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Total-energy differences: Sources of error in local-density approximations
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A detailed comparison of local-spin-density (LSD), Xa (exchange-only), and Hartree-Fock calcu-
lations with experimental data shows that errors in density-functional calculations using the LSD
approximation often arise from an unsatisfactory description of the exchange energy. The exchange
energy depends sensitively on the angular characteristics and nodal structure of the orbitals, and
these features are not properly incorporated into local-density calculations. Examples of the conse-
quences are provided by errors in the sp and sd transfer energies in first-row and 3d atoms, respec-
tively, since LSD calculations do not distinguish properly between s, p, and d electrons. We identi-

fy the main sources of error in these cases. For atoms and small molecules, we show that there is a
"natural" occupancy of orbitals for which local-density approximations give a satisfactory descrip-
tion of the exchange energy. For other occupancies the relative errors are usually large. The conse-

quences for extended systems and for the development of nonlocal functions are discussed.

I. INTRODUCTION

E„,[n„n, ]=E„=—2ct f drn(r)c, „[n,(r),n, (r)]

= ——,aC f drI[n, (r)] r

+[n, (r)] i I, (1.2)

where e„(n„n, ) is the exchange energy per electron and
C=3(3/4m. )'~. The prefactor 3a/2 has historical ori-
gins and in the present work we consider only the value
ct= —,', i.e., the special case of Eq. (1.1) where correlation
effects have been neglected.

The density-functional formalism' shows that
ground-state properties of a system of interacting elec-
trons can be expressed as functionals of the density n(r).
In the case of the total energy E, an analogy with a ficti-
tious system of noninteracting particles allows the prob-
lem to be reduced formally to the self-consistent solution
of an independent particle wave equation. Exchange and
correlation effects are described by a functional of the
density E„,[n]. Although it is generally assumed that an
exact functional exists, most calculations rely on approxi-
mations where E„, depends on the density in a simple
way. The reduction of the many-particle problem to the
solution of single-particle equations has obvious numeri-
cal advantages, but the reliability of these approximations
remains a central question.

In spin-polarized systems it is common to describe E„
by the local-spin-density (I.SD) approximation,

E„, = f dr n (r)e„,[n, (r),n, (r)], (1.1)

where e„,[n„n, ] is the exchange-correlation energy per
electron of a homogeneous electron gas with spin densities
n, and n, . The Xa approximation has also been widely
used,

The LSD and Xa approximations have been applied to
a wide range of problems in solid-state and molecular
physics, with remarkably good results for ground-state
geometries and vibration frequencies. In the case of
total-energy differences, however, approximations (1.1)
and (1.2) can lead to significant discrepancies from each
other and from experiment. In atoms and ions, for exam-
ple, local-density approximations underestimate the ener-

gy required to transfer an s electron to a d shell, and sp
transfer energies if the p shell is more than half-full.
The binding energies in sp-bonded molecules are usually
overestimated by both LSD and Xu calculations, " ' but
there are substantial differences between the two approxi-
mations if molecule information involves spin flips, e.g.,
in C2 and N2. Furthermore, the overestimates obtained
using the LSD approximation are greater for bonds in-
volving atoms with more than half-filled shells. Exam-
ples are 02 and 03, where bond strengths are -2 eV
greater than experimental values, ' compared with overes-
timates —1 eV in C2 and C3.' Calculated cohesive ener-
gies in solids involving sp and sd bonds also exceed the
measured values. ' It is natural to speculate that these de-
ficiencies might be related, ' and that a detailed under-
standing of the errors in atoms and molecules would lead
to estimates of errors in extended systems and to im-
proved approximations. An aim of this paper is then to
identify sources of the discrepancies between I.SD results
and experiment for small systems.

In a study of the multiplet structure of atoms and ions,
Wood' made the interesting observation that the LSD ap-
proximation generally reproduced experimental energy
splittings well, while the Xct approximation (for all con-
ventional choices of a) gives splittings close to those of
the Hartree-Fock (HF) method, where correlation effects
are neglected. Since there is an explicit expression for the
exchange energy in the HF approximation, it should -be
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AI = ——,', 6 (2p, 2p)+ —,
' 6'(2p, 2s),

where the Slater integrals G are defined by
k

G"(ij)=2 f dv r f dr'(r')

(1.5)

possible to determine the reason for discrepancies between
HF and Xa energy differences, and to obtain insight into
the differences between LSD results and experiment.

If @;(r) and @J(r) are Hartree-Fock orbitals, the ex-
change energy can be expressed in terms of exchange in-
tegrals'

4';(r)@J(r)C&;(r')C&J'(r')IJ
——e dr dr', . (1 3)

fr —r'(
These integrals depend strongly on the nodal structure of
4; and @J. If, for example, the orbitals have different l
and I quantum numbers, the integrand oscillates and I,z
is reduced. Since approximations (1.1) and (1.2) do not
take such details into account, they cannot be expected to
describe the effects of different nodal structures in a pre-
cise way. In fact, the value of a required to reproduce the
contributions to atomic HF exchange energies shows sig-
nificant variations for different orbitals, ' examples being
the 2$ and 2p orbitals in first-row atoms, and the 3$ and
3d orbitals in atoms where the latter are occupied. Since
the transfer of electrons between subshells involves
changes in the angular nature of the orbitals, they provide
a sensitive test of local-density approximations.

As an example of the striking variations which can re-
sult from using different approximations, we consider the
sp transfer from the ground state of the fluorine atom,

1$2$
g 2p g

2$
g 2p g

—+ 1$2$
g 2p g 2p g (1.4)

The change in the exchange interaction between the
valence electrons when a s, electron is transferred to a p,
orbital is"

0 2 4 6 8
r (ao)

FIG. 1. Valence orbitals from density-functional calculations
for 8 and F. The solid curves represent the 2s orbitals, the
dashed curves the 2p orbitals.

In this work we study energy differences in a variety of
systems. As in the above example, many of the known
deficiencies of local-density approximations ' ' can be
understood in terms of their inability to incorporate
correctly the angular character (the "nodality" ) of the
wave function. This is shown clearly in Sec. II, where we
compare HF and Xa exchange energies for a model sys-
tem in which the orbitals have identical radial depen-
dences but different l values. In Sec. III we consider sp
transfer and ionization energies in first-row atoms, and in
Sec. IV the sd transfer energies in iron-series atoms and
ions. Applications to molecules and the effect of correla-
tion are considered in Secs. V and VI, respectively. Our
final remarks (Sec. VII) include a discussion of the conse-
quences for the development of nonlocal approximations
for E„„including the recent suggestions of Harrison. '

XP;(r)P, (r)P;(r')P, (v') . (1.6)

II. EXCHANGE ENERGY DEPENDENCE
ON ELECTRON NUMBER AND I VALUE

Here r & (r & ) is the larger (smaller) of r and r', and P;(r)
is the radial part of N;(r) The fir.st term in (1.5) is the
exchange interaction between a p electron with I = —1

and two p electrons with m=1 and 0. The second term is
the exchange interaction between an s electron and two p
electrons. Inserting realistic values for the Slater integrals
yields an estimate of b,I-6 eV. On the other hand,
density-functional calculations for the ground state of
fluorine (Fig. 1) show that the radial structures of the 2s
and 2p orbitals are very similar. If we assume that they
are identical and neglect nonspherical corrections, the Xa
estimate of the exchange energy is unchanged by sp
transfer. It is therefore not surprising that the Xo, predic-
tion of the transition (1.4) differs from the HF result by
about 6 eV. ' The LSD and Xu approximations give very
similar results for the total sp transfer energy. The devia-
tion between the LSD result and experiment is, however,
reduced to 2.6 eV, since the large change in the exchange
energy is compensated by a change in the correlation ener-
gy of opposite sign.

