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Criticality of the D -2 quantum Heisenberg ferromagnet with quenched random anisotropy
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We consider the square-lattice spin-2 anisotropic Heisenberg ferromagnet with interactions whose sym-

metry can independently (quenched model) and randomly be of two competing types, namely, the lsotropic

Heisenberg type and 'the Ising type. Within a real-space renormalization-group framework, we perform a

quite precise numerical calculation of the critical frontier, and establish its main asymptotic behaviors. We
also characterize the relevant universality classes, through the analysis of the correlation-length critical ex-

ponent.

In recent years, several attempts have been made to study
critical properties of magnetic systems characterized by in-
teractions belonging to competing symmetries (detailed
theoretical and experimental information can be, respective-
ly, found in Refs. 1-3, and references therein). A particu-
larly interesting case is that where spins on a regular lattice
might be coupled through uniaxial, planar, or spherical in-
teractions, whose respective prototypes are the Ising, isotro-
pic XY, and isotropic Heisenberg models. Such situations
have already been experimentally encountered in antifer-
romagnetic systems like Fe~ „Co„Br3 (Ref. 4) (Ising-XY
competition) and Rb2Co„Mn~ „(Refs. 5 and 6) (Ising-
Heisenberg competition). From the theoretical standpoint,
Ising-Heisenberg mixtures have been studied, for quenched
random-site systems, within effective field frameworks,
and, for D = 2 quenched random-bond systems, with high-
temperature series techniques. For this second case, a
continuous variation of the susceptibility critical exponent y
with concentration was obtained. As pointed out by Pekal-
ski himself, ~ this result is clearly unsatisfactory; indeed,
symmetry arguments strongly suggest that the universality
class corresponding to the system under analysis should be,
almost everywhere in the critical frontier, that of the Ising
model.

In the present paper we study the phase diagram and
universality classes of the quenched random-bond spin-T
anisotropic Heisenberg ferromagnet in square lattice, each
bond of which being either an isotropic Heisenberg interac-
tion or an Ising-like one. The formalism we use is a real-
space renormalization-group (RG) one, which has recently
been developed ' for quantum spin systems, and whose
performance has proved to be quite reliable (both qualita-
tively and quantitatively for square lattice).

We consider the following dimensionless Hamiltonian:

m= X Kit[rr,*oJ'+ (1 hit)(rrl"rrt"+a frrf—)]
&v&

where (ij ) denotes first neighbors on a square lattice, the
a.'s are the Pauli operators, Kit—= Jit/ks T & 0 (J& is the cou-
pling constant) is the same for all bonds, and hite[0, 1] is
the random anisotropy parameter. For the limiting value
5,&=1(hit=0) we recover the Ising (isotropic Heisenberg)
model. The randomness of the problem is described by the
following probability law:

P(Kit, /3. tt) = [p5(hit —b, )+ (1—p)5(hit)]8(Kit —K), (2)

with 0 ~ p ~ 1, 0 ~ 6 ~ 1, and K =—J/ks T & 0. The partic-
ular case b =1 corresponds to the Ising-Heisenberg mixture
analyzed in Refs. 2 and 8.

To construct the RG we follow along the lines of Refs. 9
and 10, renormalizing the cluster of Fig. 1(a) into that of
Fig. 1(b) (the linear scale factor being consequently b =2);
both clusters are self-dual, therefore particularly convenient
for the square lattice.

We associate the binary distribution (2) with each one of
the five bonds of the cluster of Fig. 1(a). Consequently, 23

different configurations are possible (some of them being
topologically equivalent). Each configuration is character-
ized by the set ({K&'},{b,it' }) with /=1, 2, . . . , 5. With
each configuration we associate KH( {Kit },{ts,IJ' }) and
Att({K&' },{b,tt"}) by impostng9, io

12 Tr ~ 1234 (3)
3, 4

~here ~~234 and ~~'2 are the Hamiltonians corresponding to
the clusters of Figs. 1(a) and 1(b), respectively. These two
Hamiltonians are precisely of the same type indicated in Eq.
(1) (i.e., the present RG generates no new types of terms).
Although imposition (3) is a very natural one, its operation-
al implementation is rather complex as it involves the com-
putational treatment of 16 && 16 matrix (associated with

342) practical details on the procedure can be found in
Refs. 9 and 10.

