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Relativistic formulation for the nuclear-spin-lattice relaxation rate
in metallic systems: Applications to Ag Pti
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The nuclear-spin-lattice relaxation rate ( Tj T) in metallic systems is formulated in a relativisti-
cally correct form, which is applicable to pure metals as well as to alloys. As an example, the results
of relativistic Korringa-Kohn-Rostoker coherent-potential approximation calculations for the alloy
system Ag Pt& „are used to calculate the relaxation rates of Ag and Pt in this system.

I. INTRODUCTION

Within the framework of charge self-consistent non-
relativistic Korringa-Kohn-Rostoker coherent-potential-
approximation (KKR-CPA) calculations, in a recent pa-
per Ebert et al. ' have determined the theoretical nuclear-
spin-lattice relaxation rates (Ti T) ' of Ag and Cu in the
alloy systems Ag Pd& and Cu Pd& „,respectively. For
both systems it has been found that, for the noble-metal-
rich side, the contact term is the dominating part of
(TiT) ', while with decreasing noble-metal content the
d-electron contributions grow, and in the case of Cu in
Cu„Pdi „ finally are larger than the cont'act term. Al-
though the concentration dependence of the calculated
rates is in agreement with experiment, the theoretical
values are up to 40% smaller than the experimental ones
as long as the contact term is the main contribution to
(T&T) ' and the familiar formula for the contact hyper-
fine field B,"' is used. This discrepancy is much more
pronounced for Ag than for Cu, and therefore indicates
that it might be of relativistic origin. Indeed, the formula
for B,"' has been derived by Fermi using approximations
that only apply for atomic numbers which are not too
high. If, however, instead of 8,"', the relativistic counter-
part of the contact hyperfine field is used, the theoretical
relaxation rates are in good agreement with the experi-
mental results for Ag in Ag„Pd& „as well as for Cu in
Cux Pdl —x

To avoid this mixing of a relativistic hyperfine field
and a nonrelativistic band-structure approach, and to get
an expression for (TiT) ' which is applicable also for
other contributions to (TiT) ' influenced by relativistic
effects, we have developed a relativistically correct formu-
la for the relaxation rate in metallic systems. The Hamil-
tonian which describes the relaxation process caused by
magnetic dipole interactions is given in Sec. II, together
with a short description of the mechanism of the nuclear-
spin-lattice relaxation process in metallic systems. In Sec.

III, a formula for ( Ti T) ' is derived, applicable not only
to pure metals, but also to alloys. This is demonstrated in
Sec. IV, where results for the theoretical relaxation rates
of Ag and Pt in Ag~Pti „are compared with experimen-
tal results.

II. MECHANISM OF NUCLEAR-SPIN-LATTICE
RELAXATION PROCESSES IN METALLIC SYSTEMS

The nuclear-spin-lattice relaxation process in metals is
caused by magnetic and electric (quadrupolar) interactions
between the nuclei and conduction electrons. This process
consists of an exchange of energy between the nuclear-
spin and electronic systems, and is only possible because
the spectrum of the conduction electrons is continuous.

The magnetic interaction between a nucleus and an
electron to which we will restrict our considerations is
described in relativistically correct form by the following
Hamiltonian:

Hhf ——e a.A . (2.1)

p =y„RI,
Eq. (2.1) can be written in the following form:

Hhf =y„&[I,(ro Xa), +I —,
'

(ro Xa )+

(2.3)

+I+ —,
' (roXa) ]e/r

=y„h(I,H,"+I H'++I+H" ) . (2.4)

In Eq. (2.1), —e is the electronic charge, a is the vector of
the 4& 4 Dirac matrices related to the Pauli spin matrices,
and A is the vector potential due to the magnetic moment

p of the nucleus,

A =p X ro/r, ro ——r/
~

r
~

(2.2)

r being the distance between the nucleus and the electron.
By using the relation
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In Eqs. (2.3) and (2.4), y„and I are the gyromagnetic ra-
tio of the nucleus and the nuclear-spin operator, respec-
tively. The operators I+ and (roXa)+ in Eq. (2.4) are de-
fined in the usual way as

b„=g(C ')„a (0) . (2.13)

The initial conditions produced in a standard T& experi-
ment can be expressed by

I+ I„——+iI», (roXa)+ ——(r OXa)„+i (roXa)» . (2.5)
a (0)=y„fiB/kBT, (2.14)

While the first part of Hhf in Eq. (2.4) is responsible for
the Knight shift in metals, the last two terms describe the
relaxation processes.

