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Spin waves at surfaces and interfaces in cubic Heisenberg systems
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The effects of the underlying crystal structure and the surface or interface normal on spin waves
at surfaces and interfaces are examined for cubic crystals described by the Heisenberg Hamiltonian.
For surfaces, cleavage and the Goldstone rule by themselves generally favor the formation of sur-
face states. Interface states occur in nearly every case studied in simple model bicrystals. With the
same perturbations, there are pronounced differences in the results obtained for different faces of

I

the same crystal, or in those for the same face of different crystals.

I. INTRODUCTION

For systems described by tight-binding-like Hamiltoni-
ans of finite range, the elementary excitations at ordered
surfaces and interfaces can be found by Green's-function
treatments that amount to mappings onto linear chains.
This was perhaps first shown in a classic paper by Kalk-
stein and Soven, ' and a variety of related approaches have
since been presented by a number of workers, including
one of the present authors and collaborators (see Refs.
2—4, and references therein). Linear-chain mappings of
surface and interfacial problems are a logical consequence
of the two-dimensional periodicity retained in three-
dimensional crystals when a cleavage or internal boundary
plane is introduced, and may be applied to the following:
electrons described by an orthogonal tight-binding Hamil-
tonian, phonons represented by a Born —von Karman
model, or rnagnons in the Heisenberg model. %'e will re-
strict our attention in this paper to the last of these. Al-
ternative methods that may be used for such systems, but
that we will not discuss further, include real-space recur-
sion and slab calculations.

The simple cubic lattice, with a single band and first-
nearest-neighbor interactions only (sometimes referred to
as cubium), has been studied in a number of papers for a
variety of purposes. Because it is the simplest possible ex-
ample, it is usually the sc (001) surface or interface that is
considered. Kalkstein and Soven' illustrated their formal-
ism with calculations for cubium. Dobrynski and Mills
investigated vibrations of an adsorbed monolayer and
reconstruction' on the sc (001) surface. Einstein and
Schrieffer" have looked at adsorbates and their interac-
tions on cubium. Laks and Gonyalves da Silva' obtained
the same results for the sc (001) surface as Kalkstein and
Soven by using somewhat different methods. For mag-
nons, DeWarnes and Wolfram' showed that surface
states below or above the bulk spectrum can occur with
appropriate perturbations at the surface, Mills and Mara-
dudin' ' have discussed criteria for the existence of sur-
face states in Heisenberg ferromagnets, and the effects of
surfaces on thermodynamic properties thereof, using sc

TABLE I. Blocking of single-band Hamiltonians at cubic
surfaces and interfaces, with first- and second-nearest-neighbor
interactions T& and T2, respectively. Where no entry is made in
the column for T2 ——0, i.e., for no second-nearest-neighbor in-
teractions, the blocking is the same as for nonzero T2.

Crystal

sc

Surface

(001)
(110)
(111)

T,g0
real, 1)&1
real, 2)&2
complex, 2X2

T2 ——0

real, 1&&1

complex, 1&(1

fcc (001)
(110)
(111)

real, 2)&2
real, 2)&2
complex, 1X1

real, 1)&1

bcc (001)
(110)
(111)

real, 2&&2

real, 1&1
complex, 3X3

real, 1&&1

Zinc blende (001)
(110)
(111)

real, 2X2
complex, 4X4
complex, 2)&2

complex, 2&2

(001) for illustrative results. Zhang' has studied the for-
mation of magnetic layers on nonmagnetic sc (001) sub-
strates. Gumbs and Griffin' and Weling' have done
Hubbard model calculations for surface magnetism at the
cubium (001) surface. Yaniv has published work on both
electronic states' and spin waves at sc (001) interfaces.

Similar calculations have been done for other crystals.
Results have been presented for two-band models at (001)
surfaces of CsC1- and NaC1-structure materials. ' Foo
et al. have applied what they call the effective-surface-
potential method to the two-dimensional honeycomb lat-
tice, Si(111), and the Bethe lattice. DeWames and Wol-
fram examined spin waves at sc (110) as well as sc (001)
surfaces. ' The effects of surface steps have been investi-
gated for electrons at fcc (111) and magnons at fcc (001)
surfaces by Falicov and co-workers. ~4 2s

In the list of applications given in the preceding two
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paragraphs, there appear few studies of the effects of crys-
tal geometry and surface normal on surface and interface
states in these simple systems. It is well known that the
bulk densities of states for single bands in sc, fcc, and bcc
crystals are quite different, and this might be expected to
have some effect on the behavior at surfaces and inter-
faces. In this paper we present some results for spin
waves at those surfaces and interfaces in cubic Heisenberg
systems that can be described by the very simplest linear-
chain mappings.

