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Determining the phase of the structure factor by Kossel cone analysis
with the use of synchrotron radiation
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We investigate the feasibility of using Bragg-case Kossel lines to measure phase angles of
structure-factor amplitudes. Several experimental geometries utilizing a focused beam of synchro-
tron radiation to produce a suitable source are proposed. As an example, line profiles and excess in-

tegrated intensities are calculated for the [111]and [333] Ga Kossel lines from a GaAs crystal cut
parallel to a I,'111) face. Sources of uncertainty and applicability of this technique are also discussed.
The analysis shows that by using this method it should be possible to measure phase angles to within
a few degrees, despite "smearing" of the line profiles due to angular resolution and the inherent
linewidth of the emitted x rays.

I. INTRODUCTION

A central difficulty in determining charge distributions
of crystals by x-ray analysis is the measurement of the
phases of the structure factors. This problem is particu-
larly acute in noncentrosymmetric crystals in which these
phase angles may take on any value from 0 to 2m. Three
major methods have been proposed to deal with this prob-
lem. The most widely used is the controlled variation of
the structure factor by one of three techniques: isomorph-
ic heavy-atom replacement, ' anomalous scattering, and
resonant Mossbauer scattering. This method does not de-
pend upon the use of large single crystals, since in all
three techmques the unit-cell scattering amplitude is

changed from AI, ——Aq ro ~——FI—, ~

e, where ro ——e /0 iPh 2

mc and Fl, ——
~
Fl,

~

e " is the structure factor,
toA~ ——AI, +A~, where AI, is the added amplitude due to
the extra scattering (heavy-atom, anomalous dispersion
scattering, f'+if", or resonant nuclear scattering, for the
three cases). Since the integrated reflected intensity is
directly proportional to

~
As

~

for small crystals
(kinematical approximation), Pl, can be deduced from
knowledge of A~ and measurement of

~
Al,

~

and

Two other methods of phase determination have been
proposed which depend upon the use of thick (relative to
the extinction length) crystals. In the first method (Colle-
la, Post, and others ' ), one positions the crystal at a
three-beam point, where two Bragg reflections, K~ and

K2, simultaneously occur with appreciable amplitude.
Then if ko is the incident wave vector, reflected waves
with k& ——kp+K~ and k2= kp+K2 are simultaneously
excited. For thick crystals, the reflected wave in channel

k~ arises not only from the direct scattering from kp, am-

plitude -A, but also by indirect scattering via k2, am-

plitude -A - A - . In this case, as Post has dernon-
K2 K)—K2

strated, the intensity of the reflected wave in channel k~

(or kz) for ko in the vicinity of the three-beam point ex-

hibits an intensity variation with kp which depends on the

phase (P - —P - —P - ). Measurements on a series
K) K2 K) —K2

of three-beam points determined by the pairs of
reciprocal-lattice vectors K;,KJ can then be used to deter-
mine the phases.

Cowley has pointed out the possibility of using Kossel
lines' ' to obtain structure information. In a previous
paper' two of us showed that, if the emitting atoms are
near the crystal surface, the Kossel-line intensity profiles
depend in a simple way upon the pha, se of the structure
factor. A source of spherical waves at a position R; in a
crystal emits a wave with a wave vector k~ which is
Bragg-reflected by the crystal into k= k~+K~ with am-

plitude -e ' 'A~(k), where Ah(k)=e "&(68/
Wj, ). Here, Pl, is the phase of the structure factor, b,8 is
the deviation from the dynamical Bragg angle, and W~ is
the half-width of the total reflection region. W(b, 8/Wl, )

is the usual Darwin reflection amplitude. This wave in-

terferes with that emitted directly in the direction k,
—i k ~ R,.which has an amplitude -e ', as shown schemati-

cally in Fig. 1. Thus the total amplitude of the wave trav-
cling in the k direction is

-e '+e "e ' '&(b8/Wh) .

The cross term in the resulting intensity depends upon the
phase of the structure factor, allowing P~ to be deter-
mined. Stephan et al., ' independently of us, also pointed
out that Kossel-cone analysis could serve to determine the
phases.

