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Symmetry and boundary condition of planar spin systems
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For finite quantum systems, the boundary condition has physical as we11 as computational significance.
Here planar spin chains are investigated with the use of a boundary condition that differs from the most
commonly used periodic boundary condition. The symmetry properties then explicitly distinguish between
even and odd half-integer spins. Finite-size scaling performs better with the use of this boundary.

N N
H= X (S„"S„"+i+Sgs„"~i )+A. g S„'S„*+i

n=1n=1

For A. = I ( —1)H reduces to the isotropic antiferromagnetic
(ferromagnetic) case with full rotational symmetry. The
discussion will be restricted to W even, which is appropriate
to the antiferromagnetic case, as can be seen most clearly in
the Ising limit X ~. The periodic (antiperiodic) boundary
condition identifies Sn+i—= Si (S~+i= —Si) and the open
boundary condition restricts the sums in (1) to N —1.
Here, I study the situation when the planar term
Sgsf + Spsf coupling the last and the first spin in the chain
is replaced by

(Sgsf + Sgsf ) cos(N8) —(Sgsf —Spsf ) sin(N8) . (2)

The study of finite systems is motivated both by the fact
that physical systems are finite, and because frequently they
are easier to investigate than infinite systems. In either
case, the boundary condition is important for the following:
to describe the physical properties of real systems correctly
and as a tool to obtain the best finite-size estimate for the
infinite system. For the purpose of minimizing finite-size
corrections the preferred choice is the periodic boundary
condition (in some cases antiperiodic, respectively, open
boundaries are appropriate).

Here, I wish to show that for planar systems physical in-

sight can be gained and at the same time the numerical con-
vergence can be improved by appropriately choosing the
boundary. The system considered is the anisotropic spin-S
Heisenberg model in one dimension. The approach, howev-
er, can be generalized to. more complicated interactions and
higher dimensions. The spin-S Heisenberg model has been
studied extensively and there are a number of exact results
available. The S= Y Heisenberg chain has been solved a

long time ago' and renewed interest produced exact results
for specific generalizations for S) Y. A global picture

developed recently distinguishes between odd and even
half-integer spins. The symmetry properties investigated
here support this description in a natural way.

The idea to vary the boundary condition has been used
numerically for spinless fermions~ and to study confinement
in field theory.

The anisotropic spin-S Heisenberg chain is defined by the
following Hamiltonian in terms of the spin operators S,

leads to the equivalent, periodically bounded Hamiltonian

N

H(8) = g (S„"S„",+S„"S„"„)cos8
n=1

N N
—g (S„"S~+,—S~s„+, ) sin8+A. X S„S„„

n=1n=l
N N

(S„S„+~,e'a + S„+S„+,e 'a) + Z g S„*S„*+i
n=l n=l

y(q)=pa, X ea S„++ . . S„++ l0)
n m=1

where l0) is the fully aligned state, n= (ni, . . . , n, )
denotes the distinct configurations of (conserved) total spin
S;„=r —NS, and the a, are determined by (5). It is under-
stood that the indices n~+ m are periodically brought back
into the interval 1. . . N. First, using Eq. (6) and the
standard Pauli matrix representation of the spin operators
(where all the matrix elements for S+ are real), the com-
plex conjugate of (5) changes 8 into —8 and q into —q.
Then the transformation of Eq. (3) with an angle 8' is
applied, changing —8 into 8' —8 and multiplying
S„++ . . S„++ IO) by P, where

1=i (mr8'+ IN8'+ (ni+ . + n„)8')

and I is an integer. The boundary condition, Eq. (2), is un-

changed if 8'=(2m/N)k, k integer. The wave vector of Q

then changes into q'= rk(2w/N) —q. I now fix 8 and 8' at
8 = m/N and 8'= 2n/N The Hamiltoni. an

H(2m/N —n/N) = H(n/N)

and the boundary condition then do not change, but

q q'=2ms+ (2m/N)s;„— q

which is explicitly translationally invariant and shows that
the new boundary corresponds to a planar twist of the chain.
The previous case is recovered for 8 =0.

