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Surface segregation in jellium binary solid solutions
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The electron-density-functional method is applied to a jellium model for the surface-segregated
binary (single-phase} solid solution. The segregation potential, thickness of the segregated layer, and
the segregating component are determined and the following rule is derived for a binary (single-

phase) solid solution of substitutional type: Atoms of the component which has the larger Wigner-
Seitz radius segregate to the surface. The present theoretical predictions are completely compatible
with those determined by Miedema's method and agree reasonably well with various experimental
data.

I. INTRODUCTION

Surface segregation has experimentally been confirmed
in various binary-alloy systems. ' It has been em-
phasized that the surface segregation may occur at the
surface of an alloy if it is in a single-phase region of the
phase diagram and must be distinguished from the precip-
itation of the second phase.

It is well known that the first theoretical treatment of
surface segregation was given by Gibbs about a century
ago. However, it is only within the last decade that the
theoretical investigation of surface segregation has be-
come active and various theories have been offered. '

Most such theories are based on the Gibbs thermodynam-
ics which relates the surface composition to the bulk com-
position and uses the heat of segregation as a criterion of
segregation, assuming that the entropy contribution is
negligible. (At least, it was shown that the vibrational
entropy contribution to the free energy of segregation was
negligible for a harmonic solid and the free energy of
segregation may well be approximated by the potential en-

ergy of segregation or the heat of segregation. )

In the present work, a jellium model of the surface
segregation is discussed, using the density-functional for-
mula for the ground state of inhomogeneous electrons. '

That is, zero absolute temperature is assumed in the
present theory despite the fact that another major assump-
tion that the alloy be a single-phase solid solution may not
be valid at zero degree. It should be emphasized that the
primary purpose of the present theory is not to explain a
variety of experimental data of surface segregation, but to
investigate the validity of an electron-density-functional
approach when it is applied to a jellium model, which was
successfully utilized in the theory of work-function
change due to adsorption by metals. ' Nonetheless, it
will also be demonstrated that a simple rule derived from
the present model works well for explaining the majority
of experimental data.

II. JELLIUM MODEL

A simple jellium model or uniform-positive-background
model (as shown in Fig. 1) was employed theoretically to
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FIG. 1. Jellium model for clean metallic surface. The
positive-charge-density distribution n+(x) is constant and equal
to the average charge density in the bulk, nb, up to the surface
located at. x =0. Electron-density distribution n(x) is obtained
so that the ground-state energy is a minimum.

calculate the work function and surface energy of metals
using the electron-density-functional theory. ' The dis-
tribution of the positive charge is assumed to be

Plb, X (0
n+(x) =

(1)0, 0&x

if the x axis is taken perpendicular to the surface and the
surface is located at position x =O. nb is the average den-
sity of quasifree electrons and is related to the Wigner-
Seitz radius r, :

r, =(3/4mnb )'i.

The theoretical values of the work function" were in
reasonable agreement with experimental data for r, &2.5
a.u. but were lower than experimental values for r, &2.5
a.u. It should, however, be noted that the general depen-
dence of the experimental data on r, was sufficiently well
reproduced by the theory for r, in the range of —1.2—6.0
a.u. (Refs. 9 and 11) in which all the actual metals may be
located. On the contrary, the same model failed to repro-
duce the dependence of experimental surface energy on r,
when r, was smaller than 3.0 a.u. ' ' This is apparently
because the present jellium model does not consider the
discreteness of the ion cores. ' Thus one must realize that
the jellium model is not always valid for all metals.
Nonetheless, it should be pointed out that the model is
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simple enough to describe physical quantities such as the
work function and surface energy in terms of only a single
variable, r„and can still provide us with theoretical
values which agree reasonably well with experimental data
if the range of r, is carefully chosen. Similar arguments
were valid when a jellium model was applied with the
electron-density-functional formula to spherical voids in
metals' ' and to composition-modulated metallic sys-
tems. '

Lang utilized the electron-density-functional approach
to evaluate the work-function change due to adsorption by
metals. Lang's jellium model, or a two-step jellium
model, for the adsorbed metallic surface is shown in Fig.
2 and the positive-charge distribution in it is defined as

ground-state energy of such a model, E", is obtained as a
function of the average charge densities, n(, for the initial
(unsegregated) bulk and n, for the segregated surface
layer and of the surface-layer thickness t, i.e.,