The simplest arrangement to use for determining the
phases by this method is to have the sources confined near
the crystal surface and to measure the Bragg-case K.ossel
lines resulting from reflected waves emerging through
that surface. If the crystal is thick (relative to the Darwin
extinction depth), and the sources are distributed near the
surface, well within the extinction depth, the effect of
scattering by the crystal layers between the sources and
the surface will be quite small, and the data analysis to

31 743 1985 The American Physical Society



J. T. HUTTON, Cx. T. TRAMMELL, AND J. P. HANNON 31

REFLF
VIA

FIG. 1. Schematic of Brag g-case Kossel emission. The
directly emitted waves are indicated by the double lines k and

ki. The scattered waves are indicated by the single hnes. 0& is
the Bragg angle, and (t, is the angle between the scattering
planes and the crystal surface, while t)) and P~ are the angles be-

~ ~

tween the crystal surface and the k and k& directions, respec-
tively.

determine the phases is greatly facilitated.
The advent of intense, tunable synchrotron x-ray

sources should allow one to produce such a distribution of
atomic sources near the surface in sufficient numbers to
make this scheme practicable, as we discuss below. The
use of this technique in phase-angle determination for
centrosymmetric crystals is almost trivial, but it is also
applicable to noncentrosymmetric crystals.

Th paper of ours in which we originally noted thee pape
13phase dependence at Kossel-line profiles simply dis-

cussed the theoretical basis for this effect, but contained
no analysis of its feasibility as an experimental technique.
Experiments involving the measurement of Kossel lines
have traditionally been regarded as very difficult to per-
form, due to the extremely narrow angular width of the
line profiles. In this paper we show that such an experi-
ment, while perhaps difficult, is quite feasible, despite
"smearing" of the line profiles due to angular resolution
and the inherent linewidth of the emitted x rays. In view
of the present interest in solutions to the phase problem
and the emerging importance of synchrotron radiation, we
feel that such an experiment would be well worthwhile,
and it is our hope that the present paper will stimulate in-
terest in such an experimental program.

For the moment we will neglect the effects of polariza-
tion.

We take the surface at z =0 with the crystal filling the
15region z &0. If k

I
r —R; I

&&1, then, for z &0,

~k i k.( r —R;)
saf (r) — f e ' dQk,

2&
(2)

where dQk denotes integration over the lower hemi-

the reflection, resulting in an interference cone whose
apex angle is m. —28&, where 8~ is the glancing angle of
the reflection relative to the scattering planes (see Fig. 1).

The pure Bragg, or reflection, case occurs when the
geometry is such that the entire cone for a particular re-
flection lies on one side of the crystal surface, as in Fig.
2(a). If a part of the cone dips below the crystal surface,
as in Fig. 2(b), that part and a corresponding part on the
opposite side of the cone correspond to the Laue, or
transmission, case. The remainder of the cone is the
Bragg case. The Bragg case is somewhat easier to analyze
than the Laue case and we will restrict our attention to it
in this paper.

Let us consider the simplest situation, consisting of an

atom located at R; on the surface of a crystal which emits
a spherical outgoing wave of amplitude

ik~ r —R;(
M(r) =

II. KOSSEL-LINE PROFILES IN THE BRAGCx CASE

Kossel lines occur when atoms within a crystal emit x
rays. Associated with this emission is both a direct outgo-
ing spherical wave and scatterings of this wave corre-
sponding to the various available Bragg reflections within
the crystal. Near a Bragg angle the interference between
the direct and scattered waves gives rise to a "light-dark"
structure which depends on the phase angle of that
reflection's structure factor.

The Laue-Bragg condition is satisfied for any value of
the azimuthal angle about the reciprocal-lattice vector of

FICi. 2. Kossel-cone geometries. The pure Bragg case, panel
(a), occurs when Os &P, . The entire cone then corresponds to
reflection and lies above the crystal surface. The composite
case, panel (b), os &P„contains both a Bragg (reflection) part
and a Laue (transmission) part. The Laue part is shaded.
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sphere (k, &0). Equation (2) expresses the spherical wave
[Eq. (1)] for z &0 as a sum of plane waves incident upon
the crystal from above. These plane waves may then be
treated using the Darwin multiple-scattering theory. '

Most of the rays k penetrate into the crystal and are ei-

ther absorbed or scattered incoherently. The rays, kl,
however, which satisfy the Bragg condition for some set
of Bragg planes within the crystal (reciprocal-lattice vec-
tor Kh ), will be partially reflected and re-emerge from the
top face of the crystal. These reflected waves will form a
cone about K~ which makes the Bragg angle with the set
of reflecting planes, as shown in Fig. l.