Table I shows the blocking of the Hamiltonian matrix,
after transforming with respect to the two-dimensional
wave vector, for the (001), (110), and (111) surfaces of sc,
fcc, bcc, and zinc-blende crystals with first- and second-
nearest-neighbor interactions. The detailed structure of
the Hamiltonian transforms in the bulk for these systems
is given in Appendix A. If only first-nearest-neighbor in-
teractions are included, seven surfaces and interfaces ex-
hibit 1X 1 or scalar blocking, like linear chains with first-
nearest-neighbor interactions: sc (001), (110), and (111);
fcc (001) and (111);bcc (001) and (110). Analytic solu-
tions for the Green's functions can readily be found for
these cases, and it is these that we will discuss. The for-
malism is briefly reviewed in Sec. II. Illustrative results
and some conclusions are presented iri Sec. III.

II. MATHEMATICAL STRUCTURE

For magnons in cubic Heisenberg systems with first-
and second-nearest-neighbor exchange, Table I shows that
1&&1 or 2&&2 blocking is the rule for (001), (110), and
(111) surfaces and interfaces; the exceptions are bcc (111)
and zinc-blende (110), and the latter reduces to 2&&2's if
only first-nearest-neighbor interactioiis are included. We
restrict our attention in this paper to those cases that
block as 1)&1's, but because we consider perturbations
that extend two layers on either side of the cleavage or in-
terface plane we have used 2&&2 blocking in many of our
calculations.

—3

JL1F

Jl
/X

I
I
I
I Jl

Ja, +

J It

JJ1 + JE
'0 F

JL1F JL

JL1F

FIG. 1. Schematic drawing of the interface between two fer-
romagnetic half crystals with the same spin and first-nearest-
neighbor exchange interactions. For surfaces, the interaction
J+ across the interface is set equal to zero.

The interfaces we consider consist of two semi-infinite
lattices cut in the same way and in crystallographic regis-
try with each other, which are brought together as shown
in Fig. 1. For simplicity, only first-nearest-neighbor ex-
change is included. Interactions different from bulk
values are allowed within the first plane and between the
first and second planes on either side 'of the interface, as
well as between the first planes on opposite sides. For
surface calculations, the exchange interactions J+ be-
tween the two half crystals are turned off. Yaniv has re-
cently done some work on spin waves at sc (001) inter-
faces in which only J+ is allowed to differ from the
bulk values J+ and J, and we will from time to time
draw some comparisons with this simpler madel.

For 1 & 1 or scalar blocking, the two-dimensional
transform of the Harniltonian has the structure

H( —3, —3)
H( —2, —3)

0
0

H( —3, —2) 0
H( —2, —2) H( —2, —1)
H( —1, —2) H( —1, —1)

0 H(1, —1)
0 0
0 0

0
0

H( —1, 1)
H(1, 1)
H(2, 1)

0

0 0
0 0
0 0

H(1,2) 0
H(2, 2).H(2, 3)
H(3, 2) H(3, 3)

Each element above is a function of the two-dimensional
wave vector q, . According to our assumptions, elements
within the large square brackets may differ from bulk
values, those outside may not. Although we do not in-
clude changes in the intraplanar exchange interactions
within planes L =+2, H(+2, +2) may be different from
in the bulk because of the Cxoldstone rule, which requires
that changes in non-site-diagonal terms in the Hamiltoni-

H(+L, +L;q, ) =A+(q, ),
H(+(L —1),+L;q, )=&+(q, ) .

(2)

(3)

The two semi-infinite crystals are uncoupled if we set

an in real space be accompanied by corresponding changes
of opposite sign in the site-diagonal terms. For L & 3 we
assume
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O=H(+1, +1;q, ). Note that there is no plane 0 in our
notation. Details of the spin-wave Hamiltonian
transforms in the interfacial region for the various crys-
tals and directions considered in this paper are given in
Appendix B. Yaniv studied only sc (001), and allowed
only H(+1, +1) [and H(+1, +1) through the Goldstone
rule] to differ from bulk values.

