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Dynamic renormalization-group theory of interfaces: Model A
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The dynamics of the interface of an Ising-like system driven by relaxational dynamics is studied
within the framework of a first-order e expansion near four dimensions. The starting point uses the
static and dynamic equations of the bulk system (model A) and an interface is produced by imposing
suitable boundary conditions. The interfacial dispersion relation is of the form co~ = il q—Q(qg),
with z=2+0(e ) and Q(x) univer'sal, and satisfies the Goldstone theorem for the spontaneously
broken Euclidean symmetry.

I. INTRODUCTION

There has been considerable interest, recently, in surface
and interfacial properties of systems near the critical
point. ' Static properties in such inhornogeneous systems
have been investigated by a variety of methods, including
the use of renormalization-group (RG) techniques.

Dynamical phenomena have also received a great deal
of attention, and some progress has been made in investi-
gations of critical dynamics involving rigid bounding sur-
faces. The case of the dynamics of interfaces separating
coexisting phases is perhaps richer, and little progress has
been achieved in this area of critical phenomena using RG
methods. Studies of this kind would allow for a better
understanding of capillary waves and capillary-wave-like
excitations. Critical dynamics of such interfaces has only
begun to be explored in any systematic way, ' and much
remains to be done within mean-field theory as well as
within the RG theory of fluctuations.

It has also been appreciated that the motion of interfa-
cial structures may play an important role in the under-
standing of various nonequilibrium phenomena, such as
the evolution of order and spinodal decomposition.
Furthermore, interface instabilities themselves have been
receiving a good deal of attention from fundamental per-
spectives as well as from practical ones in fields of materi-
als research.

From a fundamental point of view, one would like to
begin at the bulk level, that is, from a (reduced) Hamil-
tonian which correctly describes homogeneous bulk prop-
erties. Then, by arranging the thermodynamic parameters
appropriately and by imposing suitable boundary condi-
tions, one may produce an interface in the system. Inter-
face properties then should follow from the knowledge of
thermodynamic, correlation, and response functions of the
full inhomogeneous system. For real fluids, in which case
the velocity fields are coupled to a (generally) conserved
order parameter, this is a difficult program. Felderhof
and Langer and Turski have made some progress in this
regard by treating the statistical mechanics of the fluid at
mean-field level and neglecting viscosity. These calcula-
tions essentially amount to the hydrodynamics of a dif-
fuse interface, but even then the calculations are not
without their difficulties. In the long-wavelength limit,

one recovers the interface capillary-wave dispersion rela-
tion (containing the properly identifiable surface tension
at mean-field level), in agreement with that coming from
purely macroscopic hydrodynamics.

The program suggested above holds out the hope of
further progress with implications on general predictions
of scaling. For if the interface dispersion relation can be
found (say, from the pole of an appropriate response func-
tion), scaling suggests that it takes the form

coq —q'Q(qg),

where q is the (d —1)-dimensional wave vector in the
plane of the interface and g is the bulk correlation length.
The exponent z is a dynamic exponent which may be
identified with the dynamic scaling exponent of the bulk
homogeneous system As q. /~os, i.e., as the critical re-
gime is approached, the interface disappears and at criti-
cally there should be one characteristic frequency co~ -q'.
On the other hand, in hydrodynamic regime, qg~O, vari-
ous invariance properties determine the spectrum, and one
expects coe -q at fixed T & T„with o typically an in-
teger or simple fraction. The scaling function Q(x) must
contain a singularity as x~O to go over to this new
behavior. The correlation and response functions of the
inhomogeneous system should also exhibit interesting
crossover behavior between the two regimes.

This scaling picture has been used by Bausch et aI. to
derive the bulk dynamic exponent z beginning from a
phenomenological drumhead model of an interface. The
above argument suggests that if the drumhead system can
be driven to criticality (indicating bulk criticality), the
characteristic frequency toe-q allows identification of
the bulk dynamic exponent z. Bausch et al. were able to
perform such a calculation in bulk d =1+@dimensions
and thereby extract an estimate of z to second order in e.
The starting drumhead model for the inteEace has only
been shown to follow from the Landau-Ginzburg-Wilson

model in the limit T « T, .' Furthermore, one might
imagine mechanisms which could make the identification
of the bulk exponent from the surface dispersion relation
questionable (e.g., the presence of possible surface renor-
malization counterterms).
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II. THEORETICAL MODEL
AND PERTURBATION THEORY