Only about half of the radiation is initially emitted into
the lower hemisphere and only a small portion of that will
be reflec'ted (that emitted into the narrow Darwin width
of the various Bragg reflections). The other half of the
radiation will be emitted into the upper hemisphere, with

amplitude (k
I
r —R;

I
»1)

2%
(3)

where now the integration is over the upper hemisphere,
k, ~ 0. By itself, M+ would give a uniform intensity dis-
tribution over the upper hemisphere. In certain direc-
tions, however, there will be an additional contribution
due to the waves which have been Bragg-reflected into the
z &0 region. In these directions, interference will occur
and the resulting intensity will depend upon the relative
phases of the directly emitted and the reflected waves.

Now let k (k, & 0) lie very near a Bragg angle to a set
of crystal planes. There is a unique kl (kl, &0) which is
reflected into k by this set of planes. The Darwin expres-
sion for the amplitude of the reflected wave is then' '

2K

i( k ~ r —k ) R,. ) if~ Qgh +
2K

1/2 ' —1 1/2
' sing
sin/ 1

(4')

where P» is the phase of the unit-cell structure factor

umt

cell

p( r ') being the electron density. p and $1 are the angles that k and k, make with the surface of the crystal, respectively,
b, O is the deviation from the dynamical Bragg angle Oz, taken in the same sense as Oz. The sign of the radical
[(b8/W») —1]'~ in Eq. (4) is the same as that of b8 when

I
b8/W»

I
&1, and is positive imaginary when

I
68/Wh

I
& 1. Wh is the half-width of the Darwin total reflection region, given by

1/2
ne~g~

I
I"h

I
sin&1

8'g ——C (6)
~me 2 sin(28& ) sing

Here, n is the number density. of unit cells, A, is the wavelength of the emitted radiation, and C is a polarization factor
equal to 1 for a polarization (E perpendicular to the scattering plane) and cos(28ii) for ~ polarization (E parallel to the
scattering plane).

Adding the directly emitted wave M+(r), Eq. (3), to the reflected wave Mz(r ), Eq. (4), we have, for the total wave

amplitude (for z &0, k
I
r —R; »1, and k near the Bragg angle for the reflection K»),

+
Ek I &

k~~ —i k ~ R; i k i R; iP»—~ 58
2 IT h

ik 1 k.( r —R,. ) i K» R; iP» k8
e ' 1+e 'e

2' h

ik~ r —R.

Ir —R;I

i K» ~ R, ig» 581+e 'e
h

In the second line of Eq. (7), we used the Bragg condition
k1-k —KI„and in the third line we supposed that

I
r —R; I

was sufficiently large (Fraunhofer diffraction
region) that we could replace M(58/W»)=W(k) by

W[k( r —R;)/
I
r —R;

I
]. in the integral over solid angles,

and we then evaluated the integral by the method of sta-
tionary phase. Thus, the variation in intensity across the
Kossel cone, relative to the background intensity well
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away from the cone, is given by
2

R(b8) = 1+e " 'e
h

(8)

Now, exp(iK» R;) is unchanged by the substitution

R;~R;+ I, where l is any Bravais-lattice vector. Thus,
R(68) depends only upon the location of R; within the
unit cell, i.e., all sources whose locations differ only by a
Bravais-lattice vector will give the same intensity. If there
is only one source per unit cell, we may take R; as the ori-
gin in Eq. (5). Since the phase of W(b, 8/W~) increases
by m as b,8 sweeps through the Kossel cone, P» is unique-
ly determined by R(b,8), Eq. (8), and P» can thus be
found by accurately measuring the intensity profile of the
Kossel cone.

As is necessarily the case, if one wants to determine the
phase of a scattered wave, one must "beat it" with a
coherent reference wave. In our case the coherent refer-
ence wave is that emitted directly into the k direction.

