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We have performed an extended x-ray-absorption fine-structure (EXAFS) measurement of
Cd& Mn Te solid solutions for various concentrations x in the single-phase range 0&x &0.7.
Data have been collected on the Mn K, Cd L~~~, and Te L»& edges. We have found well-defined dif-
ferent nearest-neighbor Cd-Te and Mn-Te distances almost independent of x. A model of the mi-

croscopic structure of the zinc-blende-type 3
~

B C ternary alloys based on a random distribution
of cations has been developed. The model describes the bimodal distribution of near-neighbor dis-
tances in terms of distortion of the anion sublattice (the cation sublattice is assumed to remain fixed)
with use only of the lattice constants of the alloy and the bond-stretching constants of each binary
component. Its application to Cd~ „Mn Te and In& „Ga As alloys is proved to be in good agree-
ment with the EXAFS results. Within the framework of this model we also consider the problem of
the structural stability of Cd& „Mn„Te.

I. INTRODUCTION

The CdTe-MnTe solid solutions, which combine the
semiconducting properties of CdTe with the magnetic
properties of the 3d states of Mn, have been recently
studied with the main goal of providing a consistent ex-
planation of their magnetic and electronic properties. Up
to now, many significant results have been reported on
this system concerning the optical, ' magneto-
optical, transport, and magnetic ' properties
throughout a wide range of Mn content. Nevertheless,
there are still essential contradictions in the conclusions
drawn from some investigations. In particular the photo-
luminescence studies' indicate that the d electrons of Mn
are localized and placed about I eV below the top of the
valence band. On the other band, the integral' and the
angle-dependent' photoemission studies suggest a large
delocalization and strong hybridization of the Mn 3d lev-
els with the Te 5p valence band.

The atomic scale structure of the zinc-blende-type ter-
nary alloys (like Cd~ „Mn„Te) is still an open question
too. CdTe and MnTe crystallize in cubic (zinc-blende)
and hexagonal (NiAs) structures, respectively. Standard
x-ray diffraction measurements suggest that
Cd~ Mn Te crystallizes in the zinc-blende structure ~p
to x =0.7 and undergoes a structural phase transition to a
multiple-phase system at higher concentrations of man-
ganese. ' ' The lattice constant of this material changes
almost linearly with x in the whole single-phase region, '

a feature commonly referred to as Vegard's law. Such
behavior does not exclude a bimodal distribution of the
nearest-neighbor (NN) distances in the alloy. Diffraction
methods do not provide sufficient structural information
on the interatomic distances in these crystals. A new in-
sight was recently supplied by an extended x-ray-
absorption fine-structure (EXAFS) analysis applied to the
In& ~Ga As alloys by Mikkelsen and Boyce, ' and to the
Er& ~PrxSb alloys by Azoulay et al. , although in a very
narrow range of composition x. These works, together
with our experimental results reported earlier for
Cd~ ~Mn Te, ' yield the conclusion that impurity
atoms create a bimodal distribution of the NN distances.

There was other experimental evidence which forced us
to consider the NN and the NNN (next-nearest-neighbor)
order in this alloy; for instance, the analysis of an
anomalous behavior of the Cd~ „Mn Te fundamental re-
flectivity spectra at various Mn concentrations, ' '

which might suggest that the Mn atoms induce local dis-
order, or the results of the investigation of the magnetic
properties obtained by GaIazka et a/. ' Moreover, the re-
cent calculation of the electronic states in hypothetical,
cubic MnTe, in which the lattice constant was extrapo-
lated to x = 1 from the linear behavior in the homogeneity
region, showed that, regardless of the assumed charge
transfer, the resulting structure was metallic, in apparent
contradiction with expectations. The improper structural
information used there was perhaps a reason for this
discrepancy. Therefore, definite structural information is
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apparently needed to explain the electronic and magnetic
properties of Cd& „Mn„Te.

Our paper is devoted solely to that problem. In Sec. II
we present the results of the EXAFS measurements per-
formed on the binary compounds CdTe and MnTe and on

. their alloys, and discuss the NN distances between corn-
ponents. Next, in Sec. III, we develop a model of the mi-
croscopic structure of the zinc-blende-type A~ „B„Cter-
nary alloys which explains consistently the experimentally
found bimodal distribution of NN distances. Section IV
contains a summary of our experimental and theoretical
results, a comment about the different approximations in
the theory of alloys, and, finally, a discussion about the
stability of Cd& „Mn„Te alloys.

II. EXPERIMENTAL DETAILS AND
DATA REDUCTION

The EXAFS measurements were performed at the ¹

tional Radiation Facility [Programma per 1'utilizzazione
della Luce di Sincrotrone (PULS)] of the Laboratori 'Na-

zionali di Frascati (Italy) with the light emitted by the
ADONE storage ring (1.5 GeV, 50 mA). The experimen-
tal setup is described elsewhere.