The renormalized parameters A& and b & are now associat-
ed with a distribution law PH which is no longer binary. It

P'(K)j,hl) )

(b)

FIG. 1. (a), (b) Self-dual two-terminal clusters. The terminal
and internal nodes are, respectively, denoted by 0 and .
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has, in fact, 14 different 5's, and is given by

P (KtJ, hg) =J Q [dKll' ding' P(Ktl', Ag' )]
1=1

x h(Ks —KH)5(EIJ —AH) . (4)

Under successive renormalizations the distribution law be-
comes more and more complex. It is, in principle, possible
to keep track of its evolution up to an eventual stabilization,
but, following along the lines of previous similar theories
(e.g. , Ref. 11), we shall instead approximate it by the fol-
lowing binary one:

P'(K„,~,) = [p'S(~„-~')+ (i —p')g(~, ) ]8(K„-K'),
(5)

where p', K', and 6' have to be found as functions of p, E,
and A. To do this we impose that the main averages are
preserved through renormalization. More specifically, we
demand

kaT
J

2-

(a)

(K~)p'= (Ks) PH= gt(p, K, 6)—

(All) p'= (b.tl) Pyy= g2(p, K, 5)—
(6)

(7)

0 0.5

(~s)p'= (~t'J& Pe= g3(p. K. ~) —
~ (8)

where ( ) denotes the standard mean values. While
Eqs. (6) and (7) are quite natural choices, Eq. (8) has been
adopted in order to decouple p and A. The set of Eqs.
(6)—(8) immediately yield

E'= g) (9)
~'= g3/g2, (10)

(11)
which constitute the RG recursive relations which close the
formalism. Iteration [in the (p, 1/K, 6) space, for instance]
provides the paraferromagnetic critical surface [see Figs.
2(a) and 2(b) for selected cuts of this surface], as well as
the set of universality classes. For p=1 we recover the
results obtained in Ref. 9. When p and/or 6 increase, the
lower symmetry (Ising) becomes dominant; consequently,
the critical temperature is expected to increase, as exhibited
in Fig. 2. In the neighborhood of p=h=1, we obtain the
following asymptotic behaviors:

—&(&)(I—p), (p- 1), (12)
T, (p=l, ~)

and

—B(p) (1—a) + C(p) (1—&)'
T, (p, a =1)

(~- i), (i3)
where A (6), B(p), and C(p) are shown in Figs. 3 and 4.
Numerical difficulties prevented us from a reliable descrip-
tion of the T 0 asymptotic behaviors.

Two nontrivial fixed points belong to the critical surface,
namely, the isotropic Heisenberg one [at (p, ks T/ J, 5 )
= (1,0, 0) ], and the Ising one [at (p, ke T/I, 5)
= (1,2.269. . . , 1)]; both are located at the exact
values. '2' These points characterize the unique two
universality classes of this problem; indeed, the RG flow
shows that the universality class is that of the Ising (isotro-
pic Heisenberg) model for all points of the critical surface at
finite (vanishing) temperature These res.ults disagree with
those obtained (for the antiferromagnetic system) by high-
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FIG. 2. (a) Cuts of the critical frontier for selected values of 6;
(b) cuts of the critical frontier for selected values of p. P and F are,
respectively, the paramagnetic and ferromagnetic phases.
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FIG. 3. 6 dependence of the asymptotic coefficient A(d ) given
by Eq. {12) [A (1)=0.32 and A (0) =0.18].
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0.4-

temperature series, and confirm the symmetry-based in-
tuitive expectation.

The correlation-length critical exponents are given by

vi= lnb/In)». i, (i = T, 6) (14)

0.2-

0 I-

0.5 1 p

where )». & is the relevant eigenvalue ()».i ~ 1) of the Jacobian
matrix 6(p', K', 5')/8(p, K, E) calculated at the correspond-
ing fixed point. We obtain vr=1.15 (the exact value
equals one'4) for the Ising fixed point, and vT=~ (which
reproduces the exact value's) and va = 1.22 (we found no
other value in the literature for comparison) for the isotro-
pic Heisenberg fixed point.

If we consider the hierarchical lattice generated by the re-
cursive application of the graph of Fig. 1(a), the present
results can alternatively be seen as exact for such system, as
long as the system is classical (i.e. , /», = 1 and p = 1). This is
not necessarily true for quantum systems'6 (i.e. , Aw 1

and/or pal). However, previous works9'0 show that the
approximation involved is a good one for the critical
behavior of the system (also, for a detailed comparison with
the usual Migdal-Kadanoff approach, see Ref. 10). Sum-
marizing, we believe that the present approximation of the
critical surface is (possibly for both the square and the
hierarchical lattices) a numerically quite reliable one.

FIG. 4. p dependence of the coefficients B(p) and C(p) given
by Eq. (13) [B(1)=O, C(1)=0.29, and B(0)=0.17,
C(G) = 0.05).
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