The internal source problem has usually been solved by
means of the reciprocity theorem of Lorentz and Laue. "
Equation (8) for R(b,8) may also be obtained using that
method. The "direct approach" used here has proved

~I'»
~

(sin&sin&i) 1—2cn Ae . . 1/2

PlC

2 1/2

8'g

If polarization effects are taken into account, Eq. (8) is
further modified in a way which depends upon the mul-
tipole of the emitted radiation. For the El (electric di-
pole) radiation of interest here, the final expression for
R (b,8) is as follows:

valuable, however, since it makes it obvious from holo-
graphic considerations that P» may be determined by ob-
servations of Kossel-cone intensities.

If the atom is not on the surface, but below it by some
distance d, we must multiply Eq. (8) by an exponential
damping factor, e ~", where g gives the correction for
scattering due to the crystal layers between the emitting
atom and the crystal surface (primary extinction), as well
as for absorption. ' Because of the exponential damping
it will be desirable to confine the emitting atoms to a layer
well within one extinction depth of the surface. In this
case we may neglect absorption effects, and g is then
given by

R(b8)= . 1+C e
Rg

1/2
sing
sin/i

+c.c. +

e . +
1/2 —1

sing 68+C.C. + . +
sin i W»

' 2 1/2 —2

—1 e
—gd

(10)

For a detailed, technical derivation of Eq. (10), as well as similar expressions for radiation of other multipoles, we refer
the interested reader to Ref. 13.

For symmetric Bragg cones (P, =0 in Fig. 1), / =Pi and 68=5/, where b,P is the change in the glancing angle rela-
tive to the crystal surface. In this case there is no variation in the line profile with azimuthal angle. For the nonsym-
metric Bragg cones (P,&0), however, b,8&6,g, in general, and there will be a variation in the line profile around the
cone, as expressed in Eq. (10).

Both polarizations, 0 and m, occur with equal probability and, due to the factor of C in 8'» [Eq. (6)], they have dif-
ferent linewidths. The line profile is a result of the superposition of these two polarizations. However, since W» is quite
small ( —10 rad) and the energy width of the emitted x ray, b,k/k, is of the order of 10, this structure will not be
resolved.

If we integrate across the line profile, we obtain the excess integrated intensity S2~, where 2h is the range of integra-
tion. S2~ is given by

g f [I (58) I ii]d(b,8)—
S2g ——

g j I ~d(b8)

=(4A) 'g I [R (58)—1]d(68),

sing», b, && W»

where a refers to the two polarizations, o- and n. '

If the effects of extinction and the finite angular resolution of the apparatus are neglected, then
1/2

sing 4 sing
Sq~ —— . —,[1+cos(28~)]+icos(28&)

2A Siil sin/i
(12)
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FIG. 3. Kossel-line rocking curves for the o.-polarization
Bragg case for different values of the phase angle P» of the
structure factor. 8'I, is the half-width of the total reflection re-

gion, while 50 is the angle of emission relative to the dynamical
Bragg angle. The values of the excess integrated intensity S2~
(shown as S in this figure) are for the Cxa[333] line of GaAs, cr

polarization only, and correspond to 6=108'q . Note that the
pairs (O, m), (~/4, 3m/4), and (Sm/4, 7~/4) each give the same
excess integrated intensity but have line profiles of opposite po-
larity.

second within the crystal. Sparks' has shown that with
currently available synchrotron sources and focusing ar-
rangements it is possible to obtain a 10-keV beam of 1.1
eV width with a flux density of 7.4X 10
photons s ' pm using asymmetrically cut Ge(111) crys-
tals, doubly curved to a demagnification factor of 10.
Even higher demagnification factors might be possible, '

and, in addition, the use of wigglers should allow even
higher flux densities. '

There are several geometries which might be used to
generate a source of emitting atoms confined to the sur-
face of the crystal. In an idealized arrangement, if the
desired source depth is d, a nib might be etched into a
suitable area of the crystal surface of height somewhat
greater than d, as shown in Fig. 4(a). This nib might then
be inserted into the focused spot of the synchrotron beam
to the desired depth. While the physical extent of the
beam spot would not have a sharp cutoff and the sources

:v XZXXZ/A

In practice, if the range of emitter depths and the source
size are sufficiently limited, these two effects will be very
small, and Sz~ will still exhibit the sinusoidal dependence
on P», essentially as given by Eq. (12). Note, also, that in
inverting the above equation, the phase angle P» is a two-
valued function of S2a. The two phase angles producing
the same integrated intensity will, however, have line pro-
files of opposite polarity (light-dark as opposed to dark-
light), as follows from Eq. (10) and is exhibited in Fig. 3,
and a qualitative examination of this polarity will remove
this degeneracy. I'or a centrosymmetric crystal, the values

of P» are restricted to 0 or ir. In this case an examination
of this polarity alone suffices to determine P».