The I dependence of exchange energies is a well-known
feature of atomic physics. As the atomic number in-
creases and p and d orbitals become occupied, however,
there is an l-dependent variation in the radial extent of the
orbitals. If this is treated realistically, as in the atomic ex-
change energy calculations of Lindgren and Schwarz, ' it
is difficult to isolate the effects of the angular variation of
the orbitals. In order to do this, we study here a model
system where the radial parts of the s, p, and d orbitals
are identical. In this case, the Slater integrals 6 (ij ) [Eq.
(1.6)] depend only on k. From calculated values for the
3s orbitals in iron-series atoms, we find that

G =6'/0. 680=6 /0. 516=6 /0. 414=6 /0. 344 .

(2.1)

For the same orbitals, the exchange energy is reproduced
very well by

C f drn (r)=0.451G (2.2)

where n (r) is the density due to one electron. The cancel-
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lation of the unphysical interaction of an electron with it-
self, —6 /2, is reproduced to within 10%. If we fill the
spin-up states alone, the exchange energy of N electrons in
the Xo. approximation is

E„(N)= —0 4516 N i
(.2.3)

N N
E„""(N)=——,

' g +I,, ,
i =1j=1

(2.4)

where the exchange integrals I,z can be expressed in terms
of the G "(i,j) If.we define an average exchange integral

IJ by

E„"(N)= , N IJ—(N), (2.5)

it is clear that the Xa and HF approximations show dif-
ferent N dependences unless I;J decreases as N . In
Fig. 2(a) we compare E„(N) and E„"(N), where in the
HF case we fill the shells in the order s,p, d and
within each shell the states in the order
m, m —1, . . . , —nz +1,—m. The trends are remarkably
similar, the smaller Xa values being consistent with the
values of a needed to reproduce the HF exchange energies
(typically about 10% greater than a= —, ). ' It is particu-
larly interesting to study the Interelectronic exchange ener-

gy
N

E„;„,(N)= ——,
' g IJ,

1,j=1
i+j

E„;„,(N) = —0.451G (N i —1),

(2.6)

(2.7)

In the Hartree-Fock (HF) approximation, the exchange
energy is

e n(r)n„(r, r')
E,= dr dr'

2 /r —r'/

where

(2.8)

1

n „(r,r') =n (r) f d A [gHF (r, r'; A) —1] (2.9)

is the exchange hole, defined in terms of the HF pair
correlation function and the coupling constant I,. For
orthogonal HF orbitals,

n„(r, r') = — g N*;(r)@J(r)N;(r')Nz (r')5

where the self-interaction has been subtracted. E„;„,
focuses on the Xa description of the exchange interaction
between states with different nodal structures and is plot-
ted in Fig. 2(b). The Xa and HF approximations again
give similar results. As in the case of realistic l-dependent
atomic orbitals, ' the Xe approximation overestimates the
strength of the interaction, and we shall discuss other sys-
tems where this occurs.

The change in the average exchange integral I as N in-
creases is related to the order in which we fill the shells,
i.e., s~p~d. While the s state has- no node in the
valence region, the p and d states have one and two nodes,
respectively. (Here and in the following we refer to an or-
bital as having a nodel plane even if the real and imagi-
nary parts change sign at different planes. ) This means,
for example, that the sd interaction is weaker than the sp
interaction, and I decreases with increasing N (Fig. 2).
Since Xa calculations produce a similar reduction, it is
apparent that nodal formation is incorporated into these
calculations to some extent. To understand this, we con-
sider an exact sum rule which holds for both the HF and
Xa approximations.

The exact exchange energy can be written as

(2.10)

where o.; is the spin quantum number corresponding to
Using the orthogonality of the orbitals we can derive

the sum rule
z:

X
LLI I drn„(r, r')= —1, (2.11)

0
3

~ 2

)C

LLI
1

0
0 2 4 6 8

N

FIG. 2. (a) E„(dashed curve) and E„as a function of total
occupation number N (in units of Go). (b) Interelectronic ex-
change interation E„;„,for Xa (dashed) and HF (solid curve)
approximations. In the HF approximation we show the depen-
dency for different schemes of occupying the orbitals.

i.e., for all values of r' the exchange hole must contain
unit charge. By analogy to (2.8), the Xa and LSD ap-
proximations can be expressed in terms of approximate
holes which also satisfy the sum rule (2.11). The use of
orthogonal orbitals to derive (2.11) means that schemes
such as Xa and LSD incorporate aspects of orthogonality
and therefore node formation. However, the orthogonali-
ty condition is not sufficient to guarantee a good descrip-
tion. If the s orbital is occupied, for example, an addi-
tional electron placed in either a p or a d orbital would
also satisfy the sum rule. The weakness of the sd interac-
tion relative to the sp interaction is evident in Fig. 2(b),
where the curve denoted "p-shell empty" shows that the
Xa approximation gives an unsatisfactory description of
the interelectron exchange energy. The same is true if the
s or sp shells remain unoccupied.

In the model discussed here, the Xcx exchange energy
depends only on X and it can describe at most one of the
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(2.12)

curves in Fig. 2(b). It is natural to ask why the particular
filling "s~p~d" is described so much better than the
others. To address this question, we have considered a
system with X spin-up electrons where the orbitals are
solutions to the potential

0, iri (Rws
U(r)= '

Rws

Be zs

I zs
i
I I I I I

i I

The three lowest solutions of this potential have s, p, and
d character, respectively. Apart from the region near
r=0, they are similar to 3s, 3p, and 3d atomic orbitals.
If the orbitals of (2.12) are occupied according to the or-
der of eigenvalues, there is good agreement between the
Xa and HF exchange energies. For R~s ——6, for exam-
ple, the magnitude of the former is 5—10% too small for
N between 1 and 9. If we use the spd occupancy and let
Rws tend to infinity, we would obtain the ground state of
a homogeneous electron gas. Since the Xa exchange ener-

gy is exact in this case, the small error in the result for
Rws may not be surprising. However, for a different or-
bital occupancy, i.e., for an excited state, the discrepancy
between the Xa and HF exchange energies is large and of
the same type as in Fig. 2(b). Since the Xa exchange ap-
proximation is obtained from the ground state of the
homogeneous electron gas, good results cannot be expect-
ed for these excited states.

These simple examples illustrate two main conclusions
of this paper. (i) If we occupy orbitals with the minimum
number of nodal planes consistent with the sum rule
(2.11), the trends in the interelectronic exchange energy
are reproduced rather well by the Xa approximation, the
absolute value being overestimated in the systems we have
considered. (ii) Energy transfer from such a state to one
with additional nodal planes is often underestimated by
the local-density approximation. The magnitude of the
underestimate depends on the system in question, but it
can be large, as in the sp transfer energy in F (Sec. I).

it tl
I I I J I II

i

iiit iitlI ZI I I t I 1 ltt
i I i

444 I I 444 I I I

F I I Itt I I I tit ~P
4 zs

FIG. 3. Occupancies of different spin orbitals for first-row
atoms and ions.

electron gas parametrization for e„, of Vosko et al. '
Nonspherical corrections have been found to be very small
for first-row atoms.

The energy differences b,,'z and 6,'z are shown in Figs.
4(a) and 4(b), respectively. A spin-flip occurs for the neu-
tral atoms 48e to 6C (and the ions 5B+ to 7N+) and the
stronger spin dependence in the Xa approximation means
that A,z is substantially smaller than the LSD values. In
7N to 9F (80+ to toNe+), the spin is transferred and not
flipped, and the two approximations give similar results.
The Xa and HF results are remarkably similar in the first
part of the row (3Li to 7N and 48e+ to 80+), as are the
LSD results and experiment. In the second part (&O to 9F
and 9F+ to toNe+), both comparisons show large devia-
tions.