In this paper we will be concerned with the interfacial
dynamics of a system modeled by the kinetic Ising
model, ' or by its continuum version, model A. ' Purely
relaxing systems of this kind include Ising antiferromag-
nets and order-disorder alloys. In the continuum version
of the model, P(x, t) is the nonconserved local order-
parameter field (such as the staggered magnetization den-
sity, or the sublattice concentration), and the equation of
motion is given by

BP(x,t) 5AI"o +rt(x, t) . (2.1)

Here, A is the usual Landau-Ginzburg-Wilson effective
Harniltonian,

Further investigation of some of these issues would
seem desirable. As a first step we demonstrate here the
computation of the dispersion relation coq for an interface
of an Ising-like system described by the usual P reduced
Hamiltonian and model-A relaxational dynamics. A
brief summary of this work has appeared elsewhere.

The remainder of this paper' is divided as follows. In
Sec. II we define our model for the dynamic interface and
adapt the standard field-theoretic dynamic RG formal-
ism"' to the case of an inhomogeneous system in which
a diffuse interface is present. A perturbation scheme is
constructed and used to compute the inhomogeneous
system's linear response function to one-loop order. In
Sec. III, a renormalization scheme is,set up to make per-
turbation theory finite, i.e., cutoff-independent, in the crit-
ical regime. A quantity closely related to the renormal-
ized response function is calculated explicitly to first or-
der in E=4—d, and from this the interface dispersion re-
lation co~ follows. This is shown to be of the form
to~ -q'Q(qg), with z =2+0(e ), and the function A(x) is
calculated explicitly. A discussion of this result follows in
Sec. IV, together with our conclusions. In Appendix A
the dispersion relation for the corresponding one-phase
bulk ordered system is derived, to O(e), for comparison
with the interface spectrum. In Appendix B the result
Ilm& Oco& =0 for the interface dispersion relation is
shown to follow nonperturbatively from a general Ward
identity.

M(z) is the equilibrium order-parameter profile satisfying
the boundary condition

lim M(z) = +M~
z —++ cg)

(2.3)

agz
&& 1 — u sech +O(u ), (2.4)

12 2

where

32
Mz —— [1——,u In~o+O(u )], (2.5)

Kg =Ko[ 1 + &
u (111KO+rtW3 —3 ) +0 ( u )] (2.6)

Here and in the following, ~o ——
~

2~ ~, r=(T T,)/T„—
and u~u*=2e/3+O(e ) is the dimensionless renormal-
ized coupling constant with its fixed-point value u . Mz
and ~z exponentiate to -Kp and -~p, respectively.

The quantity of interest in the description of a dynami-
cal interface is the linear response function R (x, t;x ', t '),
defined in the usual way be

(P(x, t) ) —M(z) = f dx' dt'R(x, t;x', t')h(x', t')+O(h~),

(2.7)

where h(x, t) is the external field coupling to P(x, t) As.
usual, the response function is related to the correlation
function,

C(x, t;x', t') = (P(x, t)P(x', t') ) M(z)M(z'—), (2.8)

through the fiuctuation-dissipation theorem'

, AC(x, x';co) =—ImR(x,x', co), (2.9)

where co is the frequency of the Fourier component of C
or R appearing in Eq. (2.9).

Thus far, averages, denoted by ( ), have been taken
with respect to the random force distribution

Here, M~ is the bulk order parameter, and we are dealing
with a flat interface perpendicular to the spatial z direc-
tion. For the h =0 interface and the Hamiltonian of Eq.
(2.2), the interfacial profile is known to one-loop or-
der. ' ' Using minimal subtraction methods, we have

T

KgZ
M(z) =Mgtanh

2

ddx 21ro 2+21 V 2+ 4 h (2.2)
P(q)-exp —(4I'o) ' f dx dt g

which is believed to describe appropriately the static prop-
erties of our system in the limit of long wavelength and
large correlatibn length. I o is the (bare) kinetic coeffi-
cient, ro~ T '1, " (with T, "—the mean-field critical
temperature), and A,o is the (bare) coupling constant.
g(x, t) is a Gaussian random force obeying