CRYSTAL

vV ZZlXE /i

CRYSTAL

(b)

III. PROPOSED EXPERIMENT

. For ease of analysis it will be important to have the
emitting atoms confined to a small region near the surface
of the crystal, whose depth is not more than some fraction
of the shortest extinction depth, [g(68=0)] ', of any
cone being observed. In addition, it will be necessary to
limit the lateral extent of the source region, in order to en-
sure sufficient angular resolution to observe the polarity
of the line profiles. Below a certain limit, however, little
is gained by further decreasing the source size since the
energy width of the emitted x ray (b,k/k —10 ) becomes
the dominant resolution-determining effect.

A focused beam of synchrotron radiation provides a
good method for generating such a source. A mono-
chromatic slice of the beam may be selected so as to lie
directly on the K edge of a particular species of atom in
the crystal, assuring that a large proportion of the excited
atoms will be of that species. Such a focused beam is very
intense and will generate a large number of excitations per

CRYSTAL

FIG. 4. Schematic diagram of three possible source
geometries, not to scale. The shaded area represents the result-

ing source region in each case. In (a) the focused synchrotron
beam strikes a projecting nib from the side. Those photons
which do not excite atoms within the nib pass through and out
the other- side, not deeper into the crystal. In (b) the beam
strikes the crystal surface at an angle P; above the critical reflec-
tion angle of the crystal itself, but below that of a reflective
coating which surrounds the nib. Thus those photons not strik-
ing the nib would be reflected away. In (c) the beam is focused
and collimated to a size sufficiently small to be used directly,
the area of the crystal surface illuminated being the size of the
desired source region. The depth of the distribution of emitting
atoms is determined by the glancing angle of the beam with the
crystal surface.
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would not be uniformly distributed with depth, a large
majority of them would occur very near the surface. As
long as this is true, the exact distribution of the emitting
atoms with depth will not be critical, since the effects of
extinction will be small in any case.

A second possible geometry relies upon grazing in-
cidence to limit the source size and depth. The surface
amund the above-mentioned nib could be coated with
some higher-Z material, as in Fig. 4(b). If the focused
synchrotron beam were then incident at an angle above
the critical angle of the crystal, but below that of the sur-
rounding coating, the radiation striking the coating would
be reflected away. That striking the nib, on the other
hand, would penetrate to a depth of P; times the off-
Bragg absorption length. As long as P; is kept sufficient-
ly small, the depth over which the emitting atoms will be
distributed will be adequately controlled. The reflective
coating would not interfere with the observation of the
Kossel lines since it will be essentially transparent to radi-
ation striking it at angles greater than its critical reflec-
tion angle ( —10 rad).

The simplest possible geometry, that shown in Fig. 4(c),
would require collimating and focusing the synchrotron
beam down to a very small height, so that when striking
the crystal at a small angle, the length of the area il-
luminated on the surface is equal to that of the desired
source region. The width of the focused synchrotron
beam should equal the width of the desired source region.
As an example, if the beam could be reduced to 1 pm in
height and if it struck the crystal at an angle of 10 rad,
the illuminated area of the surface would then be only 100
pm long. If the off-Bragg absorption length were about
10 pm (as in the case of GaAs, considered below), the
source region so generated would be about 1000 A deep.

With any of these source geometries, the actual distri-
bution of emitting atoms with depth will depend upon the
spatial distribution of the focus spot of the synchrotron
beam. The line profiles shown in this paper were calculat-
ed assuming an idealized source region 30 pm in diameter
and 0.1 pm deep.