To study the relaxation behavior of the nuclear-spin
system, one defines for each spin level m the relative devi-
ation of the corresponding population N (t) at the time t
from the equilibrium population N by

with B the external field, kB the Boltzmann constant, and
T the temperature. For cubic lattices there is only one
contribution to the sum in Eq. (2.11) with A,„=2W. This
leads to a spin-lattice relaxation time T~ ——1/2W, which
is independent of I Ho.wever, as can be seen from Eq.
(2.11), T~ describes the time dependence of the relaxation
process also for noncubic lattices.

n (t)= [N (t)—N' ] gN' (2.6)
m'

As is shown in the next section, the transition probability
8' ~ per unit time between two nuclear-spin levels m
and m' due to the magnetic interactions between a nu-
cleus and the electronic system is of the form

W .=W(
I
&m'II+ Im& I'+1{m'II

(2.7)

This leads to the selection rule of Am =+1 for the mag-
netic quantum numbers m and, furthermore, to a linear
coupled system of 2I+1 differential equations for the
quantities n~(t). By introducing the quantity a~(t),
which is proportional to the magnetization of two adja-
cent spin levels,

III. FORMULA FOR THE NUCLEAR-SPIN-LATTICE
RELAXATION RATE

The total transition probability per unit time for a tran-
sition from a nuclear state

I

m ) to state
I

m') is given by
the sum over all transitions of the total system from a
state

I
n, m ) =

I
n )

I
m ) to a state

I

n')
I
m'), where

I

n )
and

I

n') are occupied and unoccupied electronic states,
respectively,

'=(2~/&) g I &
n' m'

I Hhf
I

n m &

n, n'

X 5(En' —En +~1)f(En )[ 1 —f(En )] .

(3.1)
a (r) =n (t) —n )(t),

the number of differential equations is reduced to 2I,

da (t) =+A a (r) .
dt

(2.8)

(2.9)

Here, %col E E is t——he dif—ference in energy for the
states

I
m) and

I

m') of the nucleus, and f(E) is the
Fermi function. By approximating the energy conserva-
tion as follows, 7

As follows from Eq. (2.7), the only nonvanishing elements
of the coefficient matrix A are given by

A +&
——W +~

——W[I(I+1)—m(m+1)],
A~ = —2W~ ~ ) ———2W[I(I +1)—m (m —1)],

(2.10)

A~ (
—W ) ~ 2

——W[I(I+1)—(m —1)(m —2)] .

5(E„E„+fuel)f(—E )[1—f(E )]
—k]3 T5(Eg —EF)5(E„—EF), (3.2)

and separating the hyperfine-interaction operator accord-
ing to Eq. (2.4) for the case m'=m+1, W~~ can be
written as

W~~ =2mkBTAy„
I

(m'
I I+ I

m) I

X g I ( n'
I

H'
I

n ) I
5(E„EF)5(E„EF)—, —

The general solution of the system of differential equa-
tions (2.9) is of the form

n, n'

(3.3)

a (t)=gb„C „exp( —A.„t) . (2.11)
and in an analogous way for the other possible transition,
m'=m —1. From Eq. (3.3) one can see that the quantity
Win Eq. (2.7) is given by

In Eq. (2.11) the A,„are the eigenvalues of the matrix A
and are given by" W=2mkBTAy„g

I
(n'

I

H"
I
n ) I

2

n, n'

A.„=n (n + 1)W, n = 1, . . . , 2I . (2.12) X 5(E„E)5(E„, —(3 4)

The quantity C „ in Eq. (2.11) is the mth component of
the nth eigenvector of A. For the special cases I= —, and
—,', C „ is given by Narath and Simmons et al. The
coefficients b„, finally, in Eq. (2.11), are determined by
the initial conditions and the inverse of the matrix C „,

By using a configuration-space representation for the
matrix elements (n'

I

H"
I

n ) and the corresponding
spectral representation for the one-particle Green's func-
tion, Eq. (3.4) can be written as
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W=2mkBTfiy„- J JH" (r)ImG(r, r', Ez)ImG(r', r,EF)H" (r')drdr'. (3.5)

This formulation does not only apply to pure metals, but
also to random alloys. In that case, G(r, r,EF) has to be
replaced by the configurationally averaged Green's func-
tion G (r, r', E~), where the considered nucleus a is placed
on the central site. Because of the short range of the
hyperfine-interaction operator [see Eq. (2.4)], the integra-
tions in Eq. (3.5) can be restricted to the volume of the
central cell (see Sec. IV). In terms of the site-diagonal
scattering-path operator rz~ ~ (E) (A=~,p) (e.g., Ref 8).

generally used within the KKR-CPA framework,
ImG~(r, r', E) is given by

ImG (r, r', E)= g Zz(r, E)Imr~z (E)[ZA (r', E)]',
A, A'

(3.6)

and hence 8' by

r 2

S'~ =2+kB Tfi y„—1
7T

Q ImrxA «F»mrA'A-«F)IA"'A(EF)[I~ ~ «F)]'
A, A'

AII Alit
t

(3.7)

where

I~~ (E)=J[Z~(r,E)]*H"(r)Z+ (r,E)dr . (3.8)