(q(x, t)q(x', t') ) =2r,u(x —x )n(t —t ),
so that the fluctuation-dissipation theorem is satisfied. '

We introduce an interface in analogy with equilibrium cal-
culations' ' by requiring that (P(x, t)) =M(z), where

However, it is convenient to replace the random force
g(x, t) by an auxiliary field P(x, t),"' defined in such a
way that, for a given operator 6'(P),

«)„=fDg W(y(g))P(g)

DgP q

fD~D~ ~(C)~(e,~) = ( 6 )~ ~
. (2.10)

DPDP 8'(P, (S)

This procedure generates expectation values taken with
respect to the statistical weight
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W(P, P) =exp —fdx dt W(P, P)

where
G,z(q; z, z';

(

Mo(z)) Mo(z&)

(4,0)=I.4'+if ', +f'. ',
Bt

"2.- a 2 oIo-,IA +iy +lo( —V+
ai 3't

FIG. 1. Diagrammatic representation of the response func-
tion to one-loop order for T & T, . The circles denote the third-
and fourth-order interaction couplings in Eq. (2.14).

(2.11)

is the Lagrangian of the resulting field theory. As is com-
mon to all field-theoretic RG treatments, "' a Jacobian
contribution,

kpI pM= I oP +i/ —I ov + I"oro+ M (z)
Bt 2

A,pI p ApI p+i M(z)PP +i
2

(2.14)

a
J(4') = —

2 o
gy

(2.12)

to W is generated, but may be omitted because of the re-
quirements of causality. The field P(x, t) has the physical
meaning of a response field, since it can be shown that
(for model A)

with the usual omission of terms linear in P and P, con-
sistent with ((It ) = (P) =0. At this point, a perturbation
expansion in the terms M(t)P and PP can be generated in
order to extract the static and dynamic interfacial proper-
ties. To start with, the free propagators

R(x, t;x', t') =i I o(P(x, t)P(x', t')
& . (2.13)

G~~(1,2)= (P~(x ~, t ~ )Pp(xz, tq) )o,

In the presence of one or more ordered phases, we in-
troduce the shift P(x, t)~M(z)+P(x, t), where M(z) is
the interfacial profile and where now (P(x, t)) =0. The
new Lagrangian is then

where ()(& ——p and p2 ——p, must be evaluated. We proceed
in the usual fashion' by introducing external fields
l&(x, t) and 12(x,t), coupling to p& and pz, and by calculat-
ing the free theory's generating functional,

Zolli lz]=
fDP&DP2exp —fdx dt Wo+ fdx dt l P

L

r

fDP, DP2 exp —fdx dt Wo

z

=exp —,
' f dx dt dx'dt'l (x,t)G' p(x, t;x', t')lp(x', t'), . (2.1S)

If Wo= 2 )+A p()t(p is the (symmetrized) free part of the Lagrangian, Eq. (2.14), we find that the G~p satisfy the matrix
differential equation

A p(x, t)G&~(x, t;x', t') =5 r5(x x')5(t r') . — —
Introducing the operators

(2.16)

D(x, t)= +I oh(x), b(x)= —V„'+ro+ ,' AoM'(z), —
Bt

(2.17)

one finds that Eq. (2.16) can be explicitly written as

iD(x), t)) 2I p

iD(x), t)) GP)'(1, 2) GPq'(1,—2)
G' '(1,2) G22'(1, 2)

(2.18)

If we denote by e '"'+' ('g'&'(z) the eigenfunctions of D, where p is the position vector in the plane of the interface and
the g'&'(z) are the eigenfunctions of the kink operator, '6'

[—a,'+ r, +-,' X~',(z)]g'~'(z) =E'~'g'~'(z), (2.19)

then Eq. (2.18) can be solved by making use of the spectral decomposition
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G ' ](q, co;(M ) = 1,i ( i p]—+I pq + I pE'"') 2I p

G~~(1,2)=fdcodq pe ' ' ' ' ' g(~'(z])[g'"'(Z2)]'O'II(q, (o;p) .