Since many Bragg reflections will be available within
the crystal, many Kossel lines will be produced simultane-
ously. A principal advantage of this method of phase

l

CRYSTAL

FIG. 5. Schematic diagram of the proposed experimental ap-
paratus, not to scale. R,h is the radius of the evacuated hemis-
pherical chamber.

determination lies in the fact that, utilizing film tech-
niques, it should be possible to detect large regions of the
circumference of each of the Kossel lines in a single run.
Thus many phase angles can be measured simultaneously.

For the present analysis, we assumed a hemispherical
chamber at 0.5 m radius, as shown in Fig. 5, with the
crystal fixed at the center. Strips of film would then be
placed along the inner surface of the hemisphere at the
positions where the Kossel lines would be expected to ap-
pear. It will be necessary to evacuate the chamber, since
appreciable absorption of 10-keV x rays would occur in
air.

IV. EXAMPLE—GaAs

As a practical example, consider exciting the Ga atoms
in a GaAs crystal cut along a (111)face. This crystal was
chosen as an illustration for three reasons. First, it is a
simple example of a noncentrosymmetric crystal (zinc-
blende structure). Second, the Ka emission of Ga,
A, =1.34 A, is sufficiently short in wavelength to provide
good resolution of the structure of the unit cell. Third,
the other constituent of the unit cell, namely the As atom,
is sufficiently high Z to provide a wide variation in the
phase angles of the structure factors for the various reflec-
tions.

The shortest extinction depth for this crystal in this
geometry is that of the [111] reflection, 3300 A at the
center of the total reflection region for the o.-polarization
line. The linear absorption depth at this energy is 37 pm,
2 orders of magnitude larger. If the depth of the emit-
ting region is limited to 1000 A, the effect of extinction
on the [111]-line profile will be very small and nearly
negligible for the other lines produced. Absorption will be
negligible in all cases. As previously mentioned, the cal-
culations in this paper were carried out assuming a 30-
pm-diam source region containing excited atoms uni-
formly distributed to a depth of 1000 A.

At the Ga E edge (10.38 keV) the photoelectric cross
section for Ga is 2.5X10 A, while that of As is
5.0X 10 A . The Compton cross section is negligible
in each case. Thus 83% of the excitations occurring
within the crystal will be Ga, the 17% As decays contri-
buting to a uniform background in the neighborhood of
the Ga-produced Kossel lines. Of the Ga excitations, ap-
proximately 58% will decay through La

&
emission

(A, = 1.340 A), 29% through ICa2 emission (A, = 1.344 A),
and 12% through KP~ emission (A, =1.209 A). With an
incident flux density of 7.4X10 photonss 'pm and a
cross-sectional area of 30)&0.1 pm of the source region
presented to the beam, 2&10 photons will strike the
source every second. As an example, for the geometry
shown in Fig. 4(a), this would result in a total flux at
1.5&&10 decayss ', of which 1.2X10 would be from
Ga. With a 0.5-m source-to-film distance, this implies a
background flux density of 1.4& 10 photons s ' pm
on the film. A typical fine-grain x-ray film (Morimoto
and Uyeda, film No. 7) requires 0.33 photonspm at
this energy to achieve an optical density of 0.25. This im-
plies a run time of the order of 220 s.

The resolution of such a system should be sufficient to
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distinguish easily between the Ea~ and Ea2 peaks in all
lines observed. Calculated line profiles for the worst case,
that of the [111]line, are shown in Fig. 6, the two peaks
being separated by 0.3 mm on the film. In all other lines,
the separation will be larger due to the larger values of Oz,
so that for the [333] line, for example, the two peaks will
be separated by 1.2 mm. The Ea~ and Ea2 peaks will be
virtually identical except for their intensity, since the
difference in their wavelengths is only 0.3%.

In Fig. 7 we show the calculated line profiles for either
emission channel, Ea~ or Ea2, normalized to that,
channel's background intensity, for the [111] and [333]
Kossel cones. Also shown are the final profiles, obtained
from the calculated true profiles by successive convolution
of a Gaussian angular resolution function of width

Ak
o = (D sin8+. d cos8)/R, h+ tan8,

k

in rad, and a square distribution corresponding to a mi-
crodensitometer slit 0.03 mm wide. The first term in o.

gives the angle subtended by the source (diameter D and
depth d) at the film surface, R,h being the radius of the
hemispherical chamber, while the second term gives the
broadening due to the energy width of the emitted x ray.
Since for this case, hk/k =1.23X 10, the second term
is by far the largest and is the main reason why little reso-
lution is gained by increasing the crystal-to-film distance.
It can be seen in Fig. 7(b) that the fine structure in the line
profiles due to the two polarizations present is lost after
convolution and will not be observed. The polarity of the
line profiles will still be distinguishable, however.