Using the methods outlined in Refs. 2—4, it is straight-
forward to derive expressions for the Green's functions in
the surface and interface regions. First, by following a se-
quence of recursion equations until they begin to repeat,
terminated-bulk Green's functions g+ (q„'z) are defined by

g+ —— Iz —A+ —[(z —A+) —4 ~8+
~

]'~ I, (4)
2/8+ /2

where the proper choice of branch for the square root is
that for which g+ —+1/E for z =E~+ oo and
Im[g+(z=E+iO+)]&0. These are the Green's func-
tions for the first layers of two half crystals in which all
elements of the Hamiltonian transforms retain their bulk
values. For magnons, this is not equivalent to cleavage,
because the Goldstone rule is not obeyed in what we refer
to as the terminated-bulk crystal.

Consider, for example, the sc (001) surface with first-
nearest-neighbor exchange J only, From Appendices A
and B the Hamiltonian transforms in the bulk are

H(L,L;q, ) =A(q, ) =J I 6—2[cos(2m/~)+cos(2~(q)] I,

O=H(L, L;0)+H(L,L+1;0)+H(L,L —1;0) . (6)

In what we call the terminated-bulk crystal, the Hamil-
tonian in the surface plane is H (1,1;q, ) =A (q, ), the same
as in the bulk. This is different from the first-plane Ham-
iltonian transform for a proper cleaved crystal, with no
changes in the exchange interactions. At the cleaved sc
(001) surface, spins in the first layer L =1 interact with
four other spins in the same layer and with one in plane
I. =2, but not with a spin in L, = —I. The Hamiltonian
transform for the surface plane in the cleaved crystal is
therefore reduced by one exchange interaction from its
bulk value,

H (1,1;q, ) =J I 5 —2[cos(2~(, ) +cos(2m $2)]I,
and the Goldstone rule for the surface layer is

O=H(1, 1;0)+H(1,2;0) .

Returning from this brief digression to the more gen-
eral problem, the Green's functions for the first two layers
at the surface or interface may be expressed in terms of
the Hamiltonian transform elements and the terminated-
bulk Green's functions. Suppressing the arguments q,
and z, the surface Green's functions are

z H(+2, +2)——~8+
~

g+ H'(+1, +2)
H(+1, +2) z H(+1, +—1)

H (L,L + 1;q, ) =8(q, ) = —J, (5b)

D+ ——[z H(+1, +l—)][z H(+2, +2—) —~B+~ g+]
—iH(+1, +2)

i
(10)

where q, =(2~/a)g. For q, ~O, these obey the bulk
Goldstone rule

For the first two planes on either side of the interface, we
obtain

z H(+2, +2)—
~
8+—.

~

~g+ H*(+1,+2)

b+ H(+1, +2) z H(+1, +1)—
i
H(—+1,—1)

i Gi,

5+=[z H(+1, +1)—~H(1—, —1)
~

G» ][z —H(+2, +2)—~8+ ~'g+) —~H(+I, +2)
~

(12)

where G&&* is the 11 element of the 2X2 matrix in Eq.
(9). Note that if H(+1, +1) is set equal to zero in Eqs.
(11) and (12) for the interface, that is, if the interactions
between the two half crystals are severed, the surface re-
sults in Eqs. (9) and (10) are recovered.

III. RESULTS

True surface and interface states occur at energies out-
side the bulk spectrum as isolated poles of the Green's
functions with nonzero residues for some or all surface
wave vectors q, . In our model they arise at zeros of the
denominators D+ and 5+ in Eqs. (10) and (12). Integra-
tion over the surface Brillouin zone (SBZ) yields surface
or interface densities of states for excitations in the vari-
ous layers.

From Eq. (4), it is clear that no surface states occur for

E+(q, )=A(q, )+2
~
8(q, )

~

(14)

the same points as for the terminated bulk.
To illustrate the formation of surface and interface

states, we first consider the very simplest example, namely
the case where only the outermost surface layer or a single
interfacial plane differs from the bulk. The Hamiltonian

what we call the terminated bulk, a half crystal in which
all elements of the Hamiltonian retain their bulk values.
The terminated-bulk Green's function has two branch
points, but no isolated poles. The bulk intraplanar
Green's function

Go(z) =Go(L,L;z) =
2 &

(13)
1

[(z —~)' —4
~

8
~

']'"
also has no poles, but only branch points at the bulk band
edges
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transform in this one plane is

