 10%%uo between x-ray and neutron
data; ' therefore we arbitrarily decide to retain parame-
ters which give a close agreement to these last measure-
ments. We find A =1.43&&10 a.u. and A, =4.55 a.u. ,
and we do not attempt to modify these values with
volume since the agreement between the calculated and
experimental curves is quite good, both at the melting
point where the atomic volume A=89.54 a.u, (Fig. 12),
and at the temperature of 1873 K where 0=93.44 a.u.
(Fig. 13). We remark that the adjustment of V"(r) from

the two special points S(0) and S,„also improves the
agreement of the curves at high-q values. The change of
the pair potential due to the fit of the V"(r) part is illus-
trated in Fig. 14. We note that the two curves are qualita-
tively the same, but that the overlap is appreciably re-
duced in the vicinity of the most probable distance,
rNN =4.72 a.u. , in the liquid. On the other hand, the fit-
ted overlap potential is found to be harsher than the unfit-
ted one, since we find a smaller value of p (rows III and
IV of Table III). Moriarty has also discussed similar
changes by comparing the overlap potential of Zn using
the standard and optimized GPT. '

Finally, to conclude our discussion of the influence of
the s-d coupling and overlap on the liquid structure, we
have calculated the pair-correlation functions. It is clear
from Fig. 15 that the effect of the overlap is important at
short range since the most probable distance in the liquid
changes from 4.35 to 4.60 a.u. , in agreement with the data
of Ref. 35. Moreover, we note that the overlap and s-
d —coupling components both emphasize the correlation
between the minima and maxima of V(r) and the corre-
sponding maxima and minima of g(r) (Fig. 14). One
could imagine that an ad hoc simple-metal pair potential
would be able to reproduce a g (r) value in agreement with
the data, but such an artificial procedure would certainly
fail for other properties, such as the observed band gap.

B. Excess entropy and heat capacity

X X~x+ x x~x—x~
X~

P:— -.—x~
0 1

l

2 3'
q (a.u. )

FIG. 14. Structure factor at 1873 K. Parametrized GPT
with U "(r)=1.43& 10 e . ", continuous line; experiment (Ref.
46), crosses.

We report the calculated values of SE and C~ in Table
IV. We note the importance of the contribution of the
overlap to the excess entropy. The good agreement with
the experimental data in row IV confirms our previous fit
to the liquid structure factor. On the other hand, we find
that the heat capacity seems to be essentially determined
by the simple-metal contribution (row I). The discrepancy
between the results in rows III and IV using two different
overlaps is not contradictory, but indicates that the differ-
ences between experiment and theory comes-, at first, from
the difficulties in the overlap estimation. Nevertheless,
the results in rows IV and VI can be considered to be
rather successful, since to calculate Cr we must deal with
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TABLE IV. Excess entropy and constant-volume heat capa-
city per ion. k~ is the 8oltzmann constant. The labels
I,II, . . . , VII have the same meaning as in Table III.

ment obtained for both the resistivity and its temperature
dependence again justifies the parametrization of the form
factor by r~ and E~.

—SE/kg Cv/kg
V. CONCLUSION

II
III
IV
V
VI
VII

2.11
2.08
3.07
3.69 (3.60')
2.51
3.04 (3.12 )

3.02

2.96
3.11
2.39
3.25 (2.45' 3 0 )

3.21
2.66
2.46

the second derivative of the free energy at constant
volume.

C. Liquid resistivity

We have calculated the resistivity with and without the
soft-sphere approximation for the structure factor. It is
clear from Table V that the oscillatory part of V(r) has
only a very small influence on the liquid resistivity. On
the other hand, using the solid-state form factor in place
of the liquid one is a poor approximation, since the resis-
tivity is overestimated by nearly a factor of 2 (rows III
and VII of Table V). We thus agree with Moriarty's com-
ments concerning the necessary calculation of the pseudo-
potential at the liquid density. With the SML we com-
pletely fail in explaining the observed value of the resis-
tivity (row I), and it is clear that both the s-d coupling,
which drastically modifies the form factor, and the over-
lap interactions, are the important ingredients which
determine the electronic-transport mechanism (rows II
and IV). The comparison between rows III and IV once
more indicates that the fitting of V"(r) to the structure
factor is attractive. Moreover, since V"(r) is not involved
in the form factor itself, the good agreement with experi-

'Experimental value of the excess entropy quoted in Ref. 48.
The value of SE at 1873 K is obtained after integrating the

well-known relationship C~dT =T dS between 1356 and 1873
K, assuming Cv-3k'.
'Experimental values of C~ from Ref. 49.
Experimental values of C& from Ref. 50.