The principal measurement which should be used to ob-
tain the phase angle of the structure factor will be the ex-
cess integrated intensity Sz~ [Eq. (11)]. If integration
limits (26) are chosen to be 10 times the full width of the
total reflection region of the o-polarization line in each
case, the excess integrated intensity in the [111]cone will
be 0.0128, while that in the [333] cone will be 0.1365.

-2-10 I 2
I I I I I

68 w„, -4-20 2 4

-- (a)
[333j

0
z-(b)

cf S-

I
I I & I I

-- (b)
S = O. I 56

0 I I

-IxIQ Q

I I I

Ix IO -IxIQ 0
68 (rad)

I
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FIG. 7. Calculated Kossel-line rocking curves for the
Ga[111] and Ga[333] lines of GaAs. Plot (a) is before convolu-
tion and plot (b) is after. Dotted lines show the line profiles
neglecting extinction. The structure visible in the unconvoluted
[333] line is due to the two polarizations present.

These values were calculated from the line profiles after
convolution and represent phase angles of either —46.5'
or —135' in the [111]case, and either +46.2' or + 134' in
the [333] case. An examination of the polarity of the line
profile will in each case rule out the latter value. In this
way the phase angle may be fully determined by the mea-
surement of Kossel-line profiles.

If the crystal had been centrosymmetric with the emit-
ting atom lying at the center of symmetry, the only possi-
ble phase angles would be 0 or m. Both these phase angles
would give rise to the same value of S2~. A qualitative
examination of the line profiles, however, is all that would
be required to determine the phase angle, since, again, the
two possibilities will give rise to line profiles of opposite
polarity.
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o
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FIG. 6. Calculated Kossel-line rocking curves for the
Ga[111] line of GaAs, showing the Ka& and Xa2 peaks. The
two peaks are separated by 0.3 mm on the film. The convoluted
plot, panel (b), is that which would be traced by the microdensi-
tometer directly from the film, neglecting statistical variation
due to film granularity.

V. UNCERTAINTY AND SOURCES OF ERROR

The quality of this measurement should be principally
affected by three sources: resolution effects, statistical er-
rors, and systematic errors. The resolution of the system
will be determined chiefly by the width, b,k/k, of the
emitted x ray, and secondarily by the size of the emitting
region and the width of the microdensitometer slit. The
effect of this limited angular resolution will be to smear
out the details of the line profiles, but it should not seri-
ously effect the integrated intensity, as long as the integra-
tion limits are sufficiently large.

The statistical errors will be principally determined by
the size of the microdensitometer slit and by the granular-
ity of the film. The width of the microdensitometer slit
used to convolute the line profiles was chosen for this
analysis at 0.03 mm as being as small as practical. Beu
reports that a slit of (4.0)&0.05) mm area is about the
practical limit for use with fine-grain x-ray film. Qwing
to the large crystal-to-film distance proposed for this ex-
periment, however, the Kossel lines on the film will show
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very little curvature and the slit width may be increased to
1 cm or even larger without seriously affecting the results.
Alternately, the slit may be curved to match the curvature
of the Kossel line being measured, allowing an even
greater increase in length.

A typical fine-grain x-ray film has a Selwyn granularity
of approximately 2.2 pm. With a scanning area of
(10.0X0.03) mm, one standard deviation of any mea-
surement of optical density on such a film will be 0.0028,
or 1.1% of an optical density of 0.25. There will be, how-
ever, an enormous amount of' data which may be
analyzed. With a 0.5-m crystal-to-film distance, the cir-
cumference of the [111] line will be 3.85 m. If the line
profile were to be measured at some 280 points along this
line, the fluctuation due to granularity could be reduced
by a factor of v'280, i.e., to 0.07% of background, essen-
tially negligible.