E"=E"(n, ,n„t),
and the ground-state energy of the same bulk but without
surface segregation, E' ', is obtained [using the model de-
fined by Eq. (1)] as a function of the same average charge
density nI„ i.e.,

E(o) E(o)(n )

then the energy difference AE defined by

E(s) E(0)

Jib, X (0
n+(x)= .n„O( x(t

0, t(x
(3)

becomes a function of nb, n„and t It is. apparent that
or

AE ~0, there is no segregation,
AE &0, there is segregation,

where n(„as defined above, is the average density of
quasifree electrons in the bulk and n, is the average densi-
ty of quasifree electrons in the adsorbed surface layer of
thickness t. Lang showed, using a numerical, self-
consistent calculation, that the work-function change due
to adsorption of alkali metals on the surfaces of transition
metals such as W was quantitatively well described by this
two-step jellium model despite the fact that the quantita-
tive agreement of the theoretical values for the work func-
tion of transition metals with experimental values was
poor. Yamauchi et al. showed that a simple approxi-
mate but analytical calculation was possible for solving
the Lang model to obtain an analytical expression for the
work-function change.

Among various possible reasons for the surface segrega-
tion, the Cxibbs-type adsorption where the reduction in
surface energy is the driving force may simply be the
dominant mechanism in many alloys. ' lf so, it may be
quite natural to employ as a simple model to describe the
segregated metallic surface the same two-step jellium
model as that defined by Eq. (3) (and Fig. 2). If the

when a set of (nt„n„t) is given: b,E defined by Eq. (6)
can be used as the criterion of surface segregation for the
present jellium model.

When zi and col denote, respectively, the number of
quasifree electrons and the volume per atom in the pure
metal of I type (I=A,B), its lattice structure being the
same as that of the (single-phase) solid solution under con-
sideration, the average charge density in the bulk solid
solution may be given by'

n~ [z~(1—cg)+zgcg]/[~g(1 —cg)+cogcB] (8)

where c~ is the composition of 8 atoms in the bulk solid
solution. Similarly,

n, =[zz(1 cz')+z~c—a']/[cow(1 —ca )+cagey ], (9)

where cz" is the composition of 8 atoms in the segregated
surface layer. It should be noted that Eqs. (8) and (9) are
valid only in single-phase alloys of the substitutional type
and, more strictly speaking, when the alloys are dilute.

III. DENSITY-FUNCTIONAL APPROACH

Density According to Hohenberg and Kohn, the ground-state
energy E of a nonuniform electron-gas system may be
given by

E [n]=E„[n]+T, [n]+E„[n]+E,[n], (10)
n (x)
n(x)

X

where E„, T„E„,and E, are energy functionals of the
electron-density-distribution function n(r) at position r
and denote, respectively, the electrostatic, kinetic, ex-
change, and correlation energy of the electrons:

FIG. 2. Two-step jellium model for a segregated metallic sur-
face. The positive-charge density distribution, n+(x) is constant
and equal to the average charge density in the bulk, nI„up to
the bottom of the segregated layer located at x =0, and is then a
constant equal to the average charge density in the segregated
layer, n„of thickness equal to t. Electron-density distribution
n (x) is obtained so that the ground-state energy is a minimum.
5 represents the position of the electronic surface.

E„[n]=—,
' f f I[n(r) n+(r)]—

T, [n]= —,'0 (3m ) fn(r) i dr

++, f I[Vn(r)] /n(r)Idr, (12)
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E„[n]=—,—(3/m)' fn(r)" dr,

and,

(13)

n (x;pp) = ~

P(p
2 nb(2 —e ), x(0

—,n~e, 0~x
—P(p (15)

E,[n]—0.056f In(r) ~ /[0 07.9+n(r)' ]Idr. (14)
where pp is obtained so that E' '[n] may be minimized
with respect to pp, after substituting Eqs. (1) and (15) in
Eq. (10) via Eqs. (11)—(14):

Atomic units (a.u. ) are used in Eqs. (11)—(14) and will
be used throughout. Apparently, Eq. (12) has a term
which depends on Vn. This indicates that the present ap-
proach is an expansion method. A test function will be
used to obtain n(r) which minimizes E[n], instead of a
numerical self-consistent calculation. ' '" Such a choice
of the correlation energy as given by Eq. (14) may be ob-
solete, ' but Eq. (14) is employed in the present work in
order to be consistent with previous works for the
clean ' and adsorbed surfaces. '

Smith utilized the following test function for the
'electron-density-distribution function in the jellium model
as defined by Eq. (1) and in Fig. 1:

dE'"(P, )/d P,=o .