3~(q, ) =H(1, 1;q, ),
and all other elements of- the transforms are

(Ai —3) —iB i
)0 (18)

is satisfied, and an interface state is formed regardless of
the size of the perturbation (so long as A~&A). The
surface-state energy Ez, residue in the first plane Rs, and
total surface-state density of states Os in the first layer
are, respectively,

E~=E +A, —2+2
~

B
~
+

1

(19a)

Rs ——1
(Ai —A)

1
o — Rs,

(19b)

(19c)

A(q, ) =H(L, L;q, ),
B(q, )=H(L,L+1;q, ) .

When A
&

differs from A, a surface state may form,
provided that the condition

bulk band with zero residue, Es ——E and Rs ——0. The
absence of surface states for cleaved sc (001) with first-
nearest-neighbor exchange only was pointed out by MiHs
and Maradudin' as an example of a somewhat more gen-
eral conclusion: If cleavage severs only bonds normal to
the surface (and the exchange interactions in the surface
region retain their bulk values otherwise), surface states
do not occur. Surface spin-wave states will be found if
cleavage cuts bonds that are not perpendicular to the sur-
face, and this is confirmed for the other six surfaces stud-
ied here. The surface-state energies relative to the bottom
of the bulk band, Eq E,—the residues Rq, and the in-
tegrated densities of states mrs turn out to be independent
of the underlying crystal structure, and depend only on
the surface normal. The surface states are weakest for sc
(110) and bcc (110) (os ———,

'
), stronger for sc (111)and bcc

(111) (oz ——,
'

), and strongest for fcc (001) and bcc (001)
3(~s ——4 ).

Although E~ Eand —Rs have the same functional
form for the above pairs of crystals with the same surface
normals, the lower bulk band limits E and hence the
surface-state energies Es do depend on the crystal struc-
ture. For the fcc and bcc (001) surfaces, for example, we
find, upon working through the details [cf. Eqs. (14),
(19a), (19b), and (21), and Appendices A and B] that

where AsBZ is the area of the SBZ. For an interface for
which A

~ &A, the interface-state energy, residue, and to-
tal interface-state density of states (in the interfacial
plane) are

Es E=—4—J[1—cos(erg, )cos(rrg2)]

Rs ——1 —cos (~g~)cos (m.gz),

but the lower bulk band limits are

(22a)

(22b)

E~=A+[(A, —A) +4~B
~

]' sgn(A& —2), (20a)

/A, —A
/

[(W, —W)'+4[B [']'" '

1

~SBZ SBZ
Rr

(20b)

(20c)

Note that the residues in Eqs. (19b) and (20b), and hence
also the total densities of states in Eqs. (19c) and (20c), are
less than 1, as they must be.

This simple example considered above applies to mag-
nons in cleaved Heisenberg systems for which 1& 1 block-
ing occurs. If there are no changes in the nearest-
neighbor exchange interactions in the surface region, then
the anly change in the Hamiltonian transforms arises
from the Goldstone rule, that is, from the fact that in the
surface layer a spin has fewer neighbors than in the bulk.
The perturbation is

A) —3 = —(Z —Z))J, (21)

where J is the first neares-t neighb-or exchange interaction,
and Z and Z& & Z are the coordination numbers for spins
in the bulk and in the surface layer, respectively.

For the seven cubic crystal surfaces that exhibit 1&1
blocking (see Table I and Appendix B), cleavage and the
Goldstone rule by themselves have several interesting ef-
fects. First, they produce no surface states for magnons
at the sc (001) surface, because A& —A =B= —J; the in-
equality (18) is not satisfied, and from Eqs. (19a) and
(19b) the would-be surface state falls at the bottom of the

E =4J [4—[cos(rrg& ) +cos(m /2) ] ]

for fcc (001), and

E =8J[1—cos(erg~)cos(m/2))

(23)

(24)

for bcc (001). Because of this difference the surface-state
densities of states will be quite different for the two sur-
faces.

Figures 2—4 show bulk, terminated-bulk, and cleaved-
surface-layer densities of states for the sc (110), fcc (001),
and bcc (001) surfaces, respectively, assuming a first-
nearest-neighbor exchange interaction J= 1. The band-
state contributions to the plane-1 totals for the cleaved
crystals are shown as dashed lines. All results are ob-
tained by summation aver large numbers of evenly spaced
points in the irreducible SBZ's for the various crystal
faces, e.g., over 20100 points for the bulk and (001)
terminated-bulk fcc and bcc densities of states, and over
80200 points for the surface states. A small amount of
noise is evident in the curves, particularly for the bulk,
even with such fine integration meshes.