The matrix elements Ixx (E) are evaluated in a manner
similar to that of Rose,

In Eqs. (3.6) and (3.8), ZA(r, E) is a radial bispinor of the
type

IAA (E)= i R„—„(E—)A"„„"
2

with

(3.10)

g. (r,E)X'„(ro)
Z E-

If («)X" (r )

normalized according to single-site scattering. '
(3.9) R„„(E)=f [g„(r,E)f„(r,E)+g„(r,E)f (r,E)]dr (3.11)

and

A"„„"=i [2(2l'+1)/(2l+1)]' C(l'll;00)

X[2 C(l —,j;(p+ —, ) ——,.)C(l' —,
' j';(p' ——,

' )+—,)C(l'll;(p+ —, )0)

—C(l —,
' j;(p ——,

' )+ —,
' )C(l' —,

' j', (p' ——,
' )+ ,

' )C(l'l l;(p+ —,
'

) —1—)

+C(l ,'j;(p+ —,
'

) —,' )—C(l','j ', (p'+ —, ) ——,)C(T'—ll;(p+—', ) —1)—]. (3.12)

For the angle-dependent part of the matrix element [see Eq. (3.10)], A"„„",the following selection rules apply:

p' —p= 1, j' —j=0,+1, l' —1=0,+2 . (3.13)

Performing the triple products of Clebsch-Gordan coefficients in Eq. (3.12), the nonvanishing terms of A„"„"can be writ-
ten in the following compact form:

[4ia/(4~ 1)][a. —(p+ ——,
'

) ]'~, ~'=a.

—[i/(2~ s)] I [~—s—(p+ —, )][a—s(p+ —, )]I
', a'= —~+s, s =+1 (3.14)

This leads, finally, to the following expression for the spin-lattice relaxation rate ( T& T)
'2

II I

(Ti»~ '=4~kB& X. g [Imr~~ «F»mr~'x (EF)R:-.«F)R"«F)A' ."(A"'." )'] .
A, A'

AII AIII

(3.15)
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This result can be further simplified by restricting the selection rule for l [Eq. (3.13)] to Al =0 (see Sec. IV) and assuming
that the scattering-path operator is diagonal in ~ and p,

(T( T) '=4m. kBCri y„"2m [Imv„(EF)R„„(EF)]„6jj+1

+ g I mTa(E F)I mr rc ~(EF )[Rz z ~(EF )]
(2j+1)(2j+3) a a a 2. o 3j+ (3.16)

with

(3.17)z„(EF)=[1/(2j +1)]gv~~ (EF) .

Identifying —[(2j+I)/~]Im~„(EF)X„(EF) with the ~-like density of states at the Fermi level, n.„(EF),and redefining
the matrix element by

R„„(E)=R~„(E)/[%„(E)le�„(E)]'~
where

lcm'„(E)= f I [g„(r,E)] +[f„(r,E)] ]r dr,
one gets

2

(3.18)

(3.19)

(T) T)~ '=4mkBfi y„—72 [+g (EF )RKK(EF)] + y .
1

~ (EF )n ——1(EF)[R,—K —1(EF)] (3.20)

Equation (3.20) is, apart from a constant prefactor in the
second sum, identical with the expression for (T~T)
given by John et al. "

In our derivation for the spin-lattice relaxation rate, we
have ignored the possible dependence of ( T~T) ' on the
orientation of the external field because it has been shown,
for the nonrelativistic case, that ( T~ T) ' in cubic metals
is isotropic. This approximation is also justified by the
fact that the anisotropic part of the Knight shift in the
cubic metals Pt and Pb is much smaller than the isotropic
part 13,14

Furthermore, we have inserted in Eq. (3.5) the Green's
function for the case of vanishing external field Inserti. ng
a perturbation series for G(r, r', E) in Eq. (3.5) would in-
stead lead to additional field-dependent terms in Eq. (3.7)
that would be very small compared to the field-
independent term. These terms can therefore be neglected
in full agreement with experimental experience.

0.10

0.08.
CP

Eqs. (3,15) and (3.16), respectively.
For Ag as well as Pt the calculated rates agree fairly

well with the experimental results. From Fig. 1 one can
see that the relaxation rate for Ag decreases rapidly with
increasing Pt concentration and shows a minimum at
about 70 at. % Pt. As evident from Fig. 3, the concentra-
tion dependence for the Ag rate is caused by a steady de-
crease of the s-like contribution and a rapid increase of
d-like contributions for Pt concentrations larger than 70
at. % Pt.