III. FIRST-ROW ATOMS AND IONS

A. sp transfer energies

The sp transfer energy of fluorine has been discussed
above. In general, we calculate the energy differences

20—

I I I

E(ls 2s2p" '——) —E(ls 2s 2p" 2)

in the neutral atoms, and

(3.1) 10—

E(ls 2s2p" z)——E(1s 22~sp2" 3)— (3.2)

for the ions. These transitions are illustrated in Fig. 3.
For each configuration, we consider the lowest-lying term.
If relativistic effects are neglected, the theory should give
a degeneracy with respect to the z components of the total
angular and spin quantum numbers, Ml and Mz. The
approximations [Eqs. (1.1) and (1.2)] break this degenera-
cy, however, and the Ml and Mq values need to be speci-
fied. Ziegler et al. showed that states which can be
represented by a single determinant should be described
best by a local-density approximation for exchange, and
we have chosen the values of MI and M~ which corre-
spond to such states. In the LSD calculations we use the

0
20—

10—

0 I I I I I

Be B' C' N' O' F'
Li Be B C N 0 F

FIG. 4. Transfer energies A,~ in first-row atoms and ions. (a)
Experimental and LSD values. (b) Hartree-Fock and Xa
values. Energies here and in the following are in eV.
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31.i and 7N (~e+ and 80+)

In these systems there is no exchange interaction be-
tween the transferred electron and other valence electrons.
Since core-valence exchange effects are small in first-row
atoms, the main remaining source of error is the imper-
fect cancellation between exchange energy and the un-

physical Coulomb self-interaction (SI) in the Xa approxi-
mation. This cancellation is numerically good [see Eq.
(2.2)j, and the SI errors for the 2s and 2p electrons largely
cancel, so that there is good agreement between the Xu
and HF approximations.

2. Systems with spin flip

In 48e-6C (58+-zN+), sp transfer is accompanied by a
spin flip. Since the radial functions for the s and p states
in first-row atoms are very similar (Fig. 1) and the core-
valence exchange is small, we may apply the arguments of
Sec. II. If there are m valence electrons, the interelectron-
ic exchange energy is given by

E„;„,(N =1)+E,;„,(N =m —1)

in the initial state, and by

E„;„,(N =m)

(3.3)

(3.4)

in the final state. The discussion in Sec. II shows that the
contributions to the energy difference should be repro-
duced satisfactorily by the Xa approximation, and this is
confirmed by the results for 48e-6C (&8+-qN+).

3. Systems without spin flip

In 7N-9E (&0+-~ONe+ ), a 2s, electron is transferred to a
2p, state. The interelectronic exchange energy difference
in this case is

B. Comparison of HF and Xa results for h,~

As noted above, the comparison between HF and Xu
results should provide insight into the deficiencies of the
local-density approximations. %'e now present a detailed.
discussion of the results for A,z, distinguishing between a
particularly simple case where the transferred electron
does not interact with other valence electrons from more
general cases, both with and without a spin flip.

in the sp transfer energy across the row is due to the dif-
ferent types of configurations involved for different elec-
tron numbers, and not to intrinsic differences between the
atoms. We have seen, for example, that the agreement be-
tween Xo; and HF calculations for the ground state of
6C+ is very good. For 6C+ (2s, 2p, ~2p, ), on the other
hand, there is a discrepancy of 4 eV between the Xa and
HF results.

C. Ionization energies

The ionization energies, I&, of first-row atoms are
shown in Fig. 5. For 3Li and 48e, ionization results in the
removal of a 2s electron, for which there is an exchange
interaction only with the ls core. Figure 5 shows that
the Xo approximation for the core-valence exchange and
the self-interaction does not lead to large errors in these
atoms. For 58 to 7N, a spin-up p electron is removed, and
the difference in interelectronic exchange energy is

E„;„,(N =m —1)—E, ;„,(N =m —2) . (3.6)

In the ionization of 80 and 9F, a spin-down p electron is
removed and the corresponding difference is

E„;„,(N =m 4) E„;„,(N—=m——5) . (3.7)

The discussion in Sec. II shows that we may expect the
Xa approximation to describe both (3.6) and (3.7) well,
confirmation for which is found in Fig. 5.

D. Electron-hole symmetry

20

In the HF approximation, configurations such as
2s'2p' and 2s'2p have the same multipIet structure, with
splittings given by the same linear combinations of ex-
change integrals of the same type. In this sense, the ap-
proximation exhibits "electron-hole symmetry. " In earlier
work, ' we showed that this symmetry is absent in both
LSD and Xa approximations, although an ad hoc incor-
poration of electron-hole symmetry reduced the errors for
configurations such as 2s'2p to the same order as those
for 2s'2p'.

The model of Sec. II provides a convenient framework

E„;„,(N =m —4)

—E„;„,(N =m —4, with s shell empty) . (3.5)
10

This vanishes if m=5, i.e., in N or 0+. As noted previ-
ously, the agreement between HF and Xo. is very good for
these cases. For sO (9F+) with m=6, the error in Eq.
(3.5) is 0.165G, which is 3.31 eV (4.19 eV) compared
with the calculated error of 2.71 eV (3.22 eV). For 9F
(~oNe+) with m =7, the error in Eq. (3.5) is 0.267G, i.e.,
6.16 eV (7.60 eV) compared with the calculated discrepan-
cy of S.72 eV (6.79 eV). These results provide further
confirmation that the Xa approximation can give rise to
large errors when the electron transfer is associated with a
net change in nodality.

The above discussion shows that the dramatic variation

10-

HF--—Xa

0 I

Li Be B C

I

N Q F

FIG-. 5. Ionization potentials for first-row atoms (eV). (a)
Experimental and LSD values. (b) Hartree-Fock and Xa
values.



for discussing this problem. In Ref. 10, for example, we
discussed the energy differences

ion

3d
4s(3.8)b» =E(2s, 2p, ) E—(2s, 2p, )

I I I I I II II

I f I

iiiii 3dI I I I I I I I I

4s
for a 2s'2p' configuration, and

44444i

I I

iiiiil
. I I I I I I I I I Tf

4s
b, i5=E(2s, 2p „2p, ) E(2s—,2p, 2p, ) (3.9)

for a 2s'2p configuration. These quantities determine
the P-'P splittings in the respective cases and, in the
model of Sec. II, are given by

44444IIII
II I I If fff I II I lfffff

CU
l I

44444 I I I I 44444l I I I I 3dIllllffff llllifff&4

4s

FIG. 6. Occupancies of different spin orbitals for iron-series
atoms and ions.A~~ ——E„(2)—E„(1)—E„(1,with s shell empty), (3.10)

b ~5 ——E„(4)+E„(2,with s shell empty) tive case (the Mn atom) and more general trends across
the series.(3.1 1)—E„(3)—E„(3, with s shell empty) .

In the Xa and HF approximations we obtain 0.2346 and
0.2266, respectively, for the 2s'2p' configuration, and
0.0976 and 0.2266 for the 2s '2p case. These results
are in semiquantitative agreement with the LSD and ex-
perimental results quoted in Ref. 10. In particular, the
deviation between the Xa and HF results are small for the
2s'2p' configuration, but large for Zs'Zp .

A similar analysis can be performed for other other
cases discussed in Ref. 10. It is striking that a 2s level is
empty in all cases where the lack of electron-hole symme-
try gives particularly large errors, in agreement with the
discussion of Sec. II. In Eq. (3.11), for example, we need
the energy difference between a two-electron system and a
three-electron system with an empty 2s level, and Fig. 2(b)
associates this with a large error. On the other hand,
E„(1,with s shell empty) in (3.10) contains only the self-
interaction of a single p electron and causes no problems.