As previously remarked, the bulk densities of states are
quite different for the three crystal structures. The effects
of the Goldstone rule appear as dramatic differences be-
tween the terminated-bulk results and. the plane-1 densi-
ties of states for the cleaved crystals. In this regard, we
note that the terminated-bulk curves correspond to
perhaps the simplest possible model for electronic states at
surfaces, one in which all elements of the Hamiltonian in
a half crystal retain the bulk values.
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FIG. 2. Bulk, terminated-bulk, and cleaved-crystal (plane 1)
densities of states for magnons at sc (110), for J=1. The
dashed line in the bottom panel gives the band-state contribu-
tions for plane 1 in the cleaved crystal.

FIG. 4. Bulk, terminated-bulk, and cleaved-crystal (plane 1)
densities of states for bcc (001).

The impact of the underlying crystal structure on exci-
tations at surfaces is illustrated by the quite different re-
sults obtained for the (001) surfaces of fcc and bcc crys-
tals in Figs. 3 and 4. We recall here that for the cleaved
sc (001) surface there are no surface states at all, while for
fcc and bcc (001) they contribute 75% of the total density
of states in the surface layer. For a given crystal struc-
ture, variation from one surface to another may produce
differences just as striking, as is attested by a comparison
between the bottom panel of Fig. 4 for bcc (001) and Fig.
5 for bcc (110).

For the results described above, 1)& 1 blocking was used
throughout the calculations, and the imaginary part of the
energy was set equal to zero (z=E+i0+). For the
somewhat more general situation shown in Fig. 1, the per-
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FIG. 3. Bulk, terminated-bulk, and cleaved-crystal (plane 1)
densities of states for fcc (001).

FIG. 5. Plane-1 densities of states at the cleaved bcc (110)
surface.
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turbations extend into two layers in the surface region or
on either side of the interface, rather than being confined
to a single surface or interface plane. For this case, there
is some conceptual convenience in using 2&(2 blocking,
even though the Hamiltonian transform matrices of
course retain the 1)&1 structure shown in Appendix B.
This conceptual simplification is gained at the cost of in-
creased computational complexity, however, as 2&2 ma-
trices rather than scalars must be manipulated. For
density-of-states calculations, we therefore add a small
imaginary part to the energy to keep computer-time ex-
penditures within reasonable limits; for the calculations
discussed below, Imz =0.04. This produces some round-
ing of singularities and tailing at upper and lower spectral
limits.

The examples we will consider will be surfaces or sym-
metric interfaces, where by the latter we mean that the ex-
change interactions in the two half crystals are mirror im-
ages. The notation for the exchange interactions in Fig. 1

and Appendix B can be simplified accordingly, as follows:
bulk, J=J+ ——J; across the interface J+ ', within
planes +1, J'=J+ ——J'; between planes +1 and +2,J"=J+ ——J".

The effects of increasing the range of the perturbations
at an interface are illustrated in Fig. 6 for sc (001). The
top panel is for Yaniv's model, in which all exchange in-
teractions have the same value except for those connecting
the first planes in the two half crystals. Yaniv concluded
for this case that there will be interface states only if
J+ ~ J. With the parameters chosen for Fig. 6(a)

O.I5-

O. IO-
IJJ

0.05-

0.00
0.20

0.4

03-

m 0.2-
Q

O. I-

0.20

O.I5-

& O.IO-

0.05.i

000
-5,0 0.0 5.0 IO.O I 5.0 20.0

E

(J+ ——1.5, J=J'=J"=1.0), interface states are ap-
parent, since the densities of states in planes +1 and +2
extend somewhat above the bulk band limit of 12. If we
extend the range of the perturbations, the interface states
shift and change in intensity, as shown in Fig. 6(b). For
these results the interactions in planes + 1 were also given
the value J'=1.5, and the coupling between the first and
second layers was increased by a somewhat smaller
amount, J"=1.3. The spectral density has shifted to
higher energies, particularly for planes +1, and the contri-
bution of the interface states to the total has increased; for
plane 1, the integrated density of states defined in Eq.
(20c) is o ~

