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The concept and character of the local magnetic field distribution P(h), developed in an earlier
paper, is extended to higher space and spin dimensions and to several special but spatially periodic
systems, disorder being the subject of a future paper. For Ising spins on standard lattices, P(h) is
shown to have a shape which is dimension dependent but relatively coordination independent.
While in two dimensions (2D) P(h) has a dip at h =0 at T„ in 3D it is extremely flat near the ori-

gin, in 4D it is pseudo-Gaussian, while in all dimensions it is qualitatively similar to a discrete form
of the corresponding universal block-spin probability function. Bethe lattices, studied for all spin di-

mensions, are shown to be quite different. Resu1ts are also presented for P(h) and the ground-state
degeneracies of some one-dimensional frustrated systems exhibiting high-degeneracy disorder points.

I. INTRODUCTION

This paper is the second in a series of three concerned
with the local magnetic field distribution P(h, T) in clas-
sical spin systems. The first, ' referred to hereafter as pa-
per I, was concerned explicitly with Ising systems, both
with the formal information contained in P(h, T) and
with the evaluation of P(h, T) in some soluble one-
dimensional (lD) and 2D cases. This paper extends the
study to other systems without spatial disorder. The case
of spatial disorder of the Hamiltonian is the subject of the
third paper in the series (paper III).

Section II of this paper is concerned with further
evaluations of P(h, T) for Ising models on higher-
dimensional conventional lattices and on Bethe lattices.
Since the higher-dimensional standard lattices have not
yielded to exact solution they are studied by Monte Carlo
simulation. The Bethe lattice is exactly soluble. Just as
P(h, T) was found in paper I to have a qualitatively simi-
lar shape for all two-dimensional lattices close to criticali-
ty, also a qualitative universality is found in the shape of
P(h, T) in 3D. However, the shape at T, is very different
in these higher dimensions. In 2D, P(h, T, ) has a dip at
h =0. By contrast, in 3D, P (h, T, ) is very flat around the
origin, while for 4D, P(h, T, ) is still very much like its
quasi-Cxaussian high-temperature form. These shapes are
qualitatively analogous ' to those of the corresponding
block-spin distribution functions in the limit g »L »a,
where g is the correlation length, L is the block dimen-
sion, and a is the lattice scale.

Section III considers some simple but interesting one-
dimensional examples of systems with finite residual en-
tropies at zero temperature. These are studied as back-
ground to more complicated models with frustration

and systems with disorder [as studied further in paper III
(Ref. 2)].

In Sec. IV the formulation of statistical mechanics in

terms of P(h, T) is extended to vector spins. Explicit ex-
act evaluations of P (h, T) are presented for Bethe lattices.

II. ISING MODELS

A natural extension of previous studies' is to examine
the structure of P(h) for higher-dimensional lattices to
gauge the effect of dimensionality. Unfortunately, no ex-

act solutions are known for Ising models on standard
finite-dimensional lattices of dimension greater than two.
Consequently, we must turn to approximate methods or to
artificial lattices, such as the Bethe lattice. We consider
these in turn.

Frank et al. developed an approximation procedure
which effectively allowed them to estimate the moments
of P(h) for a variety of three-dimensional lattices at T, .
In principle, one can recover the distribution from the
moments, but in practice the errors are too large, so that
negative weights appear in the reconstructed distribution.

Since it appeared that little progress could be made
analytically on standard lattices, Monte Carlo simulations
were performed. In all cases these were for nearest-
neighbor Ising models characterized by the Hamiltonian

J for nearest neighbors
0 otherwise

l,J

cr;=+1 .

A variety of lattices and temperatures were studied. The
temperature scale for these simulations was set by the
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values for T, based on high-temperature series and report-
ed elsewhere: kz T, /J =2.7044+ 0.0001 (diamond), '

4.5108+0.0002 (simple cubic), ' 6.3533+0.0010 (body-
centered cubic), ' 9.7952+0.0005 (face-centered cubic), '

and k~ T, /J =6.6817+0.0015 (four-dimensional simple
hypercubic). " No attempt was made to locate T, precise-
ly in these simulations since detailed information (such as
critical exponents) was not sought.

Simulations generally have the most trouble converging
when T =T, . However, since it is known that P(h), de-
fined by

0.5

DIAMOND

T/T = 0.0c
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TABLE I. Nearest-neighbor spin-spin correlation function at
the critical point (ooa & ) z. as obtained from Monte Carlo simu-

lations and compared to high-temperature series results.

Lattice

Diamond
sc
bcc
fcc
4D simple
hypercubic

High- T series

0.437 +0.003
0.3307+0.0001
0.2732+0.0002
0.2474+0.0001
0.188 +0.003

Simulation

0.44+0.01
0.34+0.01
0.28+0.01
0.26+0.01
0.20+0.01

is symmetric at T„only P, (h)= —,
' [P(h)+P( —h)] need

be extracted at the critical temperature. This function
couples to the energy, or equivalently to the nearest-
neighbor correlation (o.oo&), which is less sensitive to
critical fluctuations than are the magnetization and
P, (h)= —,[P(h) —P( —h)]. The criterion for convergence
at T, was thus taken to be that ( o co ~ ) should equilibrate.
This correlation can then be compared with estimates ob-
tained from high-temperature series.

The numerical simulations were performed on lattices
of varying sizes and with periodic boundary conditions,
employing the standard Metropolis algorithm. ' Techni-
cal details associated with these simulations can be found
in Ref. 8. Briefly, however, a given system would initially
be brought into equilibrium and then be allowed to remain
there while data was accumulated for thermal averages.
Statistical errors quoted refer to the fluctuations in the
thermal average during the second half of the averaging
part of the simulation. The simulation was performed on
three different lattice sizes (four at T, ), with the largest
system containing roughly 30000 spins. Then the data
was plotted against the inverse of the number of spins in
the system to allow extrapolation to infinite size.