Single crystals of CdTe and MnTe and of their alloys
were powdered and supported on Kapton and Mylar
adhesive tape, or deposited from a water dispersion on
Millipore membranes. For CdTe, thin films 2.6 pm thick
evaporated on a mica substrate were also used. EXAFS
spectra were measured at three different temperatures:
300, 150, and 80 K for Mn concentrations x =0, 0.1, 0.3,
0.5, 0.7, and 1. The edges considered were the Te LII& and
L~, the Cd Lq~~ and L~, and the Mn K at 4341, 4939,
3537, 4018, and 6543 eV, respectively. The Mn X edge
was measured by fluorescence. In MnTe the steepest edge
was at 6545 eV. The average resolution was better than
10 in this energy range. To check the homogeneity of
our solid solutions in the whole composition range and to'
measure their lattice constant, we performed an x-ray dif-
fraction study. In Fig. 1 we present the measured lattice
constant as a function of the Mn fraction x. The x-ray
results indicated that the alloys were not composed of
separate CdTe and MnTe phases and that the average lat-
tice constant varied almost linearly through the entire
solid solution.

&& sin[2kR~+ P, (k)],
where Xz is the coordination number of the jth shell at a
distance RJ from the absorber, fz(m, k) is th. e backscatter-
ing amplitude for the jth atom, pj(k) is the total (back-
scatterer and absorber) phase shift, A,(k) is the mean free
path of the excited electron, and crj is the mean-square
relative displacement of the absorber-backscatterer pair.
The photoelectron wave vector k is given by

fi2k2
fm =Eo+

2m
(2)

where Eo, the photoabsorption threshold, has been taken
to coincide with the maximum of the derivative at the ab-
sorption edge.

The total phase and backscattering amplitude for the
jth shell were obtained from the usual analysis in k
space. Namely, the kX(k) data were Fourier-transformed
(FT) to real space and the contribution of the single shell j
was backtransformed to extract the phase and amplitude
functions. From Eq. (1) the total phase factor PJ.(k) for a
given shell j contained in the sine function can be extract-
ed if the interatomic distance is known, viz. , a suitable
structural standard can be found. In our case the zinc-
blende CdTe and the hexagonal MnTe binary compounds
were adopted. Under the assumption of the phase
transferability for a given absorber-backscattered pair, i.e.,
PJ(k) =PJ (k), and from the relation 4J (k)= 2kRJ".

+Pz(k), the interatomic distance RJ"(k) for the unknown
is simply given by

Rq"(k) = [NJ(k) —
QJ (k)]/2k, (3)

where M stands for model compound. Before discussing
the ternary alloy data, we shall examine the EXAFS of
the standards at their different edges.

The extraction of the EXAFS modulation function
X(k) from the background was made with the usual pro-
cedure of data reduction, i.e., a Victoreen fit to subtract
the pre-edge background followed by a spline line fit to
the atomiclike smooth background. This procedure yield~
the well-known EXAFS function

f~(a, k)
X(k) =Q N& 2 exp( —2RJ /A, )exp( —2k az )

J J

A. CdTe

6.40

0.1 0.2 0.3 0.4 0.5 0.6 0.7

x in Cd, „Mn„Te
FICi. 1. Lattice constant of Cd& „Mn Te vs Mn content x as

measured by x-ray diffraction.

CdTe, similar to a large number of II-VI compounds, is
a semiconductor which crystallizes in the zinc-blende
structure. This structure is characterized by the
tetrahedral coordination of atoms, i.e., each atom of Cd is
surrounded by four NN Te atoms at the same distance.
Cd (Z =48) and Te (Z =52) are neighbors in the Period-
ic Table and this implies that their backscattering func-
tions should be rather similar. For intermediate-Z atoms
this function exhibits a double peak due to the
Ramsauer-Townsend effect. As a result we expect a
double peak in the modulus of F(R), provided X(k) ir

transformed on a sufficiently extended k range.
The Te Lqqq —edge EXAFS of CdTe is presented in Fig.
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Mn and Cd distributions around Te.

the mole fraction of Mn, the intensity of the Mn peak in-
creases and, correspondingly, the intensity of the Cd peak
decreases. As discussed in the case of pure CdTe, the Cd
peak is double and thus the Mn peak in the alloy is super-
imposed on the lateral peak of Cd.

The back-Fourier-transforms kX(k) obtained from the
first two shells of F(R) are shown in Fig. 10(b) (solid
lines). We have best-fitted them by using as free parame-
ters the anion-cation distances, the Debye-Wailer factors,
and the shifts of E0 with respect to the model compounds

TABLE I. Best-fitted anion-cation distances R, Debye-Wailer factors o. , and change of Ep for the
Mn-Te and Cd-Te pairs.