That is,

2~ 'ttnb g(nb )p—p —(ln2/72)nb pp ——0,
where'

g (x)=—„(3m )
~ (0.5719)x ~

——(3/m)'i (0 3389)x i3

—0. 168xh (0.079/x 'i ),
and

(16)

(17)

(18)

h(z)=z(0. 1300—0.5874z —z ln[z/(0. 7937+z)]

+ I0.06837 —0. 1450z —z ln[(l+z)/(0. 7937+z)] J /(1+z )) . (19)

Yamauchi et al. utilized the following test function for the electron-density distribution function n (r) in the two-step
jellium model as defined by Eq. (3) (and in Fig. 2):

1 p (x —5)
—,nb(2 —e ' ), x &5

n (x;p, ) = ~

(20)

where 5 is given by

5=(n, /nb )t

to satisfy the electroneutrality condition, and p, is obtained so that E"[n] may be minimized:

dE "(P,)/dP, =0 .

That is,

, n nb g(nb )p—,—ff—(p„nb, n„t)+ (ln2/72)nb ]g'=0,

where g (x) is already given by Eq. (18) and f is given by

f (p, nb, n„t) =(m/2)nb In, (t'5)tp +(nb ng)( ——12+ 1—2p5 —p 5 + 12e +4p5e )p

+n, [ 12+4p(—t 5) p'(t—5)—'+ 12e—t'" "+4-p(t -5). t'"-—"]p--'I .

(21)

(22)

(23)

(24)

It is straightforward to calculate b,E defined by Eq. (6) using pp and p, which are solutions of Eqs. (17) and (23),
respectively:

b E/A =(orb/2)(p, —pp )—g(nb)(pg —pp )+y(p, )+(ln2/72)nb(pg —pp),

in which 2 is the total surface area and

(25)

p(p) =(n/2) j nbn, (t 5)t/—p+nb(n—b n, )[4—65—p+(5p) —4e ]/p

+nbn, [4 2(t 5)p+(t ——5)'p ——4e ~" ']/p —,
'

(nb n, ) 5— —

+2n, (nb n, )(t —5—)t5+(2/3)n, (5—t) I . (26)
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The criterion of surface segregation, AE/A, is now a
function of only three variables, nt„n„and t I. t can also
be regarded as a function of c~, cz', and t when zt and cot
(I=A, B) are given and Eqs. (8) and (9) are employed.

IV. SEGREGATION CRITERION

The segregation criterion b,E defined by Eq. (6) has
now been written as a function of nb, n„and t or of cz,
cz', and t, as given by Eq. (25). The composition c~ for
the bulk solid solution must be given as an experimental
parameter. Thermodynamics might suggest that the sur-
face composition cz' be either 1.0 or 0.0 and the segregat-
ed layer thickness t be one monolayer at absolute zero.
However, no such thermodynamical principles are in-
stalled in the present electron-density-functional ap-
proach. It is assumed only that the principle of minimum
energy be applied to the present segregation criterion: in
the actual ground state, AE must be minimum with
respect to cz' and t:

(hE/A)*=min [bE(cz,cz', t)/A] .
cg, f(s)

Thus, given zt and cot or zt and (r, )I (I =A and 8) as
well as cz, (b,E/A)" and corresponding values of c~' and
t, i.e., cz'" and t', are uniquely determined by Eq. (27).