Let Q(q) be an eigenvector of (4) with wave vector q and
energy E,

H(8)y(q) = Ey(q) . (5)

The q dependence of P can be made explicit by writing

S 2 ~ S k e 2 lan S + —Sx + ISy (3)

The angle 8 can be restricted to 0~8 ( 2~/N. Applying
the transformation

and
i

E(q) =E 2ms+ S;„—q
i

31 7494 C'1985 The American Physical Society



31 SYMMETRY AND BOUNDARY CONDITION OF PLANAR SPIN SYSTEMS 7495

This result shows clearly that odd and even half-integer
spins have different symmetry properties. The spectrum is
symmetric with respect to q =mrr+m/2 (q =mrr), m in-
teger, for odd (even) half-integer spin. Finite-size calcula-
tions up to S = 3 indicate that the ground state, for any S
and k) 0, has S*„,=0 and q =0. Equation (7) says that
the ground state is exactly degenerate with a state with

q = ~, for odd half-integer S only. Note that the spectra of
Eqs. (1), (2), and (4) are identical, but with a wave vector
shifted by Srr+ (rr/N)Si„Th. ese results favor the distinc-
tion between even and odd half-integer spins. One expects
that modifying the boundary can render pseudodegenerate
states truly degenerate for finite N. On the other hand, if
the ground state is a singlet, as conjectured for the integer S
case ()t- 1), a change of the boundary does not alter this
fact. Equation (7) holds, for any planar system, no matter
how complicated the Hamiltonian. The derivation is based
solely on its planar character.

It is illustrative to consider the exactly soluble S= ~ case.
For 8=0, it can be demonstrated7 that the (q=0) ground
state for finite N is nondegenerate in contradistinction to
the present result for 8=(n/N). The Hamiltonian H(8)
[Eq. (4)] can also be solved by the Bethe ansatz. The gen-
eralized equations corresponding to the original isotropic
solution (Bethe) are

(ki —8) (kq —8)
2 cot = cot

2 2
—cot

2

Nk, = 2n)ti+ X Qq, &, integer
j& I

and the energy and wave vector are given by

oui
0

FIG. 1. Spectrum 5a (q ) = E&(q ) —Eo for isotropic, antifer-

romagnetic S=
2 Heisenberg chain. The 8=0, Stot 0, %1 gaps

(& ) are compared with the 8.= (rr/N) gaps for S;« =0 (+) and

for Sf~, %1 (0), with. q values shifted by (ir/N). The common

ground state has q =0 ( ~). The 8= (e'/N) points lie much closer
to the exact spectrum (curve). There are N = g spins in the chain.

conclusion that the gap remains finite asymptotically as
N ~ can be strengthened by considering different values
of 8. The gap has been evaluated as a function of N and 0,
and it never vanishes for any 8 (up to N= 12) in contrast
with half-integer S. Figure 2 shows results for 8 = 0,

I'
2mE= y [1—cos(k, —8)], k= X k, =

I= 1 N

For 8=0, these e'quations reduce to Bethe's result and for
8 = (rr/N ) and r = (N/2), the transformation

k; (2m/N) —k;,

and A.
&

1 —A. I produces a solution with the same energy
and wave vector m —k, in accordance with (7).

Let us test the consequences of the modified boundary on
finite-size scaling. Varying the boundary can give clues as
to how the results should converge as N ~. While the
most interesting cases are 8=0 and 8= (n/N), 8 can of
course be varied continuously.

In Fig. 1 the low-lying spectrum of the isotropic, antifer-
romagnetic S= ~ model for N = 8 is compared with the ex-
act (N ~) result. The 8=0 points, degenerate for
S,„=0, +1 deviate much more from the exact result than
the 8 = (m/N) spectrum, which is symmetric with respect to
q= (m/2). In addition, the S,*„=+1 points provide esti-
mates for intermediate q values, otherwise inaccessible for
N = g [this is due to the shift of the wave vector by (rr/N)
when passing from (1), (2) to (4)].

According to the distinction between odd and even half-
integer S the isotropic, antiferromagnetic Heisenberg model
should have a finite gap between the ground state and the
lowest excitation for integer S.4 Recent numerical results up
to S=2 support this, whereby the most conclusive evi-
dence is obtained from comparing S= 1 with S= ~,~. The

X—X—X
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FIG. 2. Energy gap E~=Ei —E& of isotropic,

'

antiferromagnetic
S 1 Heisenberg chain of length N, up to N=12. The 6=0,
Sf«-0, kl (+), 8= (rr/N), Sfo, =0 (&), and 8= (rr/N),
S;0,- kl (0) gaps all converge towards the same finite value as
1/N decreases. The three series combined give a more reliable esti-
rnate of the asymptotic behavior.
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(m/W), and S;„=0, +1. Clearly, the results for varying 8
are consistent with a finite gap and they are more reliable
when considered together. Note that the modified boundary
breaks the full rotational symmetry in spin space (A. = +1).
Figure 2 indicates that it. is restored as N

Analogous modifications of the boundary can be used in
other cases. For example, the S= 1 models which have
been solved by the Bethe ansatz [including a (S S)2

term] can be approached in a similar way. For other cases,
such as fermions, similar procedures apply.
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