——0.38 for Fig. 6(a) and oq ——0.67 for Fig. 6(b).
With perturbations of longer range than in Yaniv's

model, it is also possible for interface states to form in
certain cases if the interactions in the interfacial region
are weaker than in the bulk, rather than stronger. Figure
6(c) shows the total densities of states in planes 1 and 2
for one such example. Calculations of the Green's func-

FIG. 7. Surface {top) and interface (bottom) densities of
states for planes 1 and 2 for fcc (001), with J'=0.8 and
J"=0.9, and for the interface, J+ ——0.8.
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FIG. 6. Total densities of states for planes +1 (solid lines)
and k2 (dashed lines) at sc (001) interfaces. In this and all sub-
sequent figures the exchange interaction in the bulk is taken to
be J=1. Values for the other parameters here are as follows:
top panel, J+ ——1.5 and J' =J"= 1; middle panel,
J+ ——J'=1.5 and J"=1.3; bottom panel, J+ ——J'=0.8 andJ"=0.9.
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FIG. 8. Surface (top) and interface (bottom) densities of
states for fcc (111),with the same parameters as in Fig. 7.
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FIG. 9. Surface (top) and interface (bottom) densities of
states for bcc (001), with the same parameters as in Fig. 7.

FIG. 10. Surface {top) and interface (bottom) densities of
states for bcc (110),with the same parameters as in Fig. 7.

tions for particular surface wave vectors indicate that in-
terface states split off below the bulk bands for this set of
parameters (J= 1.0, J+ ——J'=0.8, J"=0.9), and contri-
bute to the peaks in the curves of Fig. 6(c) at E-4.

As for surface spin waves in cleaved crystals, it turns
out that sc (001) is the least interesting subject for study in
Yaniv's simple model for a bicrystal. For all of the other
six interfaces with l&&1 blocking, interface states occur
for any change in the exchange interactions across the in-
terface. For J+ ~ J, one interface state splits off above
the band states at all surface wave vectors, and a second,
also above the bulk band, exists at selected wave v'ectors.
For J+ &J, the same occurs, but with both interface
states below the bulk states.

To illustrate the effects of crystal structure and surface
normal with the more extensive perturbations in Fig. 1,
Figs. 7—10 show total densities of states for'the first two
planes at fcc (001) and (111) and bcc (001) and (110) sur-
faces and interfaces. All calculations were done with the
same set of parameters used for Fig. 6(c), corresponding
to a modest weakening of the exchange interactions in the
surface or interfacial region. These parameters were not
chosen to be representative of any particular system, be-
cause of a lack of such information experimentally. From
neutron-scattering experiments on the bulk, it is known,
for example, that the europium chalcogenides EuO, EuS,
EuSe, and EuTe fit the Heisenberg description. There
has been some discussion of surface spin waves and mag-
netic reconstruction in these materials, but no definitive
values for the exchange interactions have been found.

%e do not wish to dwell on the detailed structure in
Figs. 7—10, but we will make a few comments on some
general features of the results. First, and not really obvi-
ous in these total density-of-states curves, surface or inter-
face states occur in all instances, split off below the bulk
bands for any given surface wave vector. Second, as ex-
pected, interfaces introduce weaker perturbations than
surfaces, because interactions are only altered rather than
severed. Third, "healing" back toward the bulk spectral
densities (cf. Figs. 2—4) takes place fairly rapidly. Final-

ly, there are quite pronounced differences in the results
for different faces of the same crystal, and in those for the
same face of different crystals. As we noted at the outset,
sc (001) has been used as an example in many studies of
elementary excitations at surfaces and interfaces, even
though it now appears in retrospect to be the least in-
teresting case that could be chosen.
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APPENDIX A: BULK HAMILTONIAN
TRANSFORMS

E =Zi Ji+Z2J2, (Al)

where Z~ and Zq are the numbers of first- and second-
nearest-neighbors.

1. Simple cubic

For the sc (001) surface, we have

q, = (2m /a)(gi, $2,0),
H(L, L;q, )= E+2T&[cos(2m/~)+cos(2m/2)]

+4T2cos(2rrg~ )cos(2~$2),

This appendix gives the detailed structure of the two-
dimensional transforms of the bulk, single-band Hamil-
tonians for cubic crystals with a site-diagonal element E
and first- and second-nearest-neighbor interactions T&

and T2. For spin waves in Heisenberg systems, the first-
and second-nearest-neighbor interactions T~ are identified
as exchange interactions J;, and the Goldstone rule speci-
fies the site-diagonal term E,
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H(L, L +1;q, ) = T~+2T2[cos(2~(i)+cos(2m/2)] .