The spectral components G~~(q, (o;p) satisfy

0 i(i~+ r~'+ r~(~])

(2.20)

(2.21)

and thus, the spectral representations of the free propagators, in the mixed form appropriate for the geometry of the flat
interface, are given by

2X'p
G'„'(q;z,z';(o) = g g'"'(z)[g'"'(z')]*

~

(o+ i r(](q 2+E'"')
~

G]z (q;z, z', co) =Gz] ( —q;z, z'; —co) =g g("](z)[g(&'(z')]* 1

co+ir (q +E'"')

Gzz'(q;z, z';(o) =0 .

(2.22)

3Kp

8
2 KPZ

sech
. 2

E(o] () g(o](z)

For completeness, we reproduce here the spectrum of the kink operator, Eq. (2.19), which consists of two bound states,
@=0, 1, and of a continuum of phase-shifted plane-wave states, p =k, '

1/2

E'"=-'~'
' 1/2

3Kp KpZ KpZ
sech tanh

2 2

(2.23)

E'"'=k +so, g'"'(z) =,&2
e' 2k + 2 Kp —

& Kotanh +3ixpk tanh
2

with

(ok ——4(k +ao)(k + 4ao) .
The full response function,

R(q;z, z';co) =i I Gp(q]2;z, z';co), G]2(q;z, z';co) =fdpdt e' ' '+'(P(p, z;t)P(O, Z', 0) }, (2.24)

can be calculated perturbatively by making use of standard mixed-representation techniques. To one-loop order,
G]2(q;z,z';to) is given in terms of Feynman diagrams as shown in Fig. 1. Here the propagators G']]' and G']2' are
represented by a continuous and a continuous wavy line, respectively, and the two different interaction vertices of Eq.
(2.14) are represented by open and solid circles.

The essential physics of the dynamic interface is already captured by the zero-order theory. Indeed, the unperturbed
(Van Hove) theory's response function is, from Eq. (2.22),

q'+ —,
'

~o' —](~pro)R' '(q;z=z'=0;(o)=
2[q —i((o~ro)][q +&o—i(P]~ro)]'

(2.25)

This result indicates that the inhomogeneous system s response function contains, in principle, two characteristic fre-
quencies: (o]](q)= —i I p(q +](p), the equivalent of the bulk characteristic frequency, and (oz ———iI oq, corresponding to
the capillary-wave dispersion relation. It is important to recognize that the amplitude of the simple-pole surface singu-
larity in R' '(q;0, 0;(o) vanishes as the critical point is approached and the interface disappears. What survives is then a
branch cut singularity at the bulk frequency co~(q). As we shall explain in Sec. III, we have been unable to confirm that
these features are also present in the response function to one-loop order. However, it is reasonable to expect that the
surface-pole singularity has a vanishing amplitude (as T~T, ) to all orders in perturbation theory If this i.s the case,
then one may imagine the possibility of the interfacial dispersion relation having an exponent different, in principle,
from that of the bulk characteristic frequency, z. The full response function would still retain the proper bulk informa-
tion as T~T, and would reproduce the bulk critical dynamics.

From the diagrammatic expansion of Fig. 1, we now have the bare response propagator 6~2 to one-loop order,

G]2(q z z 'co) =G ]2 (q'z z 'co) — ]ApI p f dz] G ]2'(q;z, z],(o) f di] dv G ]]'(p;z],z] ', v)G ]2'(q;z],z';(o)

~oI o dz] dz2 G]2 (q;z, z],'co) dp dv G]] (p;z],z2,'v)2 2 (p) (p)

X G]2 (]]]—q;Z2, z],co —v)GIz'(q;z2, z';co)Mp(z] )Mo(Z2),

where Mp(z) is the mean-field, or zero-order, interfacial profile.

(2.26)
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III. RENORMALIZATION AND INTERFACIAL
DISPERSION RELATION

An inspection of the one-loop contributions to Eq.
(2.26) indicates that for dimensions d &4 the perturbation
expansion is divergent and, therefore, a renormalization
scheme must be used. As in the case of bulk dynamic RG
calculations, "' one adds counterterms to the Lagrangian
of Eq. (2.14) and makes use of the bulk renormalization
constants Z&, Z „Z„,and Zr. No surface counterterm
is introduced in the case of an interface and we now
proceed to verify, explicitly to one-loop order, that this re-
normalization scheme yields a finite perturbation theory
This will demonstrate that the inhomogeneous system's
response function obeys the same RG equation as for the
bulk response and, hence, that there can be, at least to
O(e), only one dynamic critical exponent, the bulk one, z.