1. sd transfer in the Mn atom

In this case, the sd transfer is

I I I I I I I I

Exp)
2

0—

IV. IRON SERIES ATOMS AND IONS
-2—

-3 I I I 'I I I I I

Ca Ti Cr Fe Ni
Sc V Mrl Co Cu

A. sd transfer energies

The sd transfer energies are defined as

b,,'d ——E([core]3d" '4s') —E([core]3d" 4s ) I I I I(4.1)

for atoms, and

b,,'d ——E([core]3d" ') —E([core]3d" 4s ') (4.2)

for ions. The transitions involved are shown schematical-
ly in Fig. 6. In the calculations for these systems, we have
included nonspherical corrections to the energies. As in
Sec. III, we compare LSD and experimental energy differ-
ences, and Xcx and HF values in Fig. 7. For the neutral
atoms [Fig. 7(a)], both LSD and Xtz approximations
overestimate the stability of the configuration with one
additional d electron. A similar effect is present in the
ions [Fig. 7(b)], with an overestimate of the stability of the
3d" ' configuration, but the differences between LSD
and experiment, and between HF and Xe are smaller in
this case.

(bI

HF
——Xa

2 Q

1

0

-1—

-2—

I I I I I I I I

Ca' Ti' Cr' Fe' Ni'
Sc+ V' Mn' Co' Cu'B. Comparison of HF and Xa results for h,d

FIG. 7. Comparisons of sd transfer energies, experiment
against LSD (upper frames) and HF against Xa (lower frames).
(a) 3d atoms. (b) 3d ions.

In discussing the HF and Xa results for iron-series
atoms, we again distinguish between a simple but instruc-

TOTAL-ENERGY DIFFERENCES: SOURCES OF ERROR IN. . .
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([core]3d, 4s„4s, )~([core]3d „3d,4s, ) . (4.3)

In both Xo. and HF approximations, the spin-down 4s
electron does not interact with the other valence electrons,
which are all spin up. Nevertheless, the HF and Xu re-
sults differ by 1.9 eV, a discrepancy which cannot be attri-
buted to the self-interaction corrections, which increase

I

h,d by only 0.16 eV.
To study the effect of core-valence exchange, we have

used the orbitals of the Xa calculation for the 3d 4s
configuration to calculate the change in the exchange en-
ergy when a single 3d electron interacts with a
1s 2s 2p 3s p core. In the HF approximation, this ener-
gy difference is

E„"([core]3d)—E„"(core)—,E„"(3d)= ——,
' [6 (3d, ls)+ G2(3d, 2s)+ 62(3d, 3s)]

—+[6 '(3d, 2p)+ G '(3d, 3p)] —,",, [G'(3d, 2p)+ 6'(3d, 3p)], (4.4)

which has the value 12.4 eV. The corresponding Xn re-
sult is 14.1 eV. The same calculation can be performed
for the exchange interaction between the 4s electron and
the core. The 4s orbital is more extended than the 3d and
this interaction is substantially smaller, being 1.8 and 1.3
eV in the Xcx and HF approximations, respectively. Most
of the discrepancy between the Xa and HF estimates of
A,d in Mn can then be attributed to 3d core exchange.

2. Trends across the 3d series

(4.5)

and the numerical equality

C f drn4/3(r)=0. 4326 (3d, 3d)

The change in the interelectronic exchange energy is

b E„;„,(n) =E„;„,(3s,3p, 3d", +') E„;„,(3s, 3p,—3d", )

(4.6)

(4.7)E„;„,(3d, ) . —'

The prefactors of 6 for the Xa and HF approximations
as a function of n are shown in Table I. The deviations
increase with increasing n and are slightly larger than
those in Fig. 2(b), since the coefficients used in Eq. (4.5)
are different. The value of 6 (3d, 3d) also increases with
atomic number, enhancing the deviation still further.

A further contribution to b,,d arises from the 4s-3d ex-
change interaction. To study this, we calculate

TABLE I. Exchange interaction AE, between a 3d electron
and the system 3s3p 3d" according to Xa and HF approxima-
tions.

AE„(n)/G (3d, 3d)

In systems other than the Mn atom, it is necessary to
study the change in the exchange interaction when a 3d
electron interacts with a 3d" configuration. In these
cases, one can carry out the same analysis as in Sec. III.
For the Mn 3d orbitals, we find

G =6'/0. 624=6 /0. 434=6 /0. 330=6 /0. 265

and

I
~ E( [co——re]3d, 4s, ) —E( [core]3d, 4s, 4s, ) (4.8)

I2 E([core]——3d, 3d, ) E([cor—e]3d, 3d, 4s, ) . (4.9)

In the first case, the added 4s electron has an exchange in-
teraction only with the core, and the Xa and HF approxi-
mations give very similar results (5.85 and 5.91 eV,
respectively). This shows that the errors in the self-
interaction energy of the 4s electron and the 4s core ex-
change approximately cancel.

In (4.9), the 4s electron also has an exchange interaction
with a 3d configuration. The Xa and HF calculations
give 7.16 and 6.06 eV, -respectively, so that the Xa ap-
proximation overestimates the 4s-3d exchange energy for
25Mn, in agreement with our earlier work. This is con-
firmed by comparing

b,E„':E„(3d"4s)—E„(3d") E—„(4s)— (4.10)

in the Xo. and HF approximations. Using Xa orbitals for
the [core]3d 4s configuration, we obtain the results in
Table II. They predict an error in the 4s-3d interaction
of 1.6 eV, in fair agreement with the discrepancy quoted
above. If the z&Mn orbitals are replaced by those from the
2]Sc 3d '4s, we obtain Xu and HF results for
bE'„(m= 1) of 1.11 and 0.31 eV, respectively, very close
to the values obtained with Mn orbitals.

We now discuss the sd transfer in terms of the Xa
description of both 3d-[core)3d" and 4s-3d" interactions.
For the neutral atoms 20Ca to z4Cr, a spin-down 4s elec-
tron is transferred to a spin-up 3d state. The dominant
error in these systems arises from the 3d-[core]3d" in-
teraction. In the case of q~Sc, we estimate from Table I
that this error is 1.4 eV, in fair agreement with the error
( —1.2 eV) estimated using z&Sc 3d'4s Xa orbitals and

TABLE II. Exchange interaction bE'„"(m) [Eq. (3.10)] be-

tween a 4s electron and a 3d configuration in Xa and HF ap-
proximations. Energies (in eV) were calculated using 25Mn

3d 4s Xa orbitals.

AE', (eV)

0
1

2
3
4

Xe

0.52
0.58
0.64
0.70
0.74

HF

0.42
0.48
0.49
0.54
0.58

Xcx

1.11
1.70
2.15
2.53
2.86

HF

0.26
0.52
0,78
1.04
1.30
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including the inner core. The error is reduced somewhat
by an error of -OA eV in the 4s-[core] interaction. As
we proceed from 2oCa and 24Cr, the increasing error in the
3d-[core]3d interaction (Table I) is reflected in an in-
creasing error in the 3d-[core]3d" interaction (Table I) is
reflected in an increasing error in 6,d. In the first half of
the ion series (qoCa+ —qqCr+), the transferred 4s electron
has an exchange interaction with the 3d electrons in the
initial state. The resultant error in the 4s-3d" interaction
(Table II) largely cancels the error in the 3d-[core]3d" in-
teraction. For 2]Sc+, the error in h,d is about 0.8 eV less
than in the neutral atom.