For the sc (110),

q, =(~«)(g2, —g2, 2g]),
H (L,L;q, )=E+2T~ cos(2m/, )+2T,cos(2m/, ),
H(L, L +1; q, )=2cos(m/2)[ T& +2T2cos(2m/&)],

K(L,L+2;q, )=T2 .

For the sc (111),

~=(2~/3a )( —2(i —g2, gi —g2, g)+ 2/2),

H(L,L;q, ) =E+2T2 I cos(2m/&)+cos(2m/2)

'+ cos[2m (g~+ $2)]I,
H(L L 1 ) T

—(2'/3)(gi —
4g)( 1

2nigi —2mig2)

H (L L 2 ) T {2'/3)(gi —
g~)( 1

2nigi — 2nif2)

2. Face-centered cubic

For the fcc (001) surface, we have

q, = (2~/a)(g)+ g2, —g)+ $2,0),
H(L, L;q, )= E+2T&[cos(2r/gi)+cos(2vrg2)]

+4 T2cos( 2&/) )cos( 2m g2 ),
H (L,L + 1;q, ) =4T& cos(m g~ )cos(mgz),

H(L,L+2;q, )=T2 .

For the fcc (110),

~ =(2n/a)($2, —g2, 2g)),

H(L,L;q, ) =E+2T~cos(2m/2)+2T2cos(2m/~),

H(L,L +1;q, ) =4T&cos(mg&)cos(m/2),

H(L, L +2; q, ) = T, +2Tzcos(2m/2) .

For the fcc (111),

q, =(4'/3a)( —2g$ —g2yg] —g2, g$+2g2) y

H(L,L;q, )=E+2T& I cos(2m/, )+cos(2+$2)

+cos[2m (g& +gz) ]I,

H(L L 1 ) T (2ni/3)(gi —
$2)(1

—2migi 2nig2)

(4~& /3)(gl g2)+ T2e

3. Body-centered cubic

For the bcc (001) surface, we have

q, = (2m/a)(g„(2, 0),
H (L,L; q, )=E +2 T2 [cos(2m g& ) +cos(2~/A )],
H(L, L + 1;q, ) =4T~cos(erg')cos(erg'),

H(L, L +2; q, ) = T2 .

For the bcc (110),

q, =(~/a)(g, +.2/2, —g) —2/2, 2/i),
H(L,L; q, ) = E+2T& I cos(2~$2)+cos[2m(g, +$2)]I

+2T2cos(2m/i ),
H (L,L + 1;q, ) =2T&cos(mgi)+2Tzcos[n(/~+2/2)] .

For the bcc (111),

q, = (2m. /3& )( —2g& —$2, g&
—g2, g~ +2/2),

H(L, L;q, )=E,
H(L, L. +1;,)=T '"'""' "(1+ ' " ' "2)

H(L L 2 ) T (2'/3 —(gi —g2) 2nigi 2mig2-

H(L, L+3;q, )=T, .

4. Zinc blende

In the zinc-blende lattice, there are two types of atoms
in general, which we label A and B, and they occupy dif-
ferent sublattices that are not equivalent even when atoms
A and B are the same. For the [110] surface-normal
direction, any plane L contains equal numbers of atoms
belonging to both sublattices, while for the [001] and
[111]directions the atoms in any given plane belong whol-
ly to one sublattice or the other, which alternate from
plane to plane.

For the zinc-blende (001) surface,

q, =(2n /a)(/~+$2, —pi+$2, 0),
H(LA, LA;q, ) =E"+2T2 "[cos(2m/~)+cos(2m/2)],

H((L +1)B,(L +1)B;q,)=E +2T2 [cos(2m/&)+cos(2~$2)],

H(LA, (L +1)B;q,)=2T~cos(mg~),

H((L +1)B,(L +2)A;q, ) =2T&cos(~$2),

H(LA, (L +2)A;q, )=4Tz cos(rig, )cos(mgz),

H((L + 1 )B,(L +3)B;q, ) =4T2 cos(mg~)cos(~$2) .