The results of these extrapolations can now be com-
pared to high-temperature series results' '" to gauge the
accuracy of the simulation. This comparison for
(croo&)r (see Table I), shows reasonable agreement be-

C

tween the two sets of results. Based on this, one would
expect the data to be accurate to within a few (3 or 4) per-
cent, which is sufficient to determine the general nature of
P(A).

Figure 1 displays P(h) for four different three-
dimensional lattices. All of these lattices show an ex-
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FIG. 1. P(h, T) for four different three-dimensional Ising
ferromagnets.

tremely flat profile near T, . Whether there is a slight dip
or bump at h =0 cannot be conclusively determined from
this data, but it is clear that these profiles differ from
those of the two-dimensional lattices which exhibit a clear
zero-field minimum at T, . It is also evident that in three
dimensions, as in two, coordination number plays very lit-
tle role in the qualitative profile.

To see the dimensional dependence explicitly, it is con-
structive to look at the simple cubics in dimensions one
through four (i.e., the linear chain, the square net, the
simple cubic, and the four-dimensional simple hypercu-
bic). These lattices all have coordination number equal to
twice their dimension. The infinite-dimension limit yields
the mean-field result, to be discussed later, and will be in-
cluded with this group too. These lattices have critical
temperatures scaling roughly with coordination z, provid-
ing a consistent way to normalize all the temperatures at
which P(h) was measured. (either analytically or by simu-
lation). More exactly, one finds 0( T, /z (1, where the
lower limit corresponds to the linear chai~ and the upper
limit to mean-field theory.

The graphs in Fig. 2 show P(h) for each of the five sys-
tems measured at each of the five (renormalized) transi-
tion temperatures. The profiles for any group of lattices
above their transition temperatures are very similar pro-
vided that they are measured at the same renormalized
temperature. The most dramatic example of this is seen
by looking at the one-, two-, and three-dimensional data
at a temperature corresponding to T, in three dimensions;
all three profiles are extremely flat.

Below T, the symmetry is broken and the profiles lose
much of their similarity. In the case of the four-
dimensional hypercubic the approach to mean-field theory
can be seen by noting the development of a peak away
from h =0, rapidly approaching h =Jz, the zero-
temperature result, as the temperature is lowered.

Clearly, the coordination of a lattice affects P(h) in
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T/z =VaT zo
C

=0.5673
T/z =VsT

=0.7517
T/z =~/e Tc

=0.8340
TABLE II. Local-field fluctuations v at T, for 3D lattices.
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that it determines the number of 5 functions. Additional-
ly, it helps set the temperature scale. Beyond that, howev-
er, the profile of P(h) is more sensitive to the dimension.
At T, this dimension dependence comes primarily from
the two-spin correlations (crpo

& },reflecting the amount of
short-range order which precedes the onset of long-range
order. This does not imply, however, that higher-order
spin correlations are insignificant. They determine the
higher-order moments of P(h) and their neglect or in-
correct determination results in the violation of sum rules
and inequalities, giving rise, for example, to unphysical
negative weights in the distribution. Another useful
measure is provided by the parameter

v=[h —(h) ]/z (3)

introduced in paper I. Table II gives values for this pa-
rameter for the various three-dimensional lattices studied
at T=T, . They are substantially less than the corre-
sponding values found for two-dimensional lattices, indi-
cating that less local order is present at the onset of long-
range order in three dimensions than in two dimensions.
A further illustration is given in Figs. 3 and 4 which show
snapshots of the two- and three-dimensional hypercubes
at T=T, and demonstrate clearly the presence of larger
domains in the two-dimensional case.

We now introduce a general formula for P(h) which is
useful for identifying the contributions from various
correlations and which simplifies significantly on lattices
with no closed loops; it also admits straightforward gen-
eralization to classical vector spins, discussed later.

We start with the definition' of Eq. (1) in paper I:

h z

FIG. 2. P(h, T) for simple (hyper) cubics of dimensions one
through four and for the mean-field limit.

Pi(h ) = (5(h —h; ) ) 'Z, (Ph )
Tre,

(6)

A ~ = —J g opoj Hpop H) g—o'. —
j=] j=1

Hp is an external field included for the purpose of obtain-
ing the self-consistency equation .

where the notation ( )' refers to a thermal average using
the Hamiltonian A '. (5(h —h; ) ) ' involves only spin
correlations not containing o;. On standard lattices its
evaluation is still a formidable undertaking requiring
knowledge of multispin correlations. On the other hand,
for special lattices with no closed loops, such as the Bethe
lattice, Eq. (6) can be exploited to advantage. Passage to
mean-field theory and rn-vector generalizations follow
readily.

Because of its large surface area, calculations on a
Bethe lattice must be approached with caution. For in-
stance, Eggarter' pointed out that for free boundaries the
Bethe lattice has no phase transition. However, the more
traditional Bethe' -Peierls' approach, ' which assumes
boundary conditions determined self-consistently, does
have a phase transition. This latter approach will be used
in our discussion. .