In the second half of the atom series, a 4s, electron is
transferred into a 3d, state. Except in 25Mn, these atoms
also have a 4d-3d" exchange interaction in the initial
state. The trend with increasing atomic number is similar
to the first half of the ion series, except that the increased
contraction of the 3d orbitals leads to a less complete can-
cellation between the errors in the 4s-3d" and 3d-
[core]3d" interactions. In the second half of the ion series
(25Mn+ —q9Cu+), a 4s, electron is transferred into a 3d,
state, so that there is a 4s-3d exchange interaction in the
initial state. The compensation of the error due to the
final state 3d-[core]3d" interaction by the 4s-3d exchange
is then more complete than in the corresponding atoms,
particularly at the beginning of the second half of the
series.

The discussion in this section has shown that 3d-
transition series atoms are more complicated than first-
row atoms (Sec. III), due to the importance of core-
valence exchange effects. The discrepancies in b,,d are
due in large part to errors in describing these, particularly
the core-3d exchange energy. This is a further example of
point (i) in Sec. II, that the interelectronic exchange ener-

gy is overestimated if we fill the orbitals with the
minimum number of nodes consistent with the sum rule
(2.11). The relative error is not large (14% for Mn), but
the absolute discrepancy is important (1.7 eV in Mn).

V. MOLECULES

The accuracy of the local-density methods in bonding
situations can best be studied for small molecules. The
experimental data are generally more precise than for bulk
or interface systems, Hartree-Fock calculations are avail-
able in many cases, and numerically exact solutions of the
Schrodinger equation in some. The results of Sec. III and
IV show that sources of errors in local-density approxima-
tions can be identified by comparing the results of dif-
ferent methods of calculation. This is also true in mole-
cules, and further information can be found by studying
trends in the binding energies, i.e., the energies required to
break specific molecular bonds. In this section we exam-
ine both of these aspects.

A. Ground state of H2 and Li~

Oppenheimer approximation is known very accurately.
The experimental equilibrium internuclear separations are
reproduced well by HF and ab initE'o methods, and by
LSD and Xa calculations. ' In Table III we compare
therefore the well depths calculated with the different
methods for the experimental equilibrium internuclear
separations in H2 and Li2.

The results show that the s-s o.
g bond is a further case

where the Xo. approximation reproduces the HF binding
energy well, and there is also satisfactory agreement be-
tween the LSD results and experiment. This indicates
that the Xe approximation gives an adequate description
of the change in the self-interaction on formation of a
'X~+ bond and that the LSD approximation accounts for
the substantial change in correlation energy on bonding.
The LSD approximation also gives a satisfactory descrip-
tion of the bond strengths in other alkali-metal-atom di-
mers and of the cohesive energies of the alkali metals.
There is no qualitative change in the nodal structure of
the wave function of the Hz molecule or the alkali-metal-
atom dimers when bonding occurs.

TABLE III. Well depth in 'Xg+ state of H2 and Li2.

H2 Li2

Expt.
LSD
HF
Xa

4.75'
4.96b

3.64
3.60

1.03'
1.01'
0.17'
0.21'

B. Occupancy of o.
g and o„orbitals: H2( X„+), He2, Be~

The first excited state of Hq is strikingly different from
the ground state. Except for a very weak minimum at
large separation, the energy curve for the X+ state
(lozlo„') is repulsive, and we compare the results of the
different methods of calculation with the essentially exact
results of Kofos and Wolniewicz at the ground-state
equilibrium separation (1.40 a.u. ). The difference between
the LSD and experimental binding energies is 0.5 eV, i.e.,
substantially greater than in the ground state. This may
at first seem surprising, since the correlation energy is rel-
atively small (0.22 eV compared with 1.10 eV in the
ground state) and there is no spin flip on forming the

X~+ state from two ground-state atoms. Xa calculations
('a= —', ) show, however, that there is a comparably large
deviation between the Xo, and HF values. The LSD ap-
proximation overestimates the exchange interaction be-
tween the lo.

g and lo.„orbitals in this state, resulting in
an overestimate of the stability of this state relative to the
dissociated atoms. The LSD binding-energy curve, for ex-
ample, has a minimum of -20 meV at a separation of 6.2
a.u. , compared with the exact values of 0.5 meV and 7.85
a.u."

To obtain a better understanding of bonding in this
state, we study a related model problem. We use the HF

The ground state of Hz and the alkali-metal-atom di-
mers is a 'Xg+(ogo.~) bond between the valence s orbitals.
This is a well-studied situation and there are not only HF
calculations ' and reliable experimental data, but in
H2 (Ref. 30) the energy variation within the Born-

'Reference 29.
Present work.

'Reference 12.
Reference 27.

'Reference 28 (molecular energy) and Ref. 18 (atomic energy).
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orbital p(r) for the isolated hydrogen atom to construct
molecular orbitals (MO),

eg(r)= [y(r —Rg)+y(& R—$)],1

2(1+S)

C&„(r)= 1

V'2(1+S) [P(r —R, ) P(r ——Rb )],

(5.1)

(5.2)

d 1
P(r) = exp( —~) .

dt
(5 3)

This function differs markedly from the 2p solution in the
hydrogen atom, but has the same nodel structure.

A similar situation occurs in He2 and the group IIA di-
mers (Be2, Mg2, . . . ), for which the LSD calculations
give overestimates of the bond strengths. In these sys-

where R, and Rb are the atomic positions and 5 is
the overlap integral between P(r R—, ) and P(r Rb)—.
For small values of the interatomic separation
R—:

~
R, —Rb ~, these orbitals are more extended than the

HF solutions for a helium atom, and would not describe
satisfactorily the HF solution for Hz as R ~0. For small
separations, errors in the SI energy would differ substan-
tially from those near the ground-state equilibrium
separation and the errors in the 1o.g-1o.„exchange interac-
tion would be obscured. Instead of studying the HF solu-
tion for the X~+ state, we therefore use the orbitals [Eqs.
(5.1) and (5.2)] to define an instructive model problem
which focuses on the 1o.g-lu„ interaction. It is then
straightforward to calculate the HF exchange energy in
terms of exchange integrals [Eq. (1.3)] and the Xa ex-
change energy from the corresponding density. In Fig. 8
we show the difference between these energies,
bE„=E„(R)—E„"(R),as a function of R. The results
confirm that the Xa approximation overestimates the ex-
change interaction between o.

z and O.„orbitals, and the in-
creasing discrepancy as the nuclei. become closer is con-
sistent with the discrepancy between the LSD and exact
results noted above.

The formation of the bond in H2 ( X~+) is related to the
sp transfer in Be (Sec. III), since in both cases an electron
is transferred into a spin-up orbital with a nodal plane.
For R~O, the lo.„orbital in H2 approaches a 2p-like
function with the radial part

tems, there is a o.g-o.„ interaction in both spin-up and
spin-down systems, and we have repeated the model cal-
culation described above using the HF 2s orbitals for a
free Be atom. For an internuclear separation of R=4.7
a.u. , we obtain the difference hE„(R=4.7 a.u. )—b,„(R = oo ) = —0.3 eV, smaller in magnitude but of the
same sign as the difference between the HF and Xa ap-
proximations. Inclusion of p and d functions in the
basis increases the interaction between the two Be atoms
as well as the deviation between the Xo, and HP energies.
For R ~0, the o'„state approaches a p-like function with
one node in the radial part. This function is, however,
quite different from the 3p function in Be. The error in
the LSD calculation for Be2 [0.38 eV (Ref. 36)] is smaller
than that in the 2s-3p transfer energy (0.55 eV per Be
atom), consistent with the tendency of the error to in-
crease as R~O. The overestimate in the interelectronic
exchange between o.

g and o.„orbitals in all these cases is
in agreement with the observation (i) at the end of Sec. II.