Figure 3 shows the segregation criterion (b,E/A)" in
terms of the ratio of the Wigner-Seitz radii of solute atom
A and solvent atom 8,

(28)

0.1

0.0-

cU 01

7

~ -02-
CI

when it is assumed that zz ——zz ——1, (r, )z ——2.67 a.u. , and
cz ——0.9S. That is, Cu-based solid solutions having a
solute composition cq of five atomic percent are now con-
sidered. It is shown that (b,E/A)* is always negative ex-
cept at p=1, which indicates the occurrence of surface
segregation, according to the criterion given by Eq. (7).
The type of segregation can immediately be found out
from Fig. 4 where cz" ( = 1 —c~"") is plotted with
respect to p:cz'* ——0.0 for p & 1 and cz'* ——1.0 for
1&pal. 3S, resulting in the solvent segregation and the
solute segregation, respectively. For p& 1.3S, cz'* de-
creases and asymptotically approaches the average bulk
concentration cz (=0.05). Apparently, in this situation
there is also the solute enrichment at the surface, although
intermediate values between 0.0 and 1.0 for cz" do not
satisfy the thermodynamical requirement at absolute zero.
This may result from the basic assumption in the present
model that the bulk is a solid solution in which 3 and 8
atoms are always randomly distributed (even at T =0).
Or this may be an artifact due to an approximation based
on the trial functions given by Eqs. (15) and (20), or an ar-
tifac't inherent to the present jellium model. A fully self-
consistent calculation using the electron-density function-
al formula would provide us with a certain insight to this
problem. The minimum in (bE/A)' about p-1.23 may
well have a certain physical meaning analogous to the
minimum in the work-function change of transition met-
als due to alkali-atom surface adsorption. '

It must be strongly emphasized that. the qualitative
feature of the (hE/A)'-versus-p curve given in Fig. 3 is
common whatever the values of z~, zz, (r, )z, and cz. In
other words, the only decisive parameter that determines
whether a solute or solvent segregation occurs is the
Wigner-Seitz radii ratio p, defined by Eq. (28). This leads
us to the following rule:

Rule A: Atoms of the component which has the larger
Wigner-Seitz radius segregate to the surface.

It should be noted that this rule has been derived strict-
ly from the present electron-density-functional calculation
using the jellium models shown in Figs. 1 and 2.

Figure 5 shows the segregated surface-layer thickness
t* [which corresponds to (b,E/A)'] with respect to p.

1.0-

-03- 0.8-
((s)

A

0.6—

-0.4-

I I I

0.6 0.8 1.0 1.4 1.6

I

1.8 2.0
0.2—

FIG. 3. Segregation criterion or segregation potential per unit
area, (hE/A)*, with respect to the ratio of the Wigner-Seitz ra-
dii of solute and solvent, p=(&, )p /(r )z Here, (&, )p =2.67 a.u. ,
the valence numbers z& ——z~ ——1, and the bulk composition
c~ ——0.95 are assumed.

0.0
06 08 10

I I

12 14
P

1.5 18 2.0

FIG. 4. Surface composition of solute, cq', with respect to
the ratio of the Wigner-Seitz radii of solute and solvent, p. The
same conditions as in Fig. 3 are assumed.
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For the solvent segregation (p & 1), t' monotonically ap-
proaches the monolayer thickness of solvent atoms as p
decreases When. (r, )z and (r, )z are nearly equal, i.e.,
p-1.0, t* becomes large. This is simply bemuse the en-

FIG. 5. Segregated-surface-layer thickness t*, with respect to
the ratio of the signer-Seitz radii of solute and solvent, p. The
same conditions as in Fig. 3 are assumed. Dashed line
represents uncontracted monolayer thickness on the most dense
atomic plane.

ergy reduction per unit thickness of the segregated layer is
small when p-1.0 and, therefore, a large thickness is re-
quired to achieve an energy minimum. For the solute
segregation (p & 1), t* is almost constant for p & 1.1. This
behavior is a contrast to the dependence of the monolayer
thickness on p, as seen in Fig. 5. Should this have any ac-
tual physical meaning, the segregated surface layer would
be contracted about 20%%uo (if p & 1.1).