The Bethe-Peierls method, ' ' leading to the self-
consistent field equation (4) below, has been shown to be
an exact solution on a Bethe lattice with the appropriate
boundary condition, as discussed above, although it is
only approximate for conventional lattices. An effective
Hamiltonian is assumed for a cluster consisting of site 0
and its z nearest neighbors:

P;(h)=Tr[e ~ 5(h —h;)]/Tre ~, h;=g J~oq. '(4)

This can be rearranged to give

P;(h) =Tr'Tr;[e ~~5(h —h; )]/Tre

=Tr'[e ~ Z, (Ph; )5(h —h; ) ]/Tre

where A =A +h;o.; is independent of o.;, Tr; is the trace
over o.; while Tr' denotes the trace over all other spins,
and Z~(ph;) is the partition function of a single free spin
in a field h;. Taking advantage of the 5 function, we ob-
tain

W~: ~
~ ( ~

FIG. 3. Snapshot of 60)&60 2D Ising lattice at T/T, =1.01
after 11500 Monte Carlo steps per spin. Black area denotes
up-spins, white area denotes down-spins.



7358 CHOY, SHERRINGTON, THOMSEN, AND THORPE 31

1st
Plane

SFd
Plane

2nd
Plane

4th
Plane

FIG. 4. Snapshots of 24&(24)&24 3D Ising lattice at T/T, =1.01 after 4800 Monte Carlo steps. The pictures indicate four adja-
cent planes.

(8) Equation (11) can be rewritten as

via

a(PH, )
' =

a(PH, )
'

where

Z = e I 2 cosh[p( J+H ~ )]I'

+e '
I 2 cosh [P(J—H

~ ) ] I
'

(9)

is the partition function associated with Eq. (7). Ho may
then be set equal to 0. H& is an effective, temperature-
dependent field acting on the o.&'s accounting for both Ho
and interactions with all the (z —1) remaining neighbors
(other than o.o) of each oj Straight. forward algebra yields
[from Eq. (9)]

z —2

(1 t)Y' ' —2t g Y—'+(1—t)=0,
i=1

(13)

[x —3x +(x —1)( —4)' ] .

For z =5,
(15)

where Y=A, I
' ', A,

~
——e ', and t =tanh(pJ); a form

suitable for analytic solution for H~ up to z = 10.
We quote some of the results below in terms of—2PJ

For z =3,

k, = —,
' [x —2x ' —1+(x —x ')(1—2x —3x ) ] .

(14)

For z=4,

tanh[PH, /(z —1)] = tanh(PJ)
tanh H)

and the critical temperature

tanh(P, J)= 1/(z —1), P, = 1/k~ T, . (12)

Ai ——I[c+(c —4)' ]/2j
where

c =[1—x+(5x +2x+1)' ]/2x .
For z =6,

(16)
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X,= I [D+(D' —4)'"]/2I',
where

D =[x '+(x +4)' ]/2 .

With these fundamental equations in place we now re-
turn to Eq. .(6) for the evaluation of P(h) for Bethe lat-

I

Tr'e ~~=(Trje ' J)'=(2coshPH))' (18)

while

tices. Because there are no closed loops the Tr'e
term splits up into contributions from z independent lat-
tices

Tr'e i 5 h —Jg aj ——f e '""(Trje ' ')'= J e '""[2cosh(pH~+iJx)]'
J

Z
z I3H

1
sc(,+,)/2e 5(h —Js) .

Thus,

PhH( /I
P(h)=

Z0
(2coshPh) g C~, +,~~q5(h —Js),

As demonstrated in paper I, Eq. (52), for z =3 the
weights m, can be expressed in terms of the magnetization

m, per spin, and e= (0'po'( ):
1 3[tanh(3PJ) —e]
2 3 tanh(3PJ) —tanh(PJ)

where

Zo ——I 2 cosh[p(J +H) )]I'+ I 2 cosh[p(J H) )]j' —(21)

with H& given as above, zero above T„finite below.
An alternative to the use of Eq. (6) is to note that the

moments of ( h /J) =g. oj follow directly from Eq. (7),

(( h /J)") =z [a/a(pH, ) ]"z, (22)

and further that, given all the moments up to ((h/J)'),
one can in principle solve for the weights w, in the
(2z+1) delta functions constituting P(h). In practice,
however, the procedure is tedious and complicated. '

The passage to mean-field theory follows from Eqs. (20)
or (22) by taking z~no keeping Jz constant, while H&

should scale with Jz. Then,

3m [tanh(3pJ) —1]
tanh(3pJ) —3 tanh(pJ)

1 3e—tanh(PJ)
2 3 tanh(3PJ) —tanh(PJ)

m [1—3 tanh(PJ)]
tanh(3pJ) —3 tanh( pJ)

For the Bethe lattice with z =3,
1

m =(oo) =
1 +XI +2A, ]X

(29)

and

Zo =[2cosh(PH
& )]'

H, /Jz =tanh( pH ( ),

(23)

(24)

1+A, i
—2A, )x

e=(croo, ) =
1+A, &+2k, &x

(31)

((h/Jz)") =tanh"(pH~)+0(1/z), (27)

i.e.,

P ( h ) =5( h —Jz tanh(PH ) ) )=5(h Hg ), —

from Eq. (24), which is another way of saying that mean-

field theory becomes exact when z~ m with H& defining

precisely the local field. '

P, =zJ .

Equation (22) also shows that

((h/J)") =z(z —1) . . (z —n —1) tanh"(pHI)+O(z" ')

(26)

In Fig. S, P(h) is plotted against h/z for z =3, 4, 6,
and infinity. It is symmetric for T&T„reflecting the
fact that the magnetization is zero. At infinite tempera-
ture, the weights are determined by counting the nun1ber
of ways to make a particular value of h. ' Since there are
more ways to make h =0, the distribution is peaked there.
When T =T„ the distribution is still peaked at small h,
with more weight being at h =0 as the mean-field limit is
approached. The symmetry is broken bdow T, when
spontaneous magnetization sets in. Again the approach to
mean-field theory is seen as the maximum in P(h) moves
from h =Jz, with z =3, to h =Jzm for larger z.