Technically, the only novel feature in the present renor-
malization scheme is associated with the renormalization
of the bare propagators. Indeed, the renormalization con-
stants now also enter through the renormalized eigenfunc-
tions (I'(z) and eigenvalues EI' appropriate to the re-
normalized operator,

D„= +Zrl'g~, gR ——p'z+Z, r+ —,
' Z„uM (z) .

(3.1)

Here, I =Zr 'I p, r Z——&'(rp —rp, ) ~ T T„— upp
=Z„'A.p, and M(z) is the full order-parameter profile,
Eq. (2.4). pp

' sets the length scale of the RG and, as usu-
al, ro, is the critical value. At this point the response
propagator G1z could be calculated within the framework
of renormalized perturbation theory. Unfortunately, ow-
ing to the complicated spectral representations for the
bare propagators, Eq. (2.22), the calculation of the full
response function appears to be impractical even to one-
loop order. Nonetheless, the surface-wave dispersion rela-
tion can be extracted from renormalized perturbation
theory by making the reasonable ansatz that co~ is the only
pole of the interface response Gz(q, co) found by taking
the full renormalized response propagator and projecting
onto the Goldstone-mode eigenfunctions (p=O), which
generate localized interface distortions, i.e.,

GR(q, m)= f dzdz'[(I't( z)]*G q1~( qz, z', co)g ~(z') . (3.2)

To one-loop order, Eq. (3.2) and the renormalized version
of Eq. (2.26) yield

G, (q, ~)= „, ——u
' f dz[g"'(z)]*G,(z,zg'"(z)

co+iI (q +E' ') 2 (co+iI q )

zz &(co+iI q ) ~„(p+E'"')[p +(p —q) +E'&'+E'" '+i(co/1 )]

In the above equation we have defined

(3.3)

Gp(z, z)= f dpdvG11(p;z, z;v)=g dp
(O)

+2+ ~(JM, )

2
KO KOZ—1+—sech

2
+Icp & lnKp —

4 (in~p —1 )sech2 & 2 3 2 KOZ

h hsech tanh
2

"
2

(3.4)

m.k (k +ap)

2~psinh[m(k/ap) ]
I(O, k)= i—
I(p,p') =f dz Mp(z)g' '(z)g'"'(z)[g'" '(z)]* .

These coefficients satisfy I(p,p') =[I(p',p)]* and I(p, p, ) =0, and are given explicitly as follows:
1/2

I(0, 1)=
128 u

1/2
3Kp

(3.5)

(3.6)

I(1,k) =— 3g~~ m(k + ,'vp)(k + —,~p)—
apcosh[m(k /ap) ]

I(k, k') =i
2Q MgCOI

1/2

[(2k —a~p)(2k' —xp)+kk'[3(k —k') +6~p]
~psinh I m[(k —k') /vp] j
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Also, from first-order perturbation theory on the Schrodinger-like equation (2.19), appropriate to the renormalized opera-
tor b,~ of Eq. (3.1), we have

Eg ' E'——'+u f dzg' '(z)b. "'(z)[g' '(z)]'+O(u )=

/

Ko 3KO
2 2

+ ——lrM0+ —1 u+O(u ),2 2 eve
3 7

(3.7)

where bR(x)= —Vz+b, ' '(z)+ub, "'(z)+O(u ). As for the third contribution to Eq. (3.3), it should be noticed that for
(p,p')&(k, k') the p integral is finite and, since the extra single k integral converges for large momentum, it need only be
calculated to O(1), i.e., in d =4, that is

dp
1

(p'+E'~') [p'+(p q)'+—E'~'+E&~'+i(~/r)]
1=~ f dx(x(1+x) q +(1+x) (E'&'+x[E'& '+i(co/1 )]j ) ' +O(e) . (3.8)

However, for (p,p') =(k,k') and extra divergence is introduced through one of the k integrals in gk k, associated with
I(k, k ). The divergent contribution is separated out and expanded in @=4—d; this leads us to the familiar bulk integral

dk dp
1

(k +p +~0)[k +p +(k —k) +(p —q) +2a0+i(co/I )]