0.1

0.3
0.5
0.7

R
(A)

2.755
2.751
2.747
2.737

Mn-Te
g 2

(10-' A')

0.245
0.229
0.250
0.720

EEp
(eV)

—0.556
0.250
0.377
2.090

R
(A)

2.801
2.801
2.800
2.798

Cd-Te
Q

2

(10 A)

0.620
0.592
0.650
1.800

EEp
(eV)

0.333
1.050
2.568
6.620
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FIG. 11. Average Cd-Te and Mn-Te nearest-neighbor dis-
tances in Cd~ „Mn„Te alloys vs concentration x. Solid circles
are values from the best fit of the EXAFS data; open squares
are values calculated from the model, and open circles are values
of a (x)V 3/4, as measured by x-ray diffraction.

(Table I). The starting values were those derived from the
analysis of the Cd Lu& and the Mn EC edges in
Cd~ „Mn„Te. The amplitude and phase functions were
determined from the model compounds and the coordina-
tion numbers were calculated from the nominal concen-
tration in the alloy. The best-fitted kX(k) curves are
reproduced in Fig. 10(b) (dotted lines) for various x values
and agree satisfactorily with the experimental curves. The
anion-cation distances are almost independent of x and
are shown in Fig. 11 (solid dots). In In& «Ga«As Mikkel-
sen and Boyce' could not directly observe the splitting of
the cation peak. They observed, instead, a broadening and
a small shift of the NN peak compared with the pure
binary compounds. They resolved it by a fitting pro-
cedure using two Gaussian distributions.

In Cd& „Mn„Te the other peaks of I'(B) between 3
and 5 A are assigned to the NNN Te and the Cd(Mn)
atomic shells.

III. MODEL OF THE MICROSCOPIC
STRUCTURE OF RANDOM ALLOYS

Taking into account all the experimental evidence, it
seems that a general property of random solid solutions of
binary compounds has been discovered: the A- C and B-C
distances in the zinc-blende-type A~ „B C alloy at arbi-
trary concentration are nearly the same as in pure AC and
BC compounds, respectively. It is therefore very interest-
ing to consider in detail how the zinc-blende structure ac-
commodates two different cation-anion distances.
Mikkelsen and Boyce' drew an analogy between the
Ao 5B05C alloy and the chalcopyrite (ABX2) crystallo-
graphic structures. They did not, however, model the
disordered phase and, following their approach directly,
one cannot describe an alloy at arbitrary concentration x.

In order to develop a model possessing such a capabili-
ty, one must realize that NN distances, as measured by
EXAFS, are an average over a macroscopic volume. It is
implied that a model must be statistical, and proper
averaging over possible NN distances should reproduce
the experimental data.

To start with, we shall consider which sublattice is
more likely to be distorted. Our measurements do not

provide enough information to analyze the NNN dis-
tances. Mikkelsen and Boyce' report that the cation-
cation distribution has a single peak and is only slightly
broadened compared to that in the pure compound,
whereas the anion-anion distribution is bimodal. Such ex-
perimental evidence suggests that much stronger distor-
tion occurs to the anion sublattice. Moreover, as Mikkel-
sen and Boyce' pointed out, if the cation sublattice were
to distort, the average anion-cation distance could not
differ much from the virtual-crystal-approximation
(VCA) value. Decreasing the distance of a cation from
some anion, we increase the other cation-anion distances
in the same tetrahedron, keeping the average close to the
VCA value. Finally, we point out that if we believe that
the NN interactions are dominant in the alloy, it is very
likely that the anion surrounded by different cations will
leave its central position in the tetrahedron. The same
process is not very likely to happen for the cation, always
surrounded by four identical anions.

A. Formulation of the model

Taking into account the above considerations we con-
struct our model of the microscopic structure of the zinc-
blende-type A, „B„Calloy according to the following:

1/2a'(x) p 2a (x)y, (x) = +z, (x)— z, (x)2 v'3

yq(x) = a (x) a (x)—a (x) z2(x)—
8

+z2(x)
1/2 1/2

y3(x) = —[4z3(x)——,a (x)]' /2,
3

(i) We assume that the cation sublattice remains undis-
torted. (In the case of alloys containing two different
anions the anion sublattice remains undistorted. )

(ii) We consider all the possible coordinations around an
anion in the alloy —there can be 0, 1, 2, 3, and 4 B-type
cations at the vertices of the tetrahedron. For every coor-
dination we consider the relationship between the 3-C
and B-C distances when an anion is displaced from its
central position. We assume that the influence of disorder
in the NNN and further shells does not affect the dis-
placement of a central anion. The NNN interactions are
much smaller than the NN ones bnt it is not necessary to
assume that they are negligible. It is enough to observe
that, due to the long-range disorder, the net displacing
force acting on a central anion will be close to zero. Fig-
ure 12 shows all possible geometrical situations for the
three cases in which we have 1, 2, or 3 B-type cations in a
tetrahedron. We assume that the anion has a tendency to
get closer to the B-type cation (in our case the B-type ca-
tion is Mn, in the case of Mikkelsen and Boyce' it is Ga).