It is apparent that there is a strong dependence of P(h)
on the coordination number z for Bethe lattices. Not only
is the number of delta functions clearly determined by z,
but also the profile of the distribution, particularly at T„
is sensitive to z. As argued previously this arises from the
strong dependence on z of the two-spin correlation,
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P(h)

T/Tc = O.o T/T = 0.9 T/T = 1.0c T/T = 1.2 T/T c

0.0

. 0.5

l o.o

. 0.5

11.0

where Ql denotes a block of linear dimension L and nL is
the number of spins within AL. We shall not consider
this quantity for general L but note that from P(h) we
can readily calculate the block-spin distribution for the
block consisting of a central spin and its z nearest neigh-
bors; we denote this P'+'(S) F.or notational brevity it is
convenient to work with the related quantity P'+'(t)
given by '

1 -1 0 1 -1 0 1 -1 0
h/z

. o.o
1 ~ 1 0 1

FIG. S. P(h, T) for Ising spins on Bethe lattices of coordina-
tion 3, 4, 6, and oo.

P*+ttt)=(5 t —g S, ),j=0

P'+'(S)=(z+l)P'+'[(z+l) 'S] .

(34)

(35)

(oocr~ }T
——(z —1) (32)

For convenience we set the nearest-neighbor exchange J
equal to 1. Then, we find

P ()=t( SS —Sot
'

Q S ),j6Qi
(33)

the only spin correlation of significance on the Bethe lat-
tice.

To conclude our studies of Ising systems on regular lat-
tices we return to the question of universality or quasi-
universality in the shape of P(h) observed in paper I and
this paper. As we have already remarked we find a quali-
tatively dimension-dependent but relatively coordination-
number-independent quasiuniversality in the shape of
P(h) at T-T„' in particular, we find a flattening at the
origin for d =3 and a dip for d =2. These behaviors are
reminiscent of those obtained by other authors ' (from
renormalization-group analysis or finite-size scaling stud-
ies of Monte Carlo simulations ) for the block-spin distri-
bution Pl. (S), defined below, where L is the block scale
and S is the normalized block spin in the range
g »L »a, where g is the correlation length and a is the
lattice spacing. Within this range, the block-spin distribu-
tion, now called P (S), is believed to be universal ' and
non-Gaussian for d ~d„ the upper critical dimension.
The results found ' for P (S) for d =3 and d =2 are
qualitatively very similar to those we find for the local
P(h), albeit that P (S) is a continuous function and P(h)
is a discrete one. [Figures 7(a) and 7(b) show this compar-
ison, and also with another distribution defined below. ]

The block-distribution function P(S) is defined by

P '+'(t) = (5(t —S,—h;) }
= J dh(5(h —h;)5(h —t+So)} .

(5(h —h;)5(h (+S—o) }

Tr[e ~ 5(h —11;)]Tr[e ' '5(h t +So)]—

Thus,

e~"P (h)5(h t + I )+e ~"—P(h)5(h t —I)—
(37)

ePh+ePh

P'+'(t) = e~"P(l )
Ph + —Ph

+
h=t —1

e-/'"P(h)
e +e h g+f

Ph —Ph

(38)

In Fig. 6 we plot P'+'(t) for the square net at T, using
our results from paper I; P'+'(S) follows by simple scal-
ing. Note that it has one extra 5 function compared with
P(h), a first step on the route to the quasicontinuous
PL (S) as L~ co. Equation (38) can be understood physi-
cally since P+(h) =e +—~"/(2coshPh) are the probabilities
for the central spin to be up (+ ) or down ( —) in the field
of its neighbors h.

We also note from Eq. (36) that the symmetric part of
P(t) is given

' [pz+l(t)+Pz+~( t)] J d~ 5[~ 2( l)] P(co/2)+P( —~/2)
5[ —2(t —l)] P(co/2)+P( —co/2)

—pcs 1+e -P
o

=I dcoS( k, co) I5[co—2(t + I )]+5[co 2(t —I)]]— (39)

using the result in Eq. (29) of paper I. This relationship is
interesting as all explicit thermal factors are now r'e-

moved.
In Fig. 7 we compare the scaled distributions for P(h)

and P'+'(S) with the P (S) values obtained by Bruce
and Binder. The field h =JS and we take J=1 for con-
venience in Fig. 7. Clearly, these small-block functions
already capture the qualitative spirit of the universal criti-
cal distribution although further work is needed to see
more precisely the progression to large L (see also Ref. 4).

0.5-

0.4-

0.3-
+

0.2-

0.1-

I I
-5 -3 -1 0 1 3 5

FIG. 6. P '+'(t) for the square net at T, .
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pure and in spatially random systems. Examples of pure
systems are Ising antiferromagnets with topological frus-
tration on nonbipartite lattices (such as the triangular
net ' and the face-centered-cubic lattice ) and anisotro-
pic next-nearest-neighbor Ising (ANNNI) models. Ex-
amples of disordered systems are the spin glasses and
magnets in random fields. They are normally character-
ized by the existence of large ground-state degeneracies
and hence residual entropies. Disordered systems are
the subject of paper III and the general pure frustrated
case will not be discussed here. However, we do provide a
discussion of two simple examples which provide a direct
counting of ground-state degeneracies without elaborate
techniques. These examples are both one dimensional, al-
though higher-dimensional analogs with the same basic
mechanism exist, but are such that lattice constraints
complicate the counting problem, permitting exact solu-
tion only for specific 20 lattices.