C. Excited states of H2 and Li2

Atomic calculations (Secs. III and IV) have shown that
an excitation energy corresponding to the creation of more
nodal planes than required to satisfy the sum rule (2.11) is
underestimated in the Xa approximation. In the H„and
Hg states of H2 and Li2, an electron is excited from the

o., orbital to the m.„and ~g orbitals, respectively. The ~„
orbital has the minimum number of nodes consistent with
(2.11), and the above discussion indicates the Xa approxi-
mation will overestimate the exchange energy. The mz or-
bital, however, has two nodal planes, and we may expect a
greater error in the Hg state than in the X„+ or H„
states. In H2 this is the case, but the lo-~ orbital is much
more compact than the ~ orbitals and the exchange in-
tegrals are numerically very small. LSD calculations
show that the difference between the 'X~+ and H„mini-
ma is 11.6 eV compared with the experimental value of
12.0 eV.

Li2 is a more typical molecule, since the radial extents

0.06

2.5 & 0.04
Ttu

2.3 CL—0.02—
X

LIJ

2.1
CL

X
UJ~ 1.9

0,00 =

-002'
0

3Tcg

3p
I I I I I I

. 2 3 4 5 6
R

FIG. 8. The difference, hE„(R) (eV), between exchange ener-
gies in HF and Xa approximations as a function of internuclear
separation R for the model problem [Eqs. (5.1) and (5.2)].

FICx. 9. The difference, bE„(R), between exchange energies
in HF and Xa approximations as a function of internuclear
separation R for different states of the Li2 molecule. The equili-
brium separation for the ground state is R=5 a.u. The dashed
curve shows the result for two free Li atoms. Energies in Ry.
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of the 2crg and m orbitals are comparable. We have per-
formed the same calculation for Li2 as described above for
Be2, using Slater orbitals with the exponent 0.65 to
describe the valence orbitals. The core states are neglect-
ed. In Fig. 9 we show the exchange energies as a function
of R for the 'Xg+, X„, II„, IIg, 6„,and Xg states.

For several of these states, the HF and jor Xa approxi-
mations give incorrect dissociation products, with large
deviations as R~ ao. We therefore focus on values of R
near or less than the ground-state equilibrium separation,
r, (-5 a.u.). The deviation of a given curve from the
ground-state ('Xg+) curve is a measure of the error in the
excitation energy. As expected from the above discussion,
there is a marked difference between the states with a sin-
gle nodal plane ( X~+, II„, and b,„) and those with two
( II&, Xz ). For R=5 a.u. , the corresponding values of
the interelectronic exchange energy are 0.099, 0.080, and
0.100 Ry and 0.043 and 0.036 Ry. This difference in no-
dal structures is not incorporated into the Xa approxima-
tion. It may be noted that in the A„state
(1~„[m=1]l~g[m= 1]), the Imz and l~„orbitals have
one and two nodal planes, respectively. These orbitals
have the same azimuthal behavior, however, and the in-
tegrand in the appropriate exchange integral changes sign
only at one plane. By contrast, both m orbitals in the Xg
state (In„[m= 1]lrrz[m = —1]) have a nodal plane, and
the error is similar to that in the Hg state.

We can make more direct contact with the discussion of
the preceding sections by studying the behavior of these
states as R —+0. In this limit, the lm„, 1m~, and 2o.„orbi-
ta1s approach 2p, 3d, and 3p functions, respectively. The
error in the excitation energy in the II„(2crg lm.„)state is
then given at R=0 by the error in the sp transfer energy
for a system with two valence electrons. This error is
small (see Figs 2and 4), .in agreement with the result in
Fig. 9. In the X„+ state, the limiting behavior of the 20.„
orbital is a 3p function with two additional nodal sur-
faces. For the orbitals used here, they lie in the valence
region and lead to an appreciable reduction in the 2s-3p
exchange integrals (see Fig. 9). For large values of R, the
nodal surfaces are close to the nuclei and influence the ex-
change energy little. The zero separation limit of the b,„
orbitals are Zp and 3d functions with the same azimuthal
behavior, and the exchange energy is weaker than the 2s-
Zp interaction. Finally, the behavior of the 311& and 3Xg

states for small separations is consistent with the substan-
tially larger errors in these cases. The exchange interac-
tions reduce to s-d and p-p interactions, respectively, and
Fig. 2(b) shows that large errors are to be expected.

D. Bonding trends in first-row molecules

The above discussion has shown the value of comparing
energy differences calculated by different methods. As
the number of electrons and the complexity of the calcula-
tions increases, however, the quantity and quality of the
available data are often insufficient for this purpose. The
LSD approximation overestimates bond strengths in
first-row molecules, but by amounts which show pro-
nounced changes with increasing atomic number. We
study these effects here, using additional information
from Xu and HF calculations where available and ap-
propriate.

In Table IV we show the atomic and molecular
ground-state configurations of the molecules 82 to Fz, as
well as the measured well depths and the corresponding
LSD values. ' Results for the Xs and II„states of C2
are also shown, as we shall discuss them below. The
change in nodal structure on dimer formation is shown in
Fig. 10, where we correlate the symmetry of the molecular
orbitals with those for zero separation. The values shown
are for F2, but qualitatively similar results are obtained in
the other cases. For separations near equilibrium, the en-
ergy difference between the Zs- and Zp-derived orbitals is
substantial and justifies a qualitative discussion in terms
of these functions separately.

In the molecules Bz to Fz, the Zs atomic orbitals form a
closed-shell 2crg20sZcr„'Zcr„' configuration. The discussion
in Sec. VB indicates that the local-density description of
exchange will overestimate the stability of the resulting
bond. The effect varies with the localization of the atom-
ic functions and the bond length. The Zp orbitals give rise
to more pronounced changes in bonding trends. The re-
sults of Table IV show that the overestimate of the well
depth is particularly large in 02 and Fz, in the latter case
being comparable to the well depth itself. The difference
between the results for atoms with Zp shells which are
more or less than half-full is most clearly shown by com-
paring the Xs states of C2 and 02. The atomic ground
states also have the same symmetry ( P) and, as far as the

TABLE IV. Configurations and binding energies of first-row dimers.
1o.~ 1o~ lo. „' lo.„'2og2o~2o.„'2o.„' configuration is present in each dimer.

The

Atom Dimer Expt. ' LSD

58 P {2s,2s, 2p, }

6C (2s, 2s, 2p, }

7N 5{2s,2s, 2p, )

80 P {2s,2s, 2p, 2p, }

9F P {2s,2s, 2p, 2p, }

'Reference 29.
Reference 12.

B, 'Xg [(m„')']
c, 'r+[(~„')'(~„')']

Np 'Xg+[cr''cr'(rr' )'(~' )']

F IX+[~7~4(~f )2(~l )2(~t )2(~4 )2]

3.09
6.37
6.28

5.57

9.91
5.21

1.66

3.93
7.19
7.59

6.61
11.34
7.54
3.32
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FIG. 10. Schematic variation of eigenvalues in first-row di-
mers as a function of separation. The results are shown for F&

at infinite separation (atomic eigenvalues for F), at the equilibri-
um separation (2.68 a.u. ) and at zero separation (the Ar atom). f;((:„,0„)

b, E„=E,(rrs, rrs) E„(rr„,rr„)+E„(rrs,3os
—)

E„(rr„,3os ) +E„(mrs,—2o „) E„(rr„,2crs)—
+E„(rrs,2og ) E„(rr„,2crs ) . —(5.4)

The sign of the error caused by the local-density approxi-
mation is not immediately obvious, and the LSD estimate
of the excitation energy (2.95 eV) is a slight overestimate
of the experimental value (2.81 eV).