If z„(x) denotes the B-C distances, the A-C distances
are given by
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4
P(n, x}= x "(1—x) " (n =0, 1,3,4} . (6)

(b)

(c)

'B

Some remarks, concerning the model of Mikkelsen and

Boyce, ' are in order here. They claim that in the

Ao 580 5C alloy the tetrahedra containing one and three,
and three and one A-type and B-type cations, respectively,
should occur 4.2 times less frequently than those with two

A and two B cations. Their analogy to chalcopyrite is
based on the observation that, in the Ao 5805C alloy,
tetrahedra with two A and two B cations are predom-
inant. This is, unfortunately, not the case, because, in ac-
cordance with formula (6) for x =0.5, the probability of
finding a tetrahedron with two A and two B cations is —,,

whereas those of 1-3 and 3-1 configurations are —,
' each.

Hence, it is more likely that we will find a tetrahedron
with a 1-3 or 3-1 configuration than one with a 2-2 con-

figuration, even for x =0.5. It makes the validity of their

chalcopyrite analogy questionable.
(iv) Having defined the geometry and the probability

distribution of different possible tetrahedra, one can cal-
culate the average NN distances. It can be done if the dis-

tances y„(x) and z„(x) are properly weighted by the prob-
abilities (6) and the additional weights W(n) =4 n[and—
W(4 n)] —arising from the fact that in the tetrahedron
containing n B-type cations there are 4 —n A-C (and n

B-C) distances. Then, the average A-C and B-C dis-

tances denoted by y and z, respectively, are given by

y(x)= g W(n)P(n, x)y„(x),1 (7)
) .=o

where

P(x)= g W(n)P(n, x)
n=0

FIG. -12. A11 possible coordinations around the anion in the
tetrahedra containing both types of cations. The open circle and
dashed lines mark the positions of the central anion and the
bonds in tetrahedra when the anion sublattice is undistorted.
The solid lines and the solid circles mark the bonds and the po-
sitions of the ions in the distorted tetrahedra.

for the cases (a), (b), and (c) in Fig. 12, respectively; a (x)
denotes the lattice constant of the alloy at concentration
x. In the case where all four cations are the same, the
tetrahedron cannot be distorted —the B C(or the A-C)-
distance equals yo ——z4 ——a (x)~3/4.

(iii) In the next step we must consider the probability of
finding tetrahedra with 0, 1, 2, 3, and 4 B-type cations in
the alloy at concentration x. Let us assume, at the begin-
ning, a random distribution of cations in their- sublattice
(possible deviations from full randomness will be dis-
cussed later). Obviously, the probability of finding the
B-type cation at any vertex of the tetrahedron is equal to
x and the probability of finding the A-type cation is
1 —x. Hence, the probability of finding a tetrahedron
with n B-type cations is given by the binomial Bernoulli
distribution:

z(x)=, g W(4 n)P(n, x)z„—(x),1

x .=o

where

P'(x)= g W(4 —n)P(n, x) .
n=0

(v) To complete the calculation of the average NN dis-

tances, we need to know all six values y„(x),z„(x)
( n = 1,2, 3), and to realize this, the following procedure is

proposed. The q„(x), given below, are minimized with

respect to z„(x) for all cases n =1,2, 3, and for each value

of x,

g„(x)= z W(4 —n) [z„(x) —zz ]
JP

W(n) [y„(x)—yz ]
8g~

(9)

The zz and yz denote the B-C and A-C NN distances in
the pure BC and Ac compounds, and u, and ex& denote
the bond-stretching constants of these compounds, respec-
tively. The functions (9) can be interpreted as the energies
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needed for changing the bond lengths and they are written
on the basis of Keating's ' scheme of the valence-force-
field (VFF) approach. The bond-stretching constants
are taken from the paper by Martin, and bond-bending
terms are neglected. The fact that the minimization is
carried out for each configuration of atoms in each
tetrahedron is consistent with the assumption of the dom-
inant role of the NN interactions. Furthermore, it should
be noted that the proposed minimization procedure fol-
lows the empirical observation, mentioned above, that the
3-C and B-C distances in the 2

& ~B C alloy tend to be,
as far as possible, the same as those in the pure com-
pounds.