————f dx(1+x) ln (q +k )+a~()+i —~O(e),
2e 4 2 (1+x) 1+x I (3.9)

where we have set k=k —k . At this point, one can verify that the e poles contained in the three contributions to
Gz(q, co) in Eq. (3.3) cancel exactly. This represents a demonstration that, to O(e), the bulk renormalization constants
suffice to renormalize the interfacial response. We obtain

sI ~
~ 22 2' 2 (3.10)

(co+iI q ) v0 I @~0

where C(x,y) is a universal function given in terms of lengthy multiple integrals. The dispersion relation is the solution
of Gz(q, co~ )

' =0, and from Eq. (3.10) we find, setting u =u' =—', e and ~=/
2 2

coq = i I q—'+ a~2+ —z, —

2 +O(e ) = —il q'&(qg) . (3.11)
L

The function Q(x) has the following parametric representation:

Q(x)=1+ —+ ——m ~I(0, 1)
~

[Q(0, 1 ~x)+Q(1,0~x)]e 1 n.~3 2
5 210 3

JO,z O,z x+ z,Ox + Il,z l,z x+ z, l x

+
+ dz dz', 2 288m (z —z') (1+z )(1+z' )

i
I(z,z')

i

— + Q(z, z'
i
x )

54m'(z —z')'(5+4z'+4z')
2m 2n (1+4z )(1+4z' )sinh [m(z —z')] (1+4z )(1+4z' )sinh [rr(z —z')]

—9 f dz f dy ln[1+y(1 —y)z +y(2 —y)x ];+O(e ),
sinh (mz)

(3.12)

where we have introduced the notation

1

Q(p, p'
~
qg) =b, f dx[(1+x)'(E'"'+xE'" ')g

+x(2+x)(1+x) q g ]

as well as

I(p,p') =(u/x0)' l(p, p'),

(3.13) C=0.229, C) —— + ln —,C2 ———,
mv'3 3 4
210 10 3

(3.15)

IV. DISCUSSION AND CONCLUSIONS

Q(x)=1+@(C+O(x )), x «1
(3.14)

fl(x)=1+a((C&/x )lnx+(C2/x )+O(x )), x &~1
with

and we have used the dimensionless integration variable
z =k/aa. The limit forms of this function are as follows

Several aspects of our result, Eqs. (3.11)—(3.13), ought
to be considered at this point.
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(i) Our dispersion relation co~ is gapless in the limit

q —+0. This is consistent with the nonperturbative result
limz oco&

——0, which follows from a dynamical version of
the Goldstone theorem for the spontaneously broken Eu-
clidean symmetry for all T & T, (see Appendix 8). This is
to be compared with the gap in the bulk homogeneous
phase characteristic frequency, co&(k =0)&0, which is
consistent with the nonconserved order-parameter relaxa-
tion of model A (see Appendix A).

(ii) The exponent z in co&, Eq. (3.11), has been identified
with the bulk dynamic exponent z =2+0(e ), in agree-
ment with scaling. However, it was suggested above that
it is reasonable to expect that the amplitude of the surface
singularity in R(q;z=z'=0;co) vanishes for T=T, to all
orders in perturbation theory. Then if a breakdown of
simple dynamical scaling occurs with co& having an ex-
ponent different from the bulk one, such "breakdown"
would occur with a vanishing amplitude in the response
function. A calculation to O(e ) would be most welcome
in order to investigate this issue.

(iii) A higher-order calculation should also reveal a
singularity in Q(x) as x ~0, as discussed in the Introduc-
tion. In the present O(e) calculation, this singularity does
not appear, owing to the fact that the value of z has no
O(e) correction and also to the fact that the O(e) value of
z coincides with the hydrodynamic-limit exponent for co&.
In the case of model 8 for a conserved order parameter,

Q(x) has a singularity at mean-field level of the form
Q(x}-x ', as x~0. In fact, z=4 in this approxima-
tion, whereas the interface relaxes as co& -q in the hydro-
dynamic limit, qg'« l. In general, the existence of this
singularity in Q(x) is a consequence of the presence of
long-wavelength Goldstone-mode-like excitations in the
system with an interface. An .analogous situation is
presented by the isotropic ferromagnet for all T & T„ in
which case the singularity of the longitudinal correlation
function, G~~(k)-k, is determined, in the limit kg~0,
by spin-wave theory. '