2p-derived molecular orbitals are concerned, bond forma-
tion differs only in the replacement of electrons by holes.
However, the well-depth overestimate is much greater for
02 (2.3 eV compared with 1.0 eV in C2). The oxygen
molecule is the first in this series in which the antibond-
ing ling orbital is occupied. As can be seen from Fig. 10,
this has the nodal structure of a 3d function at small
separations, and we may expect the local-density approxi-
mation to overestimate the exchange energy. This is also
true for F2, and the results of Table IV show that the er-
rors in 02 and F2 are the largest in the series, both in ab-
solute and relative terms. These results suggest that
local-density approximations overestimate the interaction
of a rrz orbital with a 2o.g2o.„3o.g~„shell, in analogy to
our earlier observation for the crs o„ inte-raction.

The above discussion shows that substantial errors in
binding energies, or marked changes in binding trends,
can be associated with changes in the nodal structure of
the orbitals involved. In each case, the local-density esti-
mates of exchange energies are larger in magnitude than
the exact values. It is important to note, however, that a
small error may result from the compensation of several.
An example is the excitation energy from the IIg ground
state of Fq+ to the II„state, corresponding to the transfer
n„' to ~g, i.e., with a change in nodal structure from 2p to
3d. The change in exchange energy is

FIG. 11. Molecular orbitals of 02 (left) and O3 (after Ref.
40), with occupation numbers f; corresponding to (C2,02) and

(C3,03). The other orbitals are doubly occupied.

E. Small polyatomic molecules

There are relatively few density-functional calculations
on small molecules with more than two atoms. The ten-
dency to overestimate bond strengths is also present in
these cases and we discuss this with particular reference
to C3 (Ref. 14) and 03 (Ref. 13). In C3 as in C2, LSD cal-
culations overestimate the well depth by —1 eV, whereas
in 03 (and 02) the error is much greater (-2 eV). This
difference can again be correlated with the difference in
the nodal structures of the molecular orbitals.

In Fig. 11 we show the orbitals of the ground states of
Oz and 03, together with the occupation numbers. The
C3 bond is linear, but the orbitals are qualitatively the
same and the occupation numbers for C2 and C3 are also
shown. The formation of the dimer and trimer bonds
show definite parallels. In both the X—X and X2—X
bonds, the 2s orbitals give rise to one bonding and one an-
tibonding orbital, in the latter case with an additional
nonbonding (2b2) orbital. In both cases an additional no-
dal plane is created, and our experience from o.g-o„bonds
suggests that the local-density approximation will overes-
timate this contribution to the bond.

In 02 and 03, the 2p-derived shells are more than half-
occupied and this leads in each case to the occupancy of
states with additiona/ nodal planes. In view of the discus-
sion of the ms 2os2o„3crgrr„ in-teraction for 02, it is not
surprising that the overestimate of the well depth is larger
in Oz than in C3. A further observation consistent with
this picture comes from the low-lying states of C3, which
have linear geometries and for which the vertical excita-
tion energies are known. The transition from the ground
state to the (doubly-degenerate) II„and 'II„states corre-
sponds to the transfer of a 3o.„electron to the 1~& orbi-
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The preceding sections have presented a detailed com-
parison of energy differences calculated using exact ex-
change energies and the LSD approximation for exchange.
We have noted that the differences which arise are often
similar to the differences between experiment and LSD

-3

3 I I I I I

Li Be B C N 0 F
Be' B+ C+ N+ 0+ F+ Ne+,

I l I

Ex pt
(b )

l 1 I I l j I

Sc Ti V Cr Mn Fe Co Ni Cu

FIG. 12. Change in correlation energy, AE„ for (a) sp
transfer in first-row atoms and ions, and (b) sd transfer in iron-
series atoms and ions.

tais, which have an additional nodal plane. The LSD cal-
culations' for the II„and 'II„excitation energies (1.8
and 2.6 eV, respectively) underestimate the measured
values (2.10 and 3.06 eV).

The comparison of HF and Xa calculations for the
equilibrium geometry of ozone by Salahub et al. is con-
sistent with the above observations. The Xn method de-
scribes the ground state and the lower ionization poten-
tials better than HF, and the authors queried whether
correlation effects might be present in the former. They
found that HF and Xa orbitals were very similar, so that
differences between the results must arise from the dif-
ferent expressions for the exchange energy. Salahub et al.
found a particularly small contribution to the exchange
energy from the high-lying la2 orbital, i.e., an orbital
with two nodal planes. The Xa approximation overesti-
mates the exchange energy, and has therefore a similar ef-
fect to configuration mixing of a low-lying MO of the
same symmetry, i.e., correlation effects.

VI. CORRELATION EFFECTS

calculations including correlation. We now discuss the
correlation energy E, the difference between HF energies
and experiment.

In Fig. 12 we show the change in correlation energy,
EE„when an sp transfer occurs in first-row atoms. Since
correlation in the valence shell is particularly important, it
is interesting to compare hE, with the correspondin~
change in the valence electron exchange energy, AE„''.
We find that the two terms have opposite signs. This is
not surprising for a transition where the spatial extent of
the state changes little, since correlation is usually less im-
portant if exchange is efficient. It is interesting, however,
that

~

b,E,
~

is a substantial fraction of
~

b,E'„"
~

for all
the first-row systems studied, whether or not b,E„arises
mainly from a spin flip. For the cases where spin-flip ef-
fects are important (Be—N+), the LSD approximation de-
scribes b,E, well, as shown in Fig. 12(a), The improve-
ment in the LSD results over Xo.'values is due to the
weaker spin dependence of E„, in the former case.

The large value of
~
hE,

~

for O—Ne+ arises from the
large correlation energy for the lsz2s2p" ' state of these
systems, a striking effect for which there appears to be
no simple explanation. In these cases there is relatively
little change in the spin densities when sp transfer takes
place. The LSD and Xa results for b,,z are then very
similar, and the small difference between them cannot ex-
plain AE, .

In Fig. 12(b) we show the change of the correlation en-
ergy on sd transfer. For 2sMn —q9Cu and
25Mn+ —26Fe+, ' AE,'" ' is large and negative. In the final
state, the spin of the added d electron is antiparallel to the
majority spin direction, and correlation effects are rela-
tively more important. This is particularly true for the
ions, where the spin of the transferred 4s electron is paral-
lel to the majority spin direction. For the first half of the
ion series (2&Sc+—z4Cr+), an electron is transferred from
a diffuse 4s orbital to a relatively compact 3d orbital
without a spin flip. This increases the importance of
correlation. For the first half of the neutral atoms
(z~Sc—24Cr), the sd transfer involves a spin fip to final
states with all valence spins aligned. Figure 12(b) shows
that this reduces the importance of correlation.

Correlation effects are also important in the description
of molecules. In diatomic molecules the HF approxima-
tion generally leads to substantial underestimates in bind-
ing energies. In H2, for example, the error is over 1 eV
(Sec. VA) and the minimum HF energy of Fq (Ref. 28) is
1.37 eV aboue the HF energy of the separated atoms. '
The low-lying states of Cq provide a particularly interest-
ing case where differential correlation effects are impor-
tant. In Fig. 13 we show the experimental, LSD, ' Xa
(a=0.7), and HF results. The most striking result is
the error of nearly 3 eV in the HF estimate of the
'Xg+ ~ Xg energy difference. The Xo. . approximation
also overestimates the stability of the triplet states, but is
markedly closer to experiment and to the LSD result.
The results of Ref. 12 confirm the earlier observation
that the H„state is the LSD ground state. The excitation
'Xe+~ II„ involves the transfer of a lm„' electron to
the 3o.

g orbital. The nodal structure of these orbitals and
the spin flip make a prediction of the error difficult.
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Differential correlation effects are also apparent in the
case of ozone, ' where the HF ordering of the low-lying
states is dramatically different from experiment. As not-
ed above, Xa calculations give the correct ground state,
and LSD calculation result in a satisfactory description of
the relative energies of the low-lying states.