In order to check the validity of our assumptions, we
have also minimized g„(x) with the bond-bending terms
and a relaxed cation sublattice. We have found that for
both Cd& „Mn„Te and In& ~Ga„As the average NN
bond lengths are slightly (0.1%) modified. If one adds
the bond-bending terms in Eq. (9) and does not allow for
any relaxation of the cations, or if one relaxes the cations
and does not include the bond-bending terms, large errors
in the average distances will be found. In view of these
results we are justified in adopting the present model as a
reasonable approximation.

Steps (i)—(v) form a complete model of an alloy. The pro-
cedure can be summarized in a few words: The set of
values z„(x) and y„(x) has been obtained by means of the
minimization of functions (9) with the use of relations (5);
from Eqs. (7) and (8) z(x) and y(x), the average NN dis-
tances were calculated. The sufficient input data for the
calculation are the lattice constants of the alloy a (x) and
the bond-stretching constants of the components. Obvi-
ously, z~ =a (1)V 3/4 and y~ =a (0)~3/4.

B. Application to Cd& „Mn Te and In& „Ga„As alloys
0

The lattice constants for CdTe i a(0)=6.468 A] and
Cd& „Mn„Te (0(x (0.7) were obtained from the x-ray
diffraction data. ' The linear dependence of a (x) was ex-
trapolated and the value a (1)=6.333 A for pure MnTe
was obtained. The bond-stretching constants, as men-
tioned above, were taken from the literature. For CdTe,

cdTe=29. 02, and for MnTe the value 0'znTe 31.35 was
used as an approximation. This is perhaps not very well
justified, but one should note that the values of the force
constants are not critical. The equilibrium positions cal-
culated by minimizing q are only weakly dependent on
these values. In the particular cases where g reaches its

2.60

2.55

2.50

2.45

0 0.2
In As

0.4 0.6 0.8
GaAs

x in In, „Ga„As

FIG. 13. Average In-As and Ga-As nearest-neighbor dis-
tances in In& „Ga„As alloys vs concentration x. All symbols
and lines are as in Fig. 11.

C. Additional comments on the model

Finally, we would like to add the following remarks:
(i) It is possible to relax the first assumption of our

absolute minimum equal to 0, the equilibrium position
does not depend on a at all. Most of the effective physi-
cal interactions are built in the model via the undistorted
bond lengths zz and yz.

The results of the calculations for Cdi Mn„Te are il-
lustrated in Fig. 11 and detailed values are presented in
Table II. Figure 13 and Table III show the results of the
application of our model to the data of Mikkelsen and
Boyce. ' The bond-stretching constants of InAs and
GaAs were also taken from the literature. The rms de-
viation o. of the NN distributions calculated for both the
In-As and the Ga-As distances are included in Table III.
In both cases the agreement is rather good, although the
calculated straight lines possess slightly greater slope than
the experimental ones and the broadening of the NN dis-
tance distribution suggested by our model is a little larger
than that observed. ' However, since our model is based
on the assumption that the cation sublattice remains
fixed, it does not reproduce the different NNN distances
in the cation sublattice of In& „Ga„As (Ref. 19, Fig. 9).

Mn-Te distance

TABLE II. NN distances in the Cdi Mn„Te alloy vs concentration x. The values y&,y2, y3 and zi, z2, z3 are the distances ob-

tained for different configurations (a), (b), and (c) in Fig. 12, respectively. y and z are the NN average distances. a (x) is the lattice
0

constant and yp{z4) is the NN distance in the undistorted tetrahedron. All distances are in A.

Cd-Te distance
a (x) y2 y3 yp(z4) z] z2 z3

0.1

0.3
0.5
0.7

6.455
6.428
6.401
6.373

2.800
2.797
2.794
2.791

2.810
2.798
2.786
2.774

2.825
2.813
2.801
2.782

2.840
2.828
2.816
2.804

2.795
2.783
2.772
2.760

2.751
2.739
2.728
2.716

2.766
2.754
2.742
2.731

2.780
2.769
2.757
2.745

2.755
2.753
2.750
2.748
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TABLE III. NN distances and rms deviations 0.„(y —y )' and cr, =(z —z )' for In~ „Ga„As as
a function of the concentration x. All symbols as in Table II.