In conclusion, we have shown in this work that it is
possible, despite the formidable computational difficulties,
to derive within the renormalization-group e expansion an
interfacial dispersion relation starting from the statistical
mechanics of the bulk system. This approach has been
developed here for an Ising-like system with purely relax-
ational dynamics; extension of this work to more realistic
dynamical models is possible, although not without severe
computational problems. Several issues within the inter-
facial dynamics of model A still remain to be investigated.
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APPENDIX A: BULK HOMOGENEOUS PHASE DISPERSION RELATION

In the case of a homogeneous ordered phase, T &T„(P( )x) =M&, the dispersion relation is the solution of
I &z(k, co}=0 since I"&2(k,co)G&2(k, co) =1. The bare two point vertex response function is given, to one loop order, by

I")z(k,co) =co+iI p(k +rp+ , A pMg )+i- OI 0 8 p2 p +r p + —,A,pMg

+A,ol pMg J d"p
(p +ro+ —,AoM~) j co+il"o[p —+ (p —k) + 2rp+l pMg] j

(Al)

We now make use of the ordinary bulk renormalization constants Z~ ——1+0(u ), Z, = 1+u /(2e)+O(u ),
Zr ——1+O(u ), and Z„= 1+ 3u /(2e)+O(u ), and use Eq. (2.5) for M~, in order to obtain the renormalized version of
Eq. (Al). The result is, to O(e),

2
~ 2 2 2 & 2 kI 128(k co) co+~1 ' k +~o+«o 6 (lmcp+3)+ dx ln x(1—x) 2 +ix z + 1

K0 I K0
(A2)

The divergent d-dimensional integrals contributing to Eq. (Al) have been calculated in d =4—e dimensions using, in
particular, familiar expansions like Eq. (3.9). By solving I',2z(k, co~(k)) =0, we arrive at the result

1 e mv3co~(k)= iI k' 1+ ' —+ 1 — +f dxln[1+x+x(2 —x)k g ]6
(A3)

in which /=go
~

r
~

" is the T & T, bulk correlation length, with g=~R +O(e ) and xz given by Eq. (2.6). A notable
consequence of Eq. (A3) is that co&(k =0)&0, which signifies that the k =0 mode, that is, the nonconserved order pa-
rameter x x, also re axes, as expected, unde& model-A relaxational dynamics. To our knowledge, the scaling
function in Eq. (A3), which interpolates between bulk hydrodynamic and critical behavior, has not appeared in the litera-
ture.



7392 GIANCARLO JUG AND DAVID JASNO%'

APPENDIX B: WARD IDENTITY FOR THE DYNAMIC
INTERFACIAL RESPONSE FUNCTION

The infinite system with an interface is described by a
Lagrangian, given by Eq. (2.11), which is invariant under
spatial translations of the field P,

(B1)

The presence of an interface, however, means that this
Euclidean symmetry is spontaneously broken, and this
fact can be used to demonstrate some general properties of
the response functions valid to all orders in perturbation
theory. If W[l, l] =lnZ[l, l ] is the connected-part gen-
erating functional of the theory (see Sec. II), then invari-
ance of the Lagrangian, Eq. (2.11), under the transforma-
tion (Bl) means

f dz', f dp'C(p', z';p, z;co=0)= M(z) ., aI(z) . . . a
Bz az

(B5)

In the presence of an interface, as the magnitude of l(z)
vanishes, the profile M(z) remains and, therefore, the
correlation function diverges. By virtue of Eq. (2.9), this
also means

Ward identities concerning various correlation functions
of the theory. By taking a further derivative 5/5l(x', t'),
we obtain

, dl(x', t') 5 W[l,l]; 8 5W[l, l]d d'
a 5l( ~ t )51( t)

="
a 5l( t)

(B4)

that is, for an inhomogeneous field l (x, t) = l (z),

W[l, l]= W I —e', lax;'

and hence

(B2)

which implies that, barring anomalous behavior,

(B6)

dp R (p;z, z';co =0) =R (q =0;z,z', co =0) =0,

d Bl(x, t) 5W[l, l]dx dt
ax,

(B3) 11111Q)q =0,
q~o

(Bj)

This relationship can be used to generate a number of to all orders in perturbation theory.
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