A similar behavior exists for the s- and d-like contribu-

IV. APPLICATIONS TO Ag„Pt)

The results of fully relativistic KKR-CPA calculations
for Ag„Pt~ „(Ref. 15) are used to calculate the spin-
lattice relaxation rates (T&T) ' of the isotopes ' Ag and

Pt in this alloy system. Figures 1 and 2 show the
theoretically calculated rates of Ag and Pt, respectively,
together with the corresponding experimental values'
as a function of the Pt concentration. In Figs. 3 and 4 the
theoretical values for ( T&T) ' are broken down into their
angular-momentum contributions corresponding to Eq.
(3.16), i;e., reflecting only a selection rule df hl =0 for the
angular-momentum quantum number I. Also shown in
Figs. 3 and 4 are the total relaxation rates according to

0.06

002

f I

20 40 60
1

BD
ptg Conc. Pt (at. '/o)

FIG. 1. Nuclear-spin-lattice relaxation rate for ' Ag in
Ag„Pt~ . Open ci.rcles denote the experimental values {Ref.
16). Solid circles the theoretical ones. For the experimental
values the error bars are shown.
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FIG. 2. Nuclear-spin-lattice relaxation rate for ' Pt in

Ag Pt& . Open circles denote the experimental values (Refs.
17 and 18). Solid circles the theoretical ones. For the experi-
mental values the error bars are shown.

tions to (TI T) ' of Pt. For Pt, however, the rapid in-
crease for the d-like contributions is seen already at small
concentrations of about 20—40 at. jo Pt and this therefore
leads to a continuous increase for the total relaxation rate.
For both components, the p-like contributions to ( T& T)
are rather small and decrease continuously with increasing
Pt concentration.

As can be seen from Figs. 3 and 4, the use of Eq. (3.16),
or, equivalently, Eq. (3.20), is indeed an excellent approxi-
mation to Eq. (3.15), where no assumptions are made.
Qnly in the case of Pt-rich alloys do small differences be-
tween the rates corresponding to Eqs. (3.15) and (3.16),
respectively, occur. These differences are mainly due to
the off-diagonal terms in the site-diagonal scattering-path
operator, the so-called spin-flip components.

The short-range property of the hyperfine interaction
mentioned in Sec. III can easily be checked by extending
the volume for the radial integrations in Eq. (3.11) to the
volume of the Wigner-Seitz sphere. For the present re-
sults there were virtually no differences.

0.10

0.08.

0.06

0.04,

0.02.
~ ~

20 40 60 80
Ag Pt

Conc. Pt Iat. %j

FIG. 3. l-like contributions to the nuclear-spin-lattice relaxa-
tion rate for ' Ag in Ag Ptl . Solid circles correspond to the
s-like, open squares to the p-like, and solid squares to the d-like
contributions. The open circles and crosses correspond to the
total rate according to Eqs. (3.16) and (3.15), respectively.

FIG. 4. l-like contributions to the nuclear-spin-lattice relaxa-
tion rate for ' Pt in Ag„Pt~ „. Solid circles correspond to the
s-like, open squares to the p-like, and solid squares to the d-like
contributions. The open circles and crosses correspond to the
total rate according to Eqs. (3.16) and (3.15), respectively.

V. CONCLUSIONS

Nuclear-spin-lattice relaxation rates probe the local,
angular-momentum-dependent densities of states at the
Fermi energy and can be used to describe characteristic
changes in the electronic structure of disordered alloys.
As compared to the unenhanced total density of states at
E~, n(EF), and its relation to the linear coefficient of the
electronic specific heat, y, the spin-lattice relaxation rates
allow us to investigate the components separately. In par-
ticular, for systems where spin fluctuations form a major
contribution to y, the theoretical spin-lattice relaxation
rates are a useful tool in the discussion of the quality of
calculated spectral functions. The results shown in Figs.
1 and 2 prove that the fully relativistic KKR-CPA
method is capable of describing the concentration depen-
dence of the spin-lattice relaxation rates properly. It
should be noted that, as compared to soft-x-ray —emission
spectra, where also partial densities of states are mapped,
the spin-lattice relaxation rates allow a comparison of ab-
solute numbers and are therefore a much more rigorous
test of the quality of a theoretical calculation.

The present paper is based on data from KKR-CPA
calculations that are non-self-consistent with respect to
the potential field. Inherent in the CPA method used, the
alloys are assumed to be statistically disordered.

The deviation of the calculated ( T& T) ' rates for Ag in
Ag-rich alloys from the experimental ones might be an in-
dication that, for these alloys, charge transfer is not negli-
gible. However, it is also well known that different spin-
density functionals give slightly different s-d interactions.
To exclude charge-transfer effects implies performing ful-
ly relativistic KKR-CPA calculations self-consistently,
which at least at the moment is still a major practical
task. However, by comparing the present results with
similar calculations on Ag„Pd& ~,

' where the self-
consistent nonrelativistic KKR-CPA method was used, it
seems that most of the theoretical worries about charge
transfer seem to be superfluous in the case of Ag„Pt&
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