In-As distance

0.025
0.1
0.25
0.5
0.75
0.9
0.099

a (x)

6.045
6.015
5.955
5.854
5.754
5.694
S.657

2.621
2.618
2.613
2.602
2.592
2.585
2.582

2.664
2.650
2.624
2.580
2.536
2.510
2.494

2.709
2.695
2.669
2.625
2.581
2.555
2.539

2.751
2.738
2.712
2.668
2.624
2.599
2.583

Oy

0.012
0.024
0.034
0.038
0.033
0.023
0.008

Zo(z4)

2.618
2.605
2.578
2.535
2.491
2.465
2.450

0.025
0.1

0.25
0.5
0.75
0.9
0.099

a (x)

6.045
6.015
5.955
5.854
5.754
5.694
5.657

Z]

2.488
2.475
2.450
2.408
2.365
2.339
2.324

Ga-As distance
Z2

2.533
2.520
2.494
2.451
2.408
2.382
2.366

Z3

2.576
2.563
2 537
2.494
2.450
2.424
2.409

2.492
2.489
2.483
2.472
2.460
2.453
2.449

0.012
0.023
0.033
0.036
0.031
0.021
0.007

model and let the cations move a little away from the ver-
tices of the tetrahedron. Then the displacements of the
ions in both sublattices should be calculated in a self-
consistent way. Unfortunately, this will change our sim-
ple model to a very complex one. The bond-bending
terms in the full Keating scheme should also be included.

(ii} In some other applications not only the average
values z and y but the NN distances z„and y„(as listed in
Tables II and III}may be useful as well.

(iii) The expression for the average over all NN dis-
tances can be written in two equivalent forms [see Eqs. (7)
and (8)]:

1 4
W(n)P(n, x)y„(x)

L

4

+ g 8'(4 —n)P(n, x)z„(x) (10)
n=0

D =(1—x)y(x)+xz(x) .

The latter was proposed by Mikkelsen and Boyce. ' Com-
paring Eq. (11) with Eq. (1.0) one can thus understand the
internal structure of the phenornenological expression
(11). If we evaluate the expression (10) using all NN dis-
tances as listed in Tables II and III, we will obtain the
average NN distance D as measured by x-ray diffraction
in the particular cases. Such a test of consistency was
done, showing perfect agreement.

(iv) A general structure of the model is one in which the

average positions of the anions in the distorted sublattice
are at the center of the tetrahedron, independently of the
assumption of a random distribution. This means that the
average over all possible NNN distances between anions
will not differ from the value of the NNN distance in an
undistorted sublattice or, in other words, from the VCA
value. In spite of that, the distribution of the NNN dis-
tances between anions will show a multimodal character
similar to that of the NN distances. We have derived the
NNN distribution for both alloys with a Monte Carlo cal-
culation using five coordination shells of neighbors
around the central anion. The cation sublattice is occu-
pied randomly and the anions are put in the positions
specified in Tables II and III. Figure 14 shows the results
for In& „Ga„As for x =0.25, 0.5, and 0.75. The results
for Cd& „Mn„Te are qualitatively similar. To help the
comparison with the experimental data, ' we have convo-
luted each histogram with a Gaussian distribution. Par-
ticularly interesting is the case x =0.5 because it can be
directly compared with the pseudochalcopyrite model of
Mikkelsen and Boyce. ' This distribution consists of
three main distances at 4.04, 4.12, and 4.24 A, to be com-
pared with the measured EXAFS values 4.02, 4.26 A.
For the pseudochalcopyrite structure (top panel of Fig.
14) the Monte Carlo distribution peaks approximately at
4.04 and 4.20 A, in agreement with the averaged distances
reported in Ref. 19. For x =0.5 we have, however, the
group of distances at 4.14 A, the distance between anions
in the undistorted sublattice. Such a distance occurs when
two anions in adjacent tetrahedra have identical environ-
ments. Closer analysis reveals that such a situation can
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pseUdo-
cha lcopyri te

4"

In& „Ga„As

x=0.75

(0

0

U)

3"
2"

5 x=05
4"

5- x=0.25
4"
3--

2"

3.8 4.0 4.2 4.4 4.6

NNN d ista nce (Aj

FICi. 14. Second-nearest-neighbor distributions for
In& „Ga„As. Histogram-bar widths are equal to 0.01 A. The
highest histogram shows the distribution for the pseudochal-

copyrite model. The solid curves are the convolution of the his-
tograms with a Gaussian distribution (o. =0.0025 A ).

occur in two distinct cases: First, two adjacent tetrahedra
contain only type-A or type-B cations (the anions are not
displaced from their zinc-blende sites); second, two 2 X 2
tetrahedra are adjacent and identically oriented in space
(the anions are displaced coherently and the distance be-
tween them does not change). For 3 && 1 and 1 && 3 tetrahe-
dra such a situation is excluded. The first case does not
contribute much to the distribution at 4.14 A ( & l%%uo) on
account of the low probability of finding two adjacent
tetrahedra with only A (B) -type cations. If the cation
sublattice is randomly occupied, the second case occurs
frequently; it is, however, interesting to note that in the
chalcopyrite structure it never occurs. The data of
Mikkelsen- and Boyce' suggest that it occurs less fre-
quently for the x =0.5 alloy. It is, however, to be noted
that this fact can be to some extent reconciled with our
model. Suppose that for some reasons (essentially the
same which make the chalcopyrite structure stable) when
two 2)&2 tetrahedra are adjacent they are preferably
oriented in a different way in space (intertetrahedra corre-

