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Field dependence of the residual-resistivity anisotropy in sodium and potassium
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Recent measurements of the low-field, induced torque in sodium and po'tassium by Elliott and
Datars show that the resistivity anisotropy increases with increasing magnetic field. The zero-field
resistivity anisotropy, unexpected for cubic symmetry, is explained by the charge-density-wave
(CDW} structure. Due to the wave-function mixing caused by the CDW potential, the momentum
transfer (by isotropic impurities) is much larger for electrons near the CDW energy gap. This is

modeled by an anisotropic relaxation time in k space. The Boltzmann transport equation in a mag-
netic field can then be solved exactly. The computed resistivity anisotropy is higher for ~,~& 1

compared with its zero-field value. The effect of the magnetic field is to "stir" the electron distribu-

tion f ( k ); this feeds electrons into the region of rapid relaxation and thereby increases the resistivity

anisotropy.

I. INTRODUCTION

The induced torque of sodium and potassium spheres
has different character at low (0—5 kG), intermediate
(5—40 kG), and high ()40 kG) magnetic fields, each
stemming from a charge-density-wave (CDW) structure. '

At low fields, the torque as a function of magnet rotation
angle has a twofold, sinusoidal pattern, ' caused by a
residual-resistivity anisotropy. At intermediate fields, it
has a smooth, four-peak pattern, ' caused by an anisotro-
pic Hall coefficient. At high fields, it exhibits many
sharp-peaks, ' caused by open orbits.

Recently Elliott and Datars discovered that the magni-
tude of the twofold, torque anisotropy increases with in-
'creasing magnetic field. ' An example of their data for
potassium is shown in Fig. 1. The deviation of the torque
ratio from unity increases by an order of magnitude.
Bishop and Overhauser have shown that, if a field-
independent resistivity anisotropy is assumed, the torque
anisotropy decreases with increasing field. The correct

approach, however, is to derive the magnetoresistivity by
solving the Boltzmann transport equation. When this is
done, the resistivity anisotropy is found to increase with
field, explaining the rise of the torque anisotropy.

The zero-field resistivity anisotropy is caused by the
CDW potential V=G cos(Q r) . The Fermi surface in
the repeated-zone scheme is shown in Fig. 2. Because Q
is approximately equal to the Fermi-surface diameter,
electron states at the Fermi surface near the conical points
+Q/2 are strongly perturbed, the plane waves k and

k+Q being mixed. In normal electron-impurity scatter-
ing, the wave-vector transfer q is small, since the impuri-
ty potential has small -q Fourier components. Due to the
wave-function mixing, however, electrons near the CDW
energy gap can also suffer a much larger wave-vector
transfer q+Q (CDW —umklapp scattering). Since large-
angle scattering contributes more to the resistivity than
small-angle scattering, the residual resistivity is higher
parallel to Q than perpendicular to Q.
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I IG. 1. The ratio of the twofold torque maximum and
minimum for a potassium sphere (Elliott and Datars, Ref. 10).

FICx. 2. Electron-impurity normal scattering (b, k =q) and
CDW —umklapp scattering (hk = q —Q). Q is the CDW wave
vector.
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In order to solve the Boltzmann transport equation in a
magnetic field, we model the impurity scattering by an

anisotropic relaxation time in k space. The large momen-

tum transfer near the conical points +Q/2 is mimicked
by a rapid relaxation rate. In zero magnetic field, the
steady-state distribution f(k) is nonspherical, being dis-
placed less (from the equilibrium distribution) where the
relaxation time is short. The effect of a magnetic field is
to "stir" the distribution function, feeding electrons into
the region of rapid relaxation. This increases the resistivi-
ty anisotropy and thereby the torque anisotropy.

II. ANISOTROPIC RELAXATION TIME

We approximate the Fermi surface by a sphere, neglect-
ing the distortion near the energy-gap planes. The relaxa-
tion time of an electron at the Fermi energy has uniaxial
symmetry. We model it by

i
cos8

i
& cosiI

i
cos8

i & cosi)

where 0 is the angle between the electron wave vector k
and the CDW wave vector Q (Fig. 3). Since the resistivity
is higher parallel to Q, i' is shorter than i.. The angle iI
defines the region of umklapp scattering. A microscopic
argument, presented in the Appendix, indicates i) =25' for
sodium and potassium. The fraction of electrons on the
Fermi surface experiencing rapid relaxation is then about
10%%uo.

Semiclassical transport theorems" predict for a simply
connected Fermi surface that the magnetoresistance satu-
rates and the Hall coefficient is isotropic, when co,w& 1.
Since the assumed Fermi surface is simply connected, the
model omits the nonsaturating magnetoresistance and
(high-field) Hall-coefficient anisotropy.