The examples we consider here are the antiferromagnet-
ic (AF) chain in an external field and the next-nearest-
neighbor chain with competing interactions. The stan-
dard thermodynamic properties and spin correlations have
been studied by previous authors, ' using transfer matrix
techniques, and provide sufficient information to con-
struct P(h) directly. However, since we are concerned
mainly with ground-state degeneracies and their effect on
P(h) it is interesting to construct explicitly the ground
states.

Consider a one-dimensional Ising chain with nearest-
neighbor antiferromagnetic interactions in the presence of
an external field, with Hamiltonian

0.3

X —1 N
A =Jo g o o +i Hg o. — (40)

lL
'

A
0.2

V

~)o

0.1

0.00 0-5 1 -0 1.5 2.0 2.5

One can easily see that the lowest energy configuration
is ferromagnetic for

~

H
~

& 2JO while for
~

H
~

& 2JO it is
antiferromagnetic. However, when

~

H
~

=2Jo the
ground state is highly degenerate and any configuration is
a ground state provided that no two adjacent spins point
antiparallel to the field.

This ground-state degeneracy is conveniently enumerat-
ed with the help of the tree diagram of Fig. 8. Each level

FIG. 7. (a) Comparison of P(h) (shell), P'+'(S) (cluster), and
P„(S) for 20 lattices. The dashed line is from Monte Carlo
determination (Ref. 4) of P (S) and the solid line is a
renormalization-group (Ref. 3) estimate of P (S). (b) Compar-
ison of P(h) (shell) and P (S) for 3D lattices. The solid curve
is the result of a Monte Carlo determination (Ref. 4) of P (S)
and of a virtually indistinguishable renormalization-group (Ref.
3) estimate. (c) Same as (b) but using P'+'(S) (cluster). All dis-
tributions have been normalized by the second moment so as to
fit on the same scale. The field h =JS and we take J= I for
convenience.

III. DISORDER POINTS IN ONE DIMENSION

There is currently much interest in systems with frus-
tration and competing interactions or fields, both in

Ul 1

U2 = 1

UT = 23

UT4=3

T

dl = 0

d2 = 1

l U&- 01 1

~~L U2 1 d 0

UJ

T l T T

FIG. 8. "Tree" diagrams for counting the ground states of
the 1D antiferromagnet in a field at its disorder point. Tracing
a path from a top spin to any one of the corresponding bottom
splns maps out a possible ground state.
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on the tree represents a spin on the chain. Every path
from the top to the bottom level maps out a ground state
and hence the ground-state degeneracy of a system of X
spins is equal to the number of branches at the Nth level.

There are two types of tree corresponding to the initial
conditions o& ——+1. The rules for construction are that
every down-spin must be followed by an up-spin while
every up-spin branches into a down-spin and an up-spin.
It is useful to count subsets of the set of all ground states
based on the orientation of o.

1 and o.N. We denote these
subset numbers by

QlV(a~ = + 1,&1= + 1), Q~(&IV = + 1,&1=—1),
d~(o~ ———l, c7) ——+ 1), d~(o~ ———l, cr) ———1),

Configuration h/Jp

2
0
4
0
2

Relative
probabilities

0,'

CX

1

CX

TABLE III. Possible ground-state configurations, the local
field at the central site h/Jp, and the probability of occurrence
of clusters of three spins in the AF Ising chain at the disorder
point [model defined by Eq. (40)]. The parameter
a={1+V5)/2.

+N ~N —1

(41)
m = = =0.4472,a —1 1

a+1 V5
(51)

GN+1=»N +dN (42)

dN dN —1

T
dN ~N —1

+N +N —1 +dN —1

Hence, the number of ground states at the ¹hlevel, G~,
satisfies the relations

a result which can also be obtained from the free energy.
In 1D, knowledge of the energy per bond and the mag-

netization immediately yields P(h). However, it may
also be calculated usefully from these state counting argu-
ments. In particular, consider clusters of three spins and
the corresponding local field on the central site. The five
possible clusters (three are ruled out as having two or
more adjacent down-spins) are shown in Table III together
with their probability weights [determined by analogy
with Eq. (50)]. P (h) is now easily written down as

GN+1 GN +GN —1 (43) P(h) =g w, 5(h —Jos), (52)

Equation (43) is the famous Fibonacci sequence. Denot-
1ng with

GN+1
lirn =EX

N —+ 00 GN

we have [from (43)]

cx = 1+Ex

whose only positive root is the golden ratio:

a=(1+V 5)/2,

yielding the thermodynamic limit entropy per spin:

S= lim [k~(lnG~)/N]

(44)

(45)

(46)

(47)

wo ——2a /(2a +2a+1)=1—1/v 5=0.5528,

w2J ——2a/(2a +2a+ 1)=(3/V5) —1=0.3416,

w4q, ——(2a +2a+ 1) ' = 1 —2/V 5—0. 1056 .

(53)

These results are shown in Fig. 9 along with those on ei-
ther side of the disorder point. The peak at h =0 clearly
indicates that a finite fraction of the spins are free to flip
at no cost in energy.