0

lation). In such a case the presence of the 4.14 A distance
will be absent in the NNN distribution. One should, how-
ever, realize that introducing ad hoc intertetrahedra corre-
lations cannot be reconci'ed with the assumption of a per-
fectly random distribution of cations in their sublattice.
The presence of the central peak for x =0.5 is the main
discrepancy between our model and the experiment. The
assumption about such an intertetrahedra correlation is
weakly substantiated, " although it remains in agreement
with the chalcopyrite analogy of Mikkelsen and Boyce.
The problem remains open, but we want to mention that
from the results of the generalized model in which the
cation sublattice is allowed to relax and the bond-bending
terms are included, the central peak remains as well.

(v) The ultimate minimum of g is obviously equal to 0
and can occur when z„(x)=z~ and y„(x)=y~. It will be
interesting to see if and when such a situation can take
place. g depends on x only via the lattice constant a(x).
If we assume a linear dependence of the lattice constant
on the composition, i.e., a (x ) =mx +b, we easily find
that ri„ is equal to 0 for x almost equal to 0.25, 0.5, and
0.75 for n =1, 2, and 3, respectively (actual values for
Cd~ „Mn Te are 0.254, 0.505, and 0.754, and, for
In& Ga„As, 0.262, 0.517, and 0.764). Physically, it
means that, for these particular concentrations in the
tetrahedra of types 1, 2, and 3, respectively, the bond
lengths can be exactly the same as those in the pure com-
pounds. At the same time, the probability of finding such
a tetrahedron is the highest one. Qne can, therefore, intui-
tively see that the linear behavior of a(x) is connected
with the energy minimization in the alloy. Qne should
note, moreover, that formula (9), obtained on the basis of
a linear dependence of the lattice constant on composi-
tion, is just equivalent to a "tetrahedral bond conservation
rule, " the old idea of Bragg, discussed extensively in a re-
cent paper by Jaffe and Zunger. They argue that for the
chalcopyrite materials the bond length can be fitted sim-

ply by a sum of atomic radii, and that the A-C bond
length does not depend on the B atom. Formula (9) ex-
tends this idea to the 1A-38 and the 3A-1B tetrahedra as
well. On the basis of the above considerations, we can
calculate the value of 1.42 A as a tetrahedral ionic radius
for Mn + (Ref. 37).

(vi) Our model does not consider the problem of the
violation of the random distribution of cations in the al-
loy. All quantitative results and conclusions drawn from
it when confronted with experimental data of different
measurements (x-ray diffraction, EXAFS, magnetic) may
or may not confirm such a violation. However, there is
explicit evidence that for the diluted In~ „Ga„As alloy
the distribution of the cations is random and the deviation
from raridomness is estimated to be not larger than 15%%uo

for concentrated alloys. ' Support against chemical clus-
tering of Mn ions may be drawn from EXAFS studies of
other magnetic alloys.

In the Limited framework of our model we cannot
answer this important question definitely. The agreement
of the calculated and measured average NN distances sug-
gests the absence of a strong clustering. Qne can argue
that it is possible, in general, to obtain the same average
values using different distributions; here, however, we
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reproduce the experimental curves rather than just single
points, .using the same distribution. The lines describing
the dependence of NN distances on x have slopes dif-
ferent from 0; it is apparent especially for In& „Ga„As.
If the clustering is significant and if the tetrahedral
bond-conservation rule holds, these lines should be paral-
lel to the x axis. Since, however, the experimental evi-
dence is in favor of a random distribution, one should
answer the question of why the tetrahedra for which the rl
values are the lowest do not predominate? The calculated
values of g are of the order of 20 meV (-250 K) for
Cd~ „Mn~Te and 100 meV ( —1200 K) for In& „Ga~As.
The alloy-formation temperatures are well above 1000 K
in both cases. The thermal energy is evidently high
enough to make all the configurations equally probable as
far as thermodynamics is concerned. When the tempera-
ture decreases, the configurations remain frozen, although
for Cd& „Mn„Te even this assumption is not necessary.
Hence, we conclude that the random distribution of dif-
ferent cations in the cation sublattice is almost perfect in
Cd~ Mn„Te. For In~ Ga~As a clustering process in
the limit mentioned above is possible. A deeper thermo-
dynamical study of the problem is, however, highly desir-
able.

IV. DISCUSSION AND CONCLUSIONS

The EXAFS studies of the Te, Cd, and Mn edges in
Cd~ „Mn Te alloys bring the following significant con-
clusions:

(i) At the L»r edge of Te (Fig. 10), the NN peak is split
into two peaks. The simulation confirms that they are re-
lated to Mn and Cd backscatterers at two different dis-
tances, 2.74—2.755 A (depending on x) and 2.80 A, from
the Te absorber, respectively. In Cd~ Mn Te the
modulus F(R) of the separated Cd and Mn peaks signifi-
cantly decreases and increases with increasing Mn con-
tent, respectively.