In this work we have considered the generalized pseu-
dopotential theory in the case of the noble metals. We
have built a parametrized approach from the terms which
correspond to the simple-metal limit, s-d coupling, and
overlap contribution in the GPT formalism. To fit the
first two contributions, we have used the band-structure
data. We have shown that the overlap potential can be
adjusted by considering its effect on the liquid structure.

We find that the empty-core potential is adequate to
mimic the SML if the core radius r, is suitably adjusted.
This indicates, to a good extent, that the details of the in-
teractions between the free-electron-like particles and the
ions can be ignored in noble metals. Such an observation,
which takes place here in the framework of the GPT, has
a more general meaning in view of the similar results ob-
tained by Dagens and Wills and Harrison in their dif-
ferent approaches.

We have calculated the s-d —coupling terms, following
the GPT exactly using a development on the basis of
atomic d states By .considering the contribution of the
s-d coupling to the total width of the conduction band, we
have adjusted the mean energy Ez of the d band.

From the previous parametrization of the SML and the
s-d coupling, we obtain the width of the resonance and
the L band gap close to those of other calculations and
optical measurements. Moreover, the form factors that
we obtain, either in the solid state or in the liquid state,
are in overall agreement with those of the corresponding
ab initio approach.

Using the ORPA we have determined the influence of
the overlap on the liquid structure of copper. We find
that the exact overlap form proposed by Moriarty is al-
ready a good estimation which needs only a smooth ad-
justment. We have proposed a two-parameter overlap po-
tential to investigate the sensitivity of the liquid properties
to the parameters. We find that the parameters r„E&,
and those of the overlap are almost insensitive to volume
changes in solid and liquid under normal pressure. We
hhve analyzed the deviations from the SML approxima-

TABLE V. Resistivity of liquid copper. The values po and p correspond, respectively, to the So(q)
and S(q) structure factors. The labels I,II, . . . , VII have the same meaning as in Table III.

I
II
III
IV
V
VI
VII

po

2.77
41.36
27.53
23.46
32.66
28.04
49.27

(pQ cm)

2.70
39.82
27.19
22.33 (21.0')
32.62
27.21
48.72

T ~po

po 8T

1.09
0.35
0.37
0.36
0.34
0.33
0.25

T Bp

p BT

1.12
0.39
0.39
0.41 (0.4')
0.35
0.36
0.29

'Experimental value quoted in Ref. 48.
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tion when the s-d coupling and overlap are taken into ac-
count. We find that the SML gives a poor description of
properties such as liquid structure, entropy, and resistivi-
ty, while a fair agreement with experiment is obtained
when s-d coupling and overlap are included. Our analysis
points out the influence of the d electrons on the structure
as a delicate balance between the two previous contribu-
tions.

We finally conclude that the development of the OPT
from the basis of the atomic d states can be conveniently
parametrized without losing too much of the specificity of
the approach, i.e., the separation into simple-metal, s-
d —coupling, and overlap terms. In our work we entirely
avoid the intricate calculation of the overlap, and there-
fore our point of view cannot replace any first-principles
determinations. For instance, we have by-passed the
problem of the unfilling of the d states through the
parametrization. Moriarty has clearly indicated that the
next theoretical improvements would follow the line of
the partially filled-d-band scheme. However, the present
parametrized approach could be useful as a first step in
the cases which are not easily tractable in a detailed
theory, such as, for instance, in the investigation of the
specific effects of the d electrons on the alloys or on the
surface properties of noble metals.

APPENDIX

In Sec. IIB we noted that the extra potential curves
5V"'(r) —5V(0) are close to a parabolic form. Very little
error is made by using the expansion r /2r~s+br+c in-
stead of the exact result, once the coefficients b and c
have been conveniently adjusted. In this case, the s-
d —coupling matrix elements are easier to handle and are
expressed by

(k Ib, Id&„d=, ((k Ir'Id&„d
2~ws

—( k
I
d &,.d(d

I

r'
I
d &...)

+b( & k
I
r

I
d &-d —

& k
I
d &.ad& d

I
r

I
d &rad)

The radial part of the d atomic wave functions are ex-
pressed in the form

5

R32(r)= g C;N;r e

where g; and C; are the coefficients of the basis of the
4s'3d' configuration, and NI ——[6!]' [2(';] . In this
case, the terms of (A2) can be expressed in algebraic form:
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where the Y'2 (k) are the spherical-harmonic functions
and the radial part reads
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