Another system, thermodynamically related to that of
Eq. (40), is the 1D Ising chain in zero field with compet-
ing next-nearest-neighbor interactions with Hamiltonian

=k~ ln[(1+ V 5)/2]=0. 4812k' . (48) = —J) Q 0ccT;+ )
—J2 g 'cr; O'I+2 . (54)

It is useful to note that

uN+dN
11Ql ) )

=A
uN +dN

(49)

Since there are no closed loops it is useful to define a new

Ising variable, '

Prob(o; =+ 1) z

Prob(o. ; = —1)
(50)

which means that an up-spin generates a factor of u more
ground-state configurations than does a down-spin. For a
typical spin near the center of a large open chain we can
build trees on either side so that

1.0-

4- 0.5-

I

H = 2J0-E

I

I

I

I

I

-c
I

4JO-c
2JO- 6

H=2J0

»0
0 4JO

H 2J0+
I

I

I

I

I

I

I

I

I I I

I 4JO+c
2Jo+ 6

and hence, in the thermodynamic, limit the magnetization
per spin is

FIG. 9. P(h) near the disorder point of a 1D Ising antifer-
romagnet at zero temperature in a field [see Eq. {40)]. Here, e is
an infinitely small positive quantity.
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&S =~SOS+1~ &I' =+ &

so that Eq. (54) transforms to

P = —J) $v; —Jzg~;r;+),

(55)

(56)

TABLE IV. Possible ground-state configurations, the local
field at the central site h/J&, and the probabihty of occurrence
of clusters of five spins in the Ising chain with competing in-
teractions at the disorder point [model defined by Eq. (54)]. The
parameter a=( 1+V 5)/2.

identical with Eq. (40). Consequently both models yield
the same free energy; however, they have very different
internal-field distributions. We shall consider again only
the zero-temperature situations. Finite temperatures can
be studied using the formalism of paper I and the
knowledge of multispin correlations of the 1D AF chain
in a field. However, as in the previous model, there is
no phase transition at finite temperature and the most sig-
nificant physics from our present viewpoint arise from the
high ground-state degeneracy at the disorder point
Jz ———J~/2, where J~ &0, Jz &0. Hence, we concentrate
on T =0 near this point. From the equivalence of Eqs.
(56) and (40) we easily deduce that if Jz& —J&/2 the
ground state is ferromagnetic while if Jz & —J&/2 it con-
sists of spins alternating in pairs; two up-spins, two
down-spins, etc. At the disorder point Jz ———J&/2, any
spin configuration is a ground state provided no spin has
two neighbors antiparallel to itself.

Define a paired bond to mean that two nearest neigh-
bors are parallel. An unpaired bond consists of two anti-
parallel nearest neighbors. ' All the ground states can be
constructed by requiring that every unpaired bond be fol-
lowed by a paired bond while allowing a paired bond to be
followed by either a paired or an unpaired bond. It is easy
to see that these bond rules map into the spin rules of the
previous problem and we can then write down essentially
the same trees and recursion relations. This gives the
same entropy for this disorder point as for the antifer-
romagnet in a field, which is required since their free en-
ergies are identical.

To determine P(h), we must look at a cluster of five
spins since each spin has four interacting neighbors.
Table IV shows the possible ground-state configurations
of five spin clusters along with the field at the central site
and the relative probability for that configuration to
occur. The latter is determined analogously to those given
in Table III where now a factor of a is associated with a
paired bond at the end of a cluster while an unpaired bond
takes a factor of l.

From Table IV, it is seen that P(h) has the form of Eq.
(52) but with Jo replaced by J&. There are seven delta
functions with weights:

wo ——4a /(6a +Sa+2)=(3/~5) —1=0.3416,

w+J, ——(a +2a)/(6a +Sa+2)=(3—V 5)/4 —0.1910,
(57)

w+zq, =2a/(6a +Sa+2)=1—2/V5 —0.1056,

w+3q, ——(6a +Sa+ 2) ' =7/4M5 ——,
' =0.0326 .

Configuration

TTTTT'

Ttttl
JTTTT

llttt
LTTTT

llttl
Xttll

T lb t t
Ttlll
T Ill t
blitt
LLJTT

h/Jj

1

2
2
0
0
3
1

1

—1
—1

0
—3

0
—2
—2
—1

Relative
probabilities

a
a
a
1

a
a2

1
a2

a
a2

S i 3 m= —, ln2 ——L —=0.323I,
kg

'
m 6

where L (x) is Lobachevskiy's function. ' Compare this
with the entropy S for the one-dimensional models, Eq.
(48).

I

J =-V~J, I

I

I

I

I

I

II I I II

J2 = -~/a J,+ 6

-aJ -J)
I

J) 3J) -Ji -2c J) + 2f
1

-2J) 0 2J) 0

side, it has the same limiting form, but that limit is dif-
ferent from the value precisely at the disorder point.
Once again, the peak at h =0 gives an indication of the
large number of spins that can be flipped at no cost in en-
ergy and hence of the finite entropy at T =0.

Finally we note some similarity between this distribu-
tion and that of the triangular antiferromagnet at the dis-
order point. This suggests that the underlying physical
mechanism for the infinite ground-state degeneracies are
the same in both cases even though the mathematical
treatment is more complicated in the triangular antifer-
romagnet. The ground-state entropy per spin for the tri-
angular antiferromagnet is

In Fig. 10 we show P (h) at the disorder point as well as
on either side of the disorder point. Unlike the Hamil-
tonian (40), there is no field to break the symmetry in this
problem and P(h) is symmetric. It is interesting to note
that as P(h) approaches this disorder point from either

FIG. 10. P(h) near the disorder point at zero temperature
for an Ising chain with competing nearest- and next-nearest-
neighbor interactions [see Eq. (54)]. Here, e is an infinitely
small positive quantity.
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IV. . CLASSICAL VECTOR SPINS P;(h) = (5(h —h;)), h; =g JiSJ+H;, (68)

g JijSi Sj —g H) St (58)

where the S's are unit vectors on an m-dimensional
sphere, and JJ and H; are arbitrary. Analogously to pa-
per I we define the local field h; as

h; =g J)iSJ +H; .
J

The obvious generalization of Eq. (6) of paper I is

( O S; ) = (0 h; W (/3h; ) ),

(59)