For the zinc-blende (110) surface,
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q, =(277/&)(gp, —q2, 2g]),

H(Li, Li;q, ) =E'+2Tzcos(2~/A),

H(LA, LB;q, )=2T&e 'cos(ng2),

H(Li, (L +1)i;q, ) =4Tzcos(2rrg~)cos(~$2),

H(LA, (L+1)8;q,)=T&e

H(Li, (L+2)i;q, )=T'2 .

For the zinc-blende (111)surface,

qs =(4~~3&)( —2k —02 ki —02 ki+20z»
H(LA, LA;q, )=E"+ 2Tz" I cos(2m/~)+cos(2vrg2)+cos[2n (g~+ gz)] I,
H((L+1)8,(L+1)8;q,)=E +2T2 Icos(2~/~)+cos(2~$2)+cos[2m(g&+$2)]I,

H((L+1)B, (L+2)A;q, )=T),

H((L+1)8,'(L+3)8;q, )=T2 e ' ' (1+e '+e '),

APPENDIX 8: INTERFACE SPIN-%'AVE HAMILTONIANS

In this appendix we give the elements of the Hamiltonian transforms for magnons in the four-plane interfacial region
(L = —2, —1, 1,2) in which we allow H (L,L;q, ) to differ from the bulk values. More specifically, we provide the block
of the Hamiltonian transform that is enclosed in large square brackets in Eq. (1),

H( —2, —2;q, )

H( —1, —2;q, )

H( —2, —1;q, ) 0

H( —1, —1;q, ) H( —1, 1;q, )

0

0

0

H(1, —1;q, ) H(1, 1;q, ) H(1,2;q, )

0 H(2, 1;q, ) H(2, 2;q, )

(Bl)

for the seven cases for which 1&1 blocking occurs. For simplicity, only first-nearest-neighbor exchange is included in
all cases; the nearest-neighbor exchange interactions in the upper and lower bulk crystals are denoted by J+ and J
respectively.

For the sc (001) surface, we have

C =2[cos(2rrg~ ) +cos(2m/2) ),
'5J +J —J { 0

0

4J' +J" +J+ —J' C
—J+

—J+
4J+ +J+ +J+ —J+C

—J+

0
—J+

5J++J+ —J+C

For the sc (110),

C& ——2 cos(2m/, ), C2 ——2 cos(rrg2),

4J +2J" —J CI —J"C2 0
—J"C2

0

2(J' +J" +J ) —J' Ct
—J+ C2

0

—J+ C2

2(J'++J++J+ ) —J+C)
—J+C2

0
—J+C2

4J+ +2J+ —J+C)
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For the sc (111),

C=e (1+e +e ),—(2n.i /3 ~1 ~2 2m g) —2m g

3J +3J"
J ll

0

0

For the fcc (001),

—J"C 0
3J" +3J+ —J+ C
—J+ C* 3J+ +3J+

0

0
—J+C

3J++3J+

C) ——2[cos(2ng))+cos(2m'gp)], Cp 4c——os(re))cos(1Tgp),

8J +,4J" —J C) 0

—JI"C2

0

0

4(J' +J" +J+ )—J' C)
—J+ C2

0

—J+ C2

4(J+ +J+ +J+ ) —J+C)
—J+C2

0
—J+C2

8J+ +4J+ —J+C)

For the fcc (111),

C) ——2Icos(2m/))+cos(2ngq)+cos[2vr(g)+gp)] I, Cz ——e ' ' (1+e '+e

9J +3J" —J C,

J r/

0

—J"C2

6J' +3J" +3J+ —J' C,
—J+ C2

—J+ C2

6J+ +3J+ +3J+ —J+C,
—J+C2

0

0
—J+C2

9J+ +3J+ —J+C]

For the bcc (001),

C =4 cos(m g& )cos(m gq),

4J +4J"
—J"C

0

0 0 —J+C

—J"C
4J" +4J+ —J+ C

—J+ C 4J+ +4J+

0

0
—J+C

4J+ +4J+

For the bcc (110),

C( ——2Icos(2n'g~)+cos[2vr(g(+gq)]I, Cz =2cos(mgi)

6J +~"—J Ci —J"C2 0 0
—J"C2

0

0

4J' +~"+~
—J+ C2

0

—J+ C2

4J' +~"+~ —J'+C~

—J+C2

—J+C2

+ +2J+ —J+C(
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