Symmetric Bragg lines were chosen for this analysis for
the sake of simplicity, since for these lines the line profile
is independent of azimuthal angle. For nonsymmetric
Bragg lines, in which the scattering planes are not parallel
to the surface, the line profile does depend on this angle.
The above comments remain valid, nevertheless, as long
as this variation is taken into account and corrected for.

The other major contributions to the statistical uncer-
tainty, variations in film sensitivity and random misalign-
ments of the integration limits with the center of the total
reflection region, should make negligible contributions for
the same reason. Averaging over the large amounts of
data available for each line will essentially eliminate this
contribution to the uncertainty.

The major contribution to the uncertainty in the mea-
surement of the phase angle will be a systematic one. As
can be seen in Fig. 7, the line profile remains above back-
ground on one side of the peak, but dips below on the oth-
er. In fact, for large values of b,8/Wi„ the interference
term goes like (b,8/W~ ) ', and the integral of either half

O. I 5

0.05

0.00

I

3r
2

(rod)
FICx. 8. Variation of the excess integrated intensity S2~ of the

Ga[333] line of GaAs as a function of Ps, the phase of the
structure factor, panel (a). Also shown is the variation of S2~
with misalignment of the integration limits relative to the center
of the total reflection region, panel {b). The dotted lines indicate
misalignments of + 8'I, , the half-width of the O.-polarization to-
tal reflection zone. Values of S2~ were calculated assuming
b =108), .

of the line profile diverges logarithmically. When the
limits of integration are exactly centered over the total re-
flection region, however, the two sides of the interference
term should cancel out, and this term will not contribute
to the excess integrated intensity for

~

b,8/W~
~

&1. If
the limits of integration are not centered correctly this
will no longer be true, and a systematic misalignment of
this kind will result in an erroneous value of the integrat-
ed intensity and thus an incorrect phase angle.

As an order-of-magnitude estimate of the extent of this
effect, consider the following. In Fig. 8 we show both the
calculated variation of S2~ with phase angle and the cal-
culated variation of S2~ with misalignment of the integra-
tion limits for the true phase angle of 46.2' for the [333]
Kossel line. A misalignment of one times the half-width
of the total reflection region to the right would result in a
phase angle of 50.3; one to the left, 42.2'. It should be
possible to determine the center of the total reflection re-
gion to at least this accuracy, and thus the phase angle of
this Kossel line within an uncertainty of +4'. The accura-
cy will be somewhat less for phase angles in the neighbor-
hood of ~/2 or 3n./2, where sing~ is fairly flat. If the
center of the total reflection region can be identified to a
greater accuracy, the uncertainty in the measured phase
angle will be correspondingly less.

VI. CONCLUSION

The technique described in this paper should be most
applicable to the measurement of phase angles in crystals
which have at least one high-Z constituent within the unit
cell. The atom chosen as the emitter should have Z & 30
in order to ensure a resolution of the order of 1 A, and it
should not occur more than a few times in each unit cell,
preferably only once. If it occurs more than once the
structure factor must be averaged over the various emit-
ting sites, and some information will be lost. ' For crys-
tals in which there are no high-z atoms, it may be desir-
able to combine this technique with that of isomorphic
heavy-atom replacement. The heavy atoms in the result-
ing crystal may then be used as the emitters to produce
the Kossel-line patterns.

The use of this technique will also be contingent upon
finding a sufficiently large region of single crystal so that
nearly all the scattering will take place within a single mo-
saic block. This requirement, and their sensitivity to radi-
ation damage, may limit the usefulness of Kossel-line
analysis in the case of biological crystals, although this
will depend upon the particular crystal under considera-
tion. Once a suitable region of an appropriate crystal has
been found, application of this technique should allow a
large amount of information to be collected within a short
period of time. If a number of such specimens were
prepared, each cut along a different plane, the structure of
the crystal might be characterized by only a small number
of measurements, since each specimen will provide phase
angles for several reflections.

The geometry proposed here is only one of many possi-
ble geometries which could be used, and it was chosen to
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demonstrate the feasibility of such an experiment. We
feel that when the criteria for applicability of this tech-
nique are met, the use of Kossel lines to measure the
phase angles of structure factors should provide a useful
alternative to other methods currently available.
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