V. COMPARISON %'ITH EXPERIMENTAL DATA

In the preceding section, a criterion of surface segrega-
tion was obtained using Eq. (27) for the jellium model [as
defined by Eqs. (1) and (3) and in Figs. 1 and 2], and a
simple rule for the surface segregation in the "jellium
solid solution" was determined which was stated as Rule
A with the assumption that Eqs. (8) and (9) be valid. Any
jellium models do not take into account the detailed struc-
ture of each ion core as well as core arrangement or the
energy bands. This is why one must be careful in a com-
parison of the theoretical results for a jellium model with
the experimental data, as discussed in Sec. II.

Most of the available data of surface segregation are for
binary alloys of transition (and noble) metals which be-
long to groups IVA —. VIIIA and IB (in the Periodic Table
of the elements) Th.e major question is if the results,
especially Rule A, obtained for the present jellium model
are applicable to such alloys.

Let us first compare the value of (bE/A )* obtained in
Fig. 3 to the experimental value. In Table I of Ref. 2, the
heat of adsorption of the solute Au in a Cu(Au) alloy [ex-
press as solvent(solute)] is given to be —6.1 kcal/mole.

TABLE I. Wigner-Seitz radii r,' "' of alloy components with fcc structure using standard values of
nearest-neighbor (NN) distance (Ref. 22) d and of the valence number (Ref. 23) z of the most stable oxi-
dation state Note t. hat r,' '=(4V 6/9)'~'r, ' "' and r,' "'=(3V 2/8mi'~3d/z. '~'

Component

Ag
. Al
Au
Ca
Cr
Cu
Fe
In
Ir
Li
Mn
Na
Ni
Os
Pb
Pd
Pt
Rh
Sn
V
Zr

NN Distance (a.u.)'

5.46
5.40
5.44
7.46
4.72
4.84
4.69
6.14
5.12
5.71
4.23
6.92
4.71
5.06
6.61
5.20
5.23
5.08
5.31
4.95
5.99

Valence number

1

3
1

2
3
1c

3
3
4
1

2
1

2
4
2
2
4
3
4
5
4

(Ice)
( )

3.02
2.07
3.01
3.27
1.81
2.67
1.80
2.35
1.78
3.16
1.86
3.82
2.07
1.76
2.90
2.28.
1.82
1.95
1.85
1.60
2.09

'Reference 22, Table 4.
"Reference 23.
'z(Cu) =2 is recommended in Ref. 23.
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This corresponds to —0.51 J/m if a monolayer. of Au is
considered on the (100) plane of Cu. Using the values of
the %'igner-Seitz radii for Cu and Au which are listed in
Table I, p=1.13 is obtained. From Fig. 3, the theoretical
value of (b,E/A)' for p=1.13 is now estimated at
——0.39 J/m . Thus the agreement between the theoreti-
cal and experimental values of (b,E/A)* is fair. This is,

however, astonishingly good if the bases of the present
theory are taken into consideration: no adjustable param-
eters a~e employed in the present calculation, other than
standard values of the nearest-neighbor distance and of
the valence number of the most stable oxidation state. It
is easily seen that the range of -0.0—0.5 J/m for

~

(4E/A)"
t

(shown in Fig. 3) is coincident with the

TABLE II. Segregated behavior of binary solid solutions. Experimental data are those listed in
Table I of Ref. 3. Theoretical predictions are due to Rule A given in Sec. IV when the Wigner-Seitz ra-
dii listed in Table I are utilized.

Solvent
(solute)

Ag(Au)
Ag(Cu)
Ag(Pb)
Au(Ag)
Au(Ca)
Au(Cu)
Au(In)
Au(Ni)
Au{Pd)
Au(Sn)
Cu(Ag)
Cu(A1)
Cu(Au)
Cu(Ni)
Cu(Sn)
Fe(A1)
Fe(cr)
Fe(Cu)
Fe(Ni)
Fe(Sn)
Fe(Zr)
In{Pb)
Ir(I t)
Li(Na)
Ni(Au)
Ni(Cu)
Ni(Fe)
Ni(Pd)
Os(Pt)
Pb{In)
Pd{Ag)
Pd(Au)
Pd(Ni)
Pd(V)
Pt(Au)
Pt(Cu)
Pt(Cr)
Pt(Fe)
Pt(Ir)
Pt(Ni)
Pt(Rh)
Pt(Sn)
Rh(Ag)
Rh(Pt)
Zr(Fe)