(ii) In CdTe at the Lm edge of Te, the peak at about 4.3
A is composed of unresolved peaks due to the Te second
shell and the third shell of Cd. In the Cd~ ~Mn Te alloy
the position of this complex peak does not change appre-
ciably with x.

(iii) Within the experimental resolution the position and
the width of the Te peaks at the Cd L u& edge are approxi-
mately the same for various concentrations of Mn. As
described in Sec. IIC, the Te-Cd average distance equals
2.80+0.01 A and it is almost independent of x.

(iv) From the Mn J —edge data, the Te-Mn average dis-
tance changes from 2.76 to 2.74 A with increasing x.
Also, the overall width of the Te peak is approximately
the same for various concentrations of Mn.

We would like to emphasize that the NN distances ob-
tained from Cd I &jI and Mn E edges are in agreement
with those obtained from the Te L»& edge. These results
are direct experimental evidence confirming the bimodal
distribution of the NN distances in Cd& „Mn„Te alloys,
which demonstrates the existence of two different, well-
defined average distances between Te-Cd and Te-Mn.

The model of the microscopic structure of the zinc-
blende-type A~ B~C alloys gives all the particular NN

distances as well as the average NN distances, in good
quantitative agreement with both our experimental data
and that of Mikkelsen and Boyce. ' The analysis of the
model enables us also to understand the behavior of NNN
distances as described in Ref. 19 (our experimental resolu-
tion was insufficient to observe such subtle changes in
Cd, ~ Mn„Te).

We believe that the local distortion in zinc-blende-type
B~C alloys described by our model is a universal

feature of such alloys. Gne of the important consequences
is that it makes the "classical" definition of the VCA
questionable. One either must accept that the VCA is not
really a very good model because in this approximation all
distortions of the sublattices are ignored, or one must con-
sider the generalization of the VCA which also includes a
proper averaging of the potential of C atoms over all pos-
sible positions in their distorted sublattice.

The same can be applied to more sophisticated one-
electron alloy theories such as the coherent-potential ap-
proximation (CPA) or average —r-matrix approximation
(ATA). Besides taking into account the scattering on
the different cations, one should also incorporate into
these theories in some way the effects of averaging the
anion potential over different geometrical sites.

Finally, we would like to discuss the problem of the sta-
bility of the tetrahedral coordination in Cd~ „Mn„Te al-
loys. According to the approach of Phillips and Van
Vechten, the ionicity of CdTe is equal to 0.717, which is
close to the critical ionicity value (0.785) at which the
transition from a covalent to an ionic structure or, in oth-
er words, the transition from the fourfold (zinc-blende,
wurtzite) to the sixfold (rocksalt, NiAs) coordination
occurs. Since Mn in MnTe has sixfold coordination,
MnTe is reported to be more ionic than CdTe. This in-
dication is supported by core-level shifts from x-ray
photoemission spectra ' and effective charge calcula-
tions. ~ The addition of Mn in CdTe should increase the
ionicity of the bonds. The question arises as to how the
crystal structure of Cd& „Mn„Te can still be cubic up to
x =0.7, taking into account that CdTe is already close to
the structural phase transition. The answer is that the lo-
cal distortions of the lattice (distortions of the tetrahedra)
described by our Inodel stabilize the zinc-blende-type
structure up to x =0.7. To understand this point one
should note the following:

(i) In nearly covalent compounds the center of gravity
of the bonding charge is placed almost at the middle of
the bond, and shifts towards an anion when the bond ioni-
city increases.

(ii) The distortion of the tetrahedra containing 1, 2, or 3
Mn ions, i.e., the shift of the Te ions towards Mn com-
pensates for the displacement of the. center of gravity of
the bonding charge and decreases the effective bond ioni-
city. Such a shift is also favored by the smaller ionic ra-
dius of Mn + ions compared to that of Cd +.

(iii) The probability of finding a tetrahedron with four
Mn ions increases rapidly for x &0.7 [see formula (6)].
Such tetrahedra, according to our model, cannot be dis-
torted and the displacement of the bonding charge cannot
be compensated. Therefore, the fourfold coordination of
Cd& Mn„Te becomes unstable and the transition to a
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phase typical for ionic compounds occurs.
Summarizing the discussion about the stability of the

Cd~ Mn Te alloys, we would like to say that
phenomenological considerations about ionicity, support-
ed by conclusions drawn from our theoretical model of
the microscopic structure, gives a satisfactory, qualitative
explanation of this problem.
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