This model has one adjustable parameter, the
relaxation-time ratio w'/i. . The magnitude of the torque-
anisotropy increase is approximately explained by choos-
ing ~'/v=0. 05. Such a large anisotropy of the relaxation
time r(8) is not inconsistent with the small anisotropy
(about 10%) of electron-impurity scattering deduced from
de Haas —van Alphen effect studies. ' i.(8) is a
momentum-relaxation lifetime, weighting large-angle
scattering more heavily than small-angle scattering,

whereas the ordinary lifetime deterinined by the de
Haas —van Alphen effect weights all collisions equally.

The model (1) focuses on the essential feature causing
the torque-anisotropy rise, namely, anisotropic scattering.
It has the significant advantage of being tractable (at any
magnetic-field strength). Its drawback, of course, is that
it is not derived microscopically,

III. ZERO-FIELD RESISTANCE

The Boltzmann equation for the steady-state electron
distribution f(k) is

——E V-f (v—XB) V f=-
fic k i.(8)

(2)

Letting g =f fo
—be —the deviation from equilibrium

yields

o p ~ ~ g—eE.v — (v XB).V-g=-
de Pic k i(8) (3)

to first order in E. In zero magnetic field, the immediate
solution is

dfog=i.(8)eE v (4)

the electron distribution

f=fo+g -=fo( k+ [i.(8)e/A]E) (5)

(i.(8))t= fdQ sin 8 i(8) .= 3
8m

Equilibrium
Distribution

being illustrated (for E parallel to Q) in Fig. 4.
Evaluating the current density yields the electrical con-

ductivity. For a degenerate equilibrium distribution, the
resistivities parallel and perpendicular to Q are
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the weighted angular averages over the Fermi surface be-
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FIG. 3. Anisotropic relaxation-time on the Fermi surface. Q
is the CDW wave vector.
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FIG. 4. Zero-field steady-state distribution f (k ) for E~ ~Q.



FIELD DEPENDENCE OF THE RESIDUAL-RESISTIVITY. . . 737

Substituting (1) for r(8), we find

pii
——po 1 — 1 ——(1—cos rI)3

Equilibrium
Distribution

I
7 3 1 3Pj Po 1 — 1 — ( 1 ——, cosri + —, cos rl )

where pe=—I /(ne r) Th. e resistivity anisotropy y
—=p~~/pz

is plotted in Fig. 5. For g =25' and r '/r=0. 05,
p(~/po ——1.32, pz/po ——1.01, and y=1.30.

It is instructive to evaluate the (zero-field) resistivity,
assuming a rigidly shifted equilibrium distribution

f=fo(k —5),
illustrated in Fig. 6. Evaluating the current density yields

I

A'6J=—ne I

\

I
I

II

Uniformly-shifted
Steady-state Distribution

FIG. 6. Uniformly shifted, steady-state distribution f(k).
The displacement 5 depends on the direction of E relative to Q.

I 7 3
p~~

——po 1+,—1 (1—cos rl)7'

pj =pe 1+,—1 (1——', cosy+ —,
' cos ri)

(12)

The displacement 5, which is proportional to E, is deter-
mined by balancing the momentum (per unit time) gained
from the applied electric field and lost by collisions. Ac-
cordingly, the so-computed resistivities parallel and per-
pendicular to Q are

m 1, pl 1

ne' ~(e) ' ' ne' ~(8) )i '

the angular averages having the same definitions as be-
fore.

By the variational principle, ' the approximate resistivi-
. ties (11) are higher than the exact resistivities (6). Substi-
tuting (1) for r(8) yields

where po=m/(ne r) Th.e so-computed resistivity aniso-
tropy y'—:pll/'pq is plotted in Fig. 5. For g=25 and
&'/&=O. 05, p~~/pp=5. 86, py/po ——1.24, and y'=4. 71.

It is easy to understand why y' is much larger than y.
For small angles g, the rapid relaxation affects primarily
the parallel resistivities; the perpendicular resistivities (pz
and pz) are approximately equal to po. In the exact distri-
bution function for E~~Q, shown in Fig. 4, the deviation
from equilibrium in the region of rapid relaxation is mini-
mized. In the uniformly shifted distribution function,
shown in Fig. 6, this deviation is much larger (for the
same total current), many more electrons suffering rapid
relaxation. Thus pll is much larger than pll

In the next section, we calculate exactly the resistivity
in a magnetic field. We shall show that the resistivity an-
isotropy y, computed with a uniformly shifted distribu-
tion function, becomes exact when co,r & 1.

IV. MACiNETORESISTANCE

The magnetoresistance depends on the angle between B
and Q. We consider two orientations, B~ ~Q and BlQ.

For these orientations, there are five resistivities, depict-
ed in Fig. 7, and two Hall coefficients. The resistivity for
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FIG. 5. Exact (y) and approximate (y') zero-field resistivity
anisotropy. g =25 .