(60)

where 0 is any classical operator not containing S;,
h; =

~
h; ~, h; =h;/

~

h; ~, a unit vector, and the general-
ized Langevin function:

W~(x) = in[I ~2 ~(x)/x ']
ax

=[I gp(x)/I g2 )(x)] . (61)

The I„(x)are modified Bessel functions of order v.
Choosing 0 to be an arbitrary unit vector u, we obtain

m; u=(S;) u=u (h;W (/3h;))

and hence the local magnetization is

(62)

In this section we first establish a generalization of the
concept of local fields for classical m-vector spins and ob-
tain the formal analogs of the relations given in paper I
connecting P (h) with thermodynamic quantities.
Numerous differences from Ising models will also be
pointed out. Closed-form exact results are obtained only
for the one-dimensional zero field and Bethe lattices, but
these serve to illustrate the properties of P(h) in the gen-
eralizations of paper I. Initially we shall consider general
J~J but explicit results will only be given for pure systems,
leaving the study of random systems to paper III.

Consider the m-vector classical Heisenberg model in a
field

whence

m;= f dhhW (/3h)P;(h),

E;=——,
' f dh(h+H; h)W (Ph)P;(h),

(69)

(70)

where dh is an m-dimensional volume element. Similar-
ly,

M =N f dhhW (/3h)P(h)

and, specializing to a uniform external field H,

E = —,'N f d—hhW~(Ph)P(h) —HM/2,

where

P(h)=N 'QP;(h) .

(71)

(72)

(73)

Note that in general P,M, E, etc., are temperature depen-
dent but we do not indicate this explicitly.

Because of the nontrivial nature of the dynamics of vec-
tor spins we cannot express the neutron scattering
response function S( k, co) in terms of P(h) alone.

Let us now consider setting up a formulation for ob-
taining P(h), concentrating on the pure ferromagnetic
nearest-neighbor case:

J=1 (ij) nearest neighbors,J"= '

0 otherwise .

In the pure case

P(h)=N 'QP, (h)= 5 h —g S) ),
l j=1

(74)

P(h)= f dye ' '"G(y),1

(2m )
(75)

where the sum extends over nearest-neighbor spins. Then,
in terms of the characteristic function G (y),

m;=(h;W (/3h;)) .

Similarly, the choice of 0 as h; yields

(S;.h;) =(h;W (Ph;)) .

(63) where

(64)

(76)

M= (66)

E=QE; . (67)
l

The analog of Eq. (11) of paper I for the probability
distribution of the local field at site i is

These are the analogs of Eqs. (7) and (8) of paper I. The
analog of Eq. (9) of paper I for the "local energy" E; is

E; = ——,
' ((h;+H;) S, )

= ——,'((h;+H; h;)W (/3h, )) . (65)

The total magnetization M and total energy E are given
by

the product being taken over the z nearest neighbors of a
spin S;.

The formulation of paper I cannot be carried forward to
obtain G(y) in terms of a finite set of multispin correla-

iy s.
tions alone. This is because e ' cannot be decomposed
into a finite-order polynomial in SJ, unlike the form

e ' =cosy +io.
z siny

which holds only for oj ——+1. Furthermore, P(h) is now
a continuous distribution and knowledge of a finite set of
its moments is not sufficient to reconstruct the distribu-
tion, unlike the situation in the Ising case where the first
(z+1) moments suffice. Instead, a knowledge of al/
eigenvalues and eigenfunctions of the transfer integral
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operator is necessary. With the exception of one dimen-
sion or the Bethe lattice this is completely lacking. In the
latter cases the calculation is straightforward but tedious;
for example, in one dimension:

G(y)=g (A,„/Ao) f'dSpo(S)e'"' g*„(S)
n

X f dSQ'(S)e'"' g„(S)

0.0000 1 0&h &2
8mh

'

0.5566 1
, 0&h&1

8m

(3—h), 1&h &31

TABLE V. P(h, T = ao ) for m =3 classical vector spins for
z =2,3,4, where h =

~

h
~

.

P(h, T= op)

where g„(S) and A,„are the eigenfunctions and eigen-
values of the transfer integral operator. All the integrals

can be evaluated using product expansions of e'"', as well
as using addition formulae ' to sum the infinite series
which results. The details. are not too illuminating, so we
shall not dwell on this approach here, although it
represents the only systematic method for obtaining P(h)
from these eigenfunctions (if known) of which we are
aware.

In one dimension or for the Bethe lattice we shall in-
stead exploit the basic formula [Eq. (6)] to advantage.
Here, the traces are integrals over m spheres and the
terms simplify. Let us proceed directly with a Bethe lat-
tice, the chain then being a special case with z =2. As
discussed earlier we may express the Hamiltonian as

4 = —g So'Sq —Ho'So —Hi'g Sq ~

0.9307 (8h —3h ), 0&h &2
64mb

(4—h), 2&h &4
64mb

Q lnZ 1 r) lnZ
~(PHo) H, =o

leading to the determining equation for H i.
dSp Ip/2(@ ) P(cos8o+H 1 )

~/2 cosep- (@) =0,

(84)
where W (4) is the Langevin function Eq. (61). Note
that H~ ——0 is always a solution and indeed is the only
solution for T& T„where T, is readily obtained from a
power-series expansion in H] yielding

where Ho is the external field, eventually to be set to zero,
and Hi is the internal self-consistent field. Then the par-
tition function is

dSp
Z = f exp(PHo cos8o)(Z')',

(P, )=1/(z —1), P, =1/kiiT, .