The results in this section show that the LSD approxi-
mation often provides a poor description of correlation ef-
fects in causes where differential correlation effects are
large, but the results are nevertheless closer to experiment
than HF results. In general, the errors which result from
a local-density description of exchange tend to be compen-
sated when correlation is included. A quantitative com-
parison of b,E,'""' with 5, shows, however, that the de-
viations are not negligible (up to —1 eV) and the cancella-
tion between AE, and AE, in these causes is neither com-
plete nor systematic.

VII. DISCUSSION

A main aim of this paper has been to identify sources
of error resulting in density-functional calculations using
local-density approximations for exchange and correla-
tion. In particular, the local-density description of ex-
change can be studied by comparison with Hartree-Fock
calculations, where the nodal structure of the orbitals
plays an essential role. Atoms and small molecules are
ideal test cases, not only because HF calculations are gen-
erally available, but because the extensive experimental
literature makes direct comparison with LSD results pos-
sible. Insight into the deficiencies of the local-density ap-
proximations should aid the development of improved ap-
proximations and estimates of the errors to be expected in
larger systems. For extended systems, however, the HF
approximation leads to unphysical results for properties
related to the energy eigenvalue spectrum, e.g. , vanishing
densities of states at the Fermi level, and substantial
overestimates of bandwidths in metals and band gaps in
semiconductors and insulators. In these cases, there are
large differences between HF and local-density results.

We have focused on the description of the exchange en-
ergy in local approximations and the effect of the nodal
structure of the orbitals. Our main observations are as
follows. (i) For systems where the orbitals have the
minimum number of nodal planes consistent with the sum
rule (2.11), the Xa approximation overestimates the in-
terelectronic exchange energy. Examples are the core-3d
and 3d-3d interactions in iron-series atoms, and the o.~-o.„
and wg 20g 20 p 30'g w interactions in diatomic molecules.
Since molecular binding energies and bulk cohesive ener-
gies are usually overestimated, we believe this observation
to be more general. (ii) For excitations involving the
creation of more nodal planes than required by the sum
rule, the Xa approximation often underestimates greatly
the exchange energy difference, even if the changes in
density and spin density are small. Examples are the sp
transfer in 0, F, F+, and Ne+, and the 'Xg+~ Hg and
'Xg+ ~ X~ excitations in Li2. An exception is the
'Xz+~ 6„ transition in Li2, where the nodal structures
are such that the relevant exchange integral is not re-
duced.

In addition to these general observations, our calcula-
tions give interesting results in specific cases. (a) For the
excitation energies of first-row atoms, the Xa values
reproduce HF values well, while there is overall agreement
between LSD results and experiment. This is not true for
O, F+, F, and Ne+, where local-density approximations
lead to large discrepancies for the sp transfer energies. (b)
For iron-series atoms, the systematic overestimate of the
core-3d exchange interaction is consistent with the overs-
tability of d occupancies found in LSD calculations.
There are smaller errors in both the 4s-3d and 3d-3d ex-
change interactions. Our analysis explains the smaller
LSD error in b,,d for positive ions than for the corre-
sponding atoms. (c) We confirm earlier findings 9 46

that the HF and Xa orbitals are very similar, i.e., the ex-
change energies calculated using the two sets of orbitals
are remarkably close, within 10 mRy for firs, -row atoms.
Sharp and Horton and Talman and co-workers have
shown that a local potential can be found for atoms by
minimizing the energy calculated using a Slater deter-
minant constructed from its orbitals. The results are then
even closer to the HF values.

In atoms we have found that the depopulation of s orbi-
tals can lead to large errors in local-density descriptions of
exchange. In sp-bonded systems, hybridization results in
transfer from s orbitals, and similar effects may be ex-
pected. The situation in molecules and solids is complex,
however, and more work on the effect of such "s-holes" is
needed. In transition elements, both LSD and Xa calcu-
lations overestimate consistently the core-d exchange. A
change in d-band occupancy, such as in alloy formation
of transition elements, should then lead to an error in the
formation energy.

There has been much interest recently in developing
methods which go beyond the local-density approxima-
tion. One modification is to treat the exchange part of the
energy exactly and to use the LSD approximation to esti-
mate correlation energies. '" For small systems, the re-
sults are sometimes better than those resulting from LSD
calculations for' exchange and correlation. Baroni has
found, for example, improved values for b,,d in iron-series
atoms. As noted above, however, the HF method leads to
unphysical results in extended systems and the local-
density description of correlation alone is often inadequate
if differential correlation effects are large, e.g., in C2 and
03. An attractive feature of the HF method is the au-
tomatic correction of the unphysical self-interaction, and
it is possible to incorporate these corrections into LSD cal-
culations. In LiC1, self-interaction-corrected (SIC) cal-
culations remove most of the large error in the LSD cal-
culation of the band gap. ' A further possibility is to
avoid approximations based on the homogeneous electron
gas by parametrizing the pair-correlation function of the
system under consideration. Both the SIC and the pair-
correlation parametrization methods lead to significantly
improved total energies, but to little improvement in exci-
tation energies involving valence electrons. ' lt appears
that the better total energies are a consequence of the im-
proved treatment of the core.

Recently, Harrison ' has modified the SIC approach in
a way which treats different l orbitals on a different basis.
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FIG. 13. Comparison of experimental, LSD, Xn, and HF en-
ergies of low-lying states of C2, relative to the experimental
ground state ('X~+ ).
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The correction to the LSD SIC value is given by
21

~&src= —g 13'ki Uk[rTi] PiE..—lrTi1
k=2

where ni=ni(r)i4n, Pqi and Pf are coefficients, and Uk
and. E„, are integrals which correct the Coulomb and
exchange-correlation contributions, respectively. Harrison
found that the LSD values for 6,„ in iron-series atoms
were improved substantially.

The errors in A,d change relatively slowly with increas-
ing atomic number, and a more stringent test is provided
by studying 6,& and I& in first-row atoms, where the devi-
ations are rather irregular (Figs. 4 and 5). We have
evaluated the corrections (7.1) in these cases, and the re-
sults for 6,» and Iz are shown in Figs. 14(a) and 14(b),
respectively. While there is some improvement, the
changes in A,z and I~ vary smoothly with increasing
atomic number, and large errors remain in h,z for 0 and
F.

Nonlocal modifications to the LSD approximation have
led to improved total energies and occasionally to better
excitation energies. The present work has shown, howev-
er, that changes in the nodal structure of the orbitals lead
to exchange energy differences which are not reproduced
by local-density approximations. The errors are often
compensated but seldom cancelled by errors in the LSD
description of the correlation energy (Fig. 12). The sp
transfer in 0 and F, and the sd transfer in Mn provide
striking examples of cases where numerically small
changes in the density and spin density lead to substantial
changes in the exchange energy. These and other exam-
ples discussed above indicate the difficulties in finding
simple modifications of the LSD approximation which
will provide accurate energy differences in general. How-

LSD

I I I I

Li Be B C N 0 F Ne

FIG. 14. Deviation from experimental values of (a) A,~ and
(b) I~ for first-row atoms. Dashed curve: LSD results; solid
curve: with self-interaction corrections evaluated using the
method of Harrison (Ref. 21).

ever, we have identified energy differences associated with
a change in wave function nodality as those most prone to
error in the local-density description of exchange. High-
lying orbitals with nodal planes are precisely those which
are most affected by configuration mixing or by schemes
which would consider the relative velocities of electrons in
particular orbitals. A scheme which systematically im-
proves local-density results would be highly desirable. An
explicit, if rather impracticable scheme has been suggested
by Freed and Levy, and the problem represents a chal-
lenge for both solid-state and molecular physicists.
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