Ag
Ag
Pb
Ag
Ca
Au
In
None
Au
Sn
Ag
Al
Au
Cu
Sn
Al
Cr
Cu
Ni
Sn
Zl
Pb
Pt
Na
Au
CU

Fe
Pd
Pt
Pb
Ag
Au
Pd
None
Au
CU
None-
None

, Pt
None
Pt
Sn
Ag
Pt
Fe

Ag or None
Ag
Ag

Ag or None
Ca
Au
Au
Au
Au
Au
Ag
CU

Au
Cu
Cu
Al
Cr
Cu
Ni
Sn
Zr
Pb
Pt
Na
Au
Cu
Ni
Pd
Pt
Pb
Ag
Au
Pd
Pd
Au
Cu

Pt or None
Pt or None

Pt
Ni
Rh
Sn
Ag
Rh
Zr

Segregating component
Experimental Theoretical Comment'

4=0.3'Fo

ESO
4=0.3%

D
ENC

D

ENC

D

None (5=0.5%%uo) if z(Fe)=2

None (5=1.4'Fo) if z(Fe)=2

None {6=0.5%) if z{Fe)=2

ENC

4 =0.S%%uo

&=1.1%

Pt if z(Pt)=2
Pt if z(Pt) =2, ENC

Pt if z(Pt) =2, ENC
None (4=1.4%) if z(Fe)=2

'ESO: Experimental result is "speculation only. "
ENC: Experimental result "needs confirmation. " [Results from Ref. (3).j
D: Experimental and theoretical results disagree.
b, =

f hr, /r, f.
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range for the surface energy of alkali and alkaline-earth
metals (except Be), i.e., -0.07—0.57 J/m, ' ' ' for
which Smith s jellium model with the electron-density-
functional approach sufficiently worked. '.' It is there-
fore predicted that Rule A for the surface segregation
would be effective for alloys whose heat of segregation
may not exceed much more than the range of
——0.5—0.0 J/m .

Most of previous theories of surface segregation
have demonstrated the agreement of their predictions with
experimental data using score tables. The present score
table for Rule A is given in Table II using the same 45 ex-
perimental results cited in Table I of Ref. 3. The theoreti-
cal predictions are based on the Wigner-Seitz radii listed
in Table I. In some cases, experimental data are not en-

tirely reliable. In other cases, valence numbers other than
those listed in Table I could be employed to change the
theoretical predictions. If all such ambiguous cases are
excluded, only three cases remain where experimental re-
sults disagree with the theoretical ones. Each of them is a
combination of components from group IB and group
IV A. It is apparent that the components of group IB and

group IV A have totally different kinds of bonding. Thus,
Rule A would easily fail for such combinations. It should
be noted that the present predictions agree with those
given by Miedema for all the 22 solid solutions listed in
Table 3 of his paper, including the Fe(Mn) (which is not
listed in Table II). Even though both the present theory
and Miedema's theory ' are based on similar electronic
considerations of metallic components, Miedema's theory
employs two independent parameters, while the present
theory has only one parameter, i.e., the Wigner-Seitz ra-
dius ratio p, defined by Eq. (28). Compared with Abra-

ham and Brundle's parameter y', the present parameter
for the surface segregation is much easier to calculate us-
ing only standard values for the nearest-neighbor dis-
tances and valence number of the components.

VI. CONCLUSIONS

The electron-density-functional method was utilized in
a jellium model for a surface-segregated binary solid solu-
tion. A segregation criterion which corresponded to the
segregation potential was analytically derived. Full
minimization of the segregation potential gave rise to a
simple rule.

Rule A: In a binary (single-phase) solid solution of sub-
stitutional type, atoms of the component which has the
larger Wigner-Seitz radius segregate to the surface.

This indicated that the ratio of the Wigner-Seitz radii of
the solute and solvent was the unique segregation parame-
ter. The predictions by the above rule agreed reasonably
well with the experimental data. The present theoretical
predictions totally agreed with those found by Miedema's
method for all the 22 binary systems which Miedema had
listed. The present theory also predicted that the solute
segregated layer in a solid solution might be contracted
when the Wigner-Seitz radius ratio was larger than —1.1.
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