For T & T„Hi ——0, Eq. (82) also simplifies:

Z =[2 I (1+p/2)]'+'

(85)

(86).

where

dSj A A
exp( pSp S; +pH i cos8; )

Q)p

In general the solution of Eq. (84) is a numerical problem.
Of the three terms defining P (h) which we rewrite as

—PA '

P(h) =Zi(Ph )(5(h —h;) )'

=—g (21 +p)Ai(p)ki(PH i )Cf (cos8o) .

Here, CI is a Gegenbauer polynomial, p =m —2,p/2 .

rpp 2n'+i'/ /——I (1+p/2),
the 0; are polar angles measured relative to H&, and

2i'/ I (1+p/2)Ii+~/2(x)
A,i(x)= (81)

the first term is the most straightforward and yields

Zi (ph )=y~I~/2(ph)/(ph)p/

where

7.0-

B.O—

5.0—

(88)

Using standard properties of Bessel functions ' we have

dSp pHp cosep 2 I ( 1+p/2)~p/2(~ )Z= 0COS p

/2
COp

(82)
where

N=P(1+2Hi cos8o+Hi)'/

Self-consistency requires that

4.0—
CL

3.0—

20—

1.5 2.01.0
lhli~

FIG. 11. P(
~

h
~

)=4nh P(h) for m =3 spins on a chain.
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0.8- T/Tc=1 0
T/Tc = 2.0

where

@'=(PH&+2PHiir8„r—)'~ (92)

0.6

0.4-

0.2

0.5 1.5 2.5

with H& being the polar axis and 8„ the polar angle of r
with moc|u1us r =

~

r
)
. Hi ——

~
Hi

~

is obtained froin Eq.
(84). For finite Hi(T & T, ), the case of spontaneous mag-
netization, we see that P(h) acquires an angular depen-
dence through the integrands which are no longer spheri-
cally symmetric. For Heisenberg spina ( m =3) and
T) T, Eq. (91) simplifies to

(hei J sinh(Ph)/Ph
(sinhP/P)'

(93)

yq
——2~ I (1+p/2) . (89)

The last term corresponds to z disconnected Bethe lattices
correlated by the field H~..

Tr'(e i'
)
— [lI n(pIIi)/(pHi )'"]'

Tr(e ~ )

f [Ip)2(N)/W~ ]'
P

Above T, the middle term is essentially the classic prob-
lem of random walks, solved by Rayleigh for three-
dimensional lattices (corresponding to m =3 here) for z
up to 6. For general m&3, the problem is analytically in-
tractable except for some special cases; m =2 and z =2
and 3, which involve elliptic integrals, z =3, and m ~3,
which involve hypergeometric functions ' and the trivial
case of z~ac. For T & T, only numerical solution ap-
pears possible. A final formula for P(h) for all T is

I~)2(ph) dr .
h Ipn(C')' (Pi)" (2~} +' (e)"

'z

f dSc Ipg2(@)
P(h)=

(91)

0.5—

T/Tc = ~.0
T/Tc = 2.0——T/Tc= ~

0 4

4 0.3

0.2

0.'1

0 0.5 I 1.5 2 2.5 3 3.5
th)/J

FIG. 1&. P(
~

h
~

) =4m'Ii P(h) for m =3 spins on a Bethe lat-
tice with z =4. The second and higher derivatives of P(

~

h
~

)
are discontinuous at

~

h
~

=2J at all temperatures.

FICx. 12. P(
]
h

( ) =4irh P(h) for m =3 spins on a Bethe lat-
tice of coordination z =3. The first and higher derivatives of
P ( ( h

~
) are discontinuous at

(
h

~

=J at all temperatures.

P(h)=
p/2

1

~'"~,r[(p+ i)n]

4 I,'yz(p)
(94)

m =@+2, 0&h &2 .

Recovering the energy:

E/x = —w (p)

is a short exercise requiring the properties of Bessel func-
tions.

CONCLUSIONS

%'e have shown that the local magnetic field distribu-
tion for Ising models exhibits a quasiuniversal shape
determined principally by dimension rather than coordi-
nation. Near the critical temperature these shapes are
closely analogous to those of the universal block-spin dis-
tribution function for blocks of dimension large compared
with the lattice spacing but small compared with the
correlation length. Both functions provide useful thermo-
dynamic information, that from the local-field distribu-
tion as a function of temperature being complete (for pure
systems in uniform fields). Presumably a similar (quasi)
universality exists for higher-dimensional classical spins,
and certainly P(h, T) provides the corresponding thermo-
dynamic quantities, but we have only examined explicitly
systems on Bethe lattices.

We have also demonstrated for some one-dimensional
systems with T =0 disorder points that not only is there a
degeneracy singularity associated with these points but
also a discontinuity of shape of P(h). It would be of in-
terest to study systems with analogous frustration in
higher space and spin dimensions.

where P(h, T = ac ) is given in Table V. In Figs. 11—13
we exhibit P(

~

h
~

) =4rrh P(h) for z =2, 3,4. The peaks
in P(

~

h
~

) are progressively shifted to larger h as T~T, .
Van Hove —type singularities are noticeable for z =3 in
Fig. I2. These singularities weaken as z increases unti1
eventually P(h) =5(h —Hi) in the mean-field limit, easily
shown as in the Ising case. Fina11y, for completeness, we
give the result for the general m-vector chains:
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