FICx. 7. Resistivities for (a) B~~Q and (b) BIQ. J is the
current.
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a current J is either parallel or perpendicular, depending
on whether J ~~Q or JlQ, and longitudinal or transverse,
depending on whether J

~
~B or JIB. There are two trans-

verse, perpendicular resistivities, one with Q ~ ~

B and the
other with QlB. The two Hall coefficients are R~~ with

Q~~B and Ri with QLB.
For B~ ~Q, an electron's relaxation time is unchanged by

its cyclotron motion. The Boltzmann equation (3) is easi-
ly solved by the ansatz

.0

r)-25

0
g =r(8)e A v (13)

with A depending on cos8—=u.g. For B=Bz, the solu-

tion for A is

E„—ec~Ey

1+(co,r)

1.0
Q

I

10
Q), T

FICx. 8. Parallel resistivities vs magnetic-field strength. The
saturation value of p~~' is p~~

=5.86po, where po= m /(ne ~).

Ey +ecV.Ex

1+(co,r)
A, =E, .

(14)
unit volume. Only electrons out of equilibrium need be
considered, since the contribution from the equilibrium
distribution vanishes. The applied electric field excites
electrons out of equilibrium at the rate (to first order in E)

co, =eB/mc is the cyclotron frequency; the 8 dependence
of r is understood. Evaluating the current density yields
the magnetoconductivity tensor

df
fielddt

- dfo=eE v(k)
GE

1+ cO 7 l 1+ cOc7 J.

ne ~er 7

m (+(~,~) i (~(m, r) li
0 0

0

0
L(k)= f dt v(k(t))P(k, t),

where the survival probability P(k, t) is

(20)

The average displacement (effective path) of an electron,
created with wave vector k, until it returns to equilibrium
1S

(15)

the angular averages being defined as before.
The resistivity and Hall coefficient are obtained by in-

verting (15). Although the longitudinal resistivity

P( k, t ) =exp —J r( k(t') )

The current density J to first order in E is thus

(21)

Pl

ne'(r (16)

r) =25
is field independent, the transverse resistivity increases
with field. Its saturation value is 1.2

m 1
pJ. ~, & ~c+Q 1

P1e
(17)

equal to the resistivity pi, computed with a uniformly
shifted distribution function. ' The Hall coefficient de-
creases (in absolute value) with increasing field, being
equal to the free-electron value Ro ———1/(nec) when
co,r& 1. The two resistivities (pII' and pz"i) and the Hall
coefficient (R) are plotted in Figs. 8, 9, and 10 for r(8)
given by (1).

For BLQ, the magnetoconductivity can be derived by
the effective-path method, ' which is equivalent to solving
the Boltzmann equation. The steady-state current density

1.0
0

I

1Q. T

I

20

g f(k)v(k) (18)

is equal to the rate of change of the dipole moment per

FICz. 9. Perpendicular resistivities vs magnetic-field strength.
The saturation value of p&"I and p&"& is p~

——1.24po, where
po=—m/(nenes. ). Note the different vertical scales in Figs. 8 and
9.
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FICx. 10. Hall coefficients for Q~~B and Qj.B. For co,r&1,
R~~ and R& are equal to Ro= —1/(nee).
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the parallel and perpendicular averages having the same
definitions as before.

The resistivity and Hall coefficient are obtained by in-
verting the magnetoconductivity. From (27), the satura-
tion values of the transverse resistivities are

J = geE v('k) f dt v(k(t))P(k, t),
Q de

k

(22)

(]) m 1 (~) m 1
pJ. +

~ p~I ~ &et) 1
ne ne

which is equivalent to the path-integral solution' of the
Boltzmann equation.

In a magnetic field B=Bz, the electron wave vector k
rotates about B at the cyclotron frequency co„

k(t) =kn (8,$+ro, t ) . (23)

XP(8,$;P'), (24)

where P(8,$;P') is the survival probability for rotation by
an angle P',

n(8, $)=(sin8cosp, sin8sinp, cos8) is a unit vector in the
direction (8,p). Substituting into (22) and setting
v(k) =trtk/m for free electrons yields an exact formula
for the magnetoconductivity,

o ti —— f dQnp(8, $) f dP'n (8,$+P')
C

equal to the resistivities pq and p~~, computed with a rigid-
ly shifted distribution function. For co,r&1, the Hall
coefficient has the free-electron value Ro ———1/(nec).

The three resistivities (pI~", pI"2, and pt') and the Hall
coefficient (Ri ), evaluated from (26) for r(8) given by (1),
are plotted in Figs. 8, 9, and 10. The low-field magne-
toresistance "knees, "which have been observed in potassi-
um, are linear in B, all the way to B =0.

For co,r & 1, the transverse resistivities (both for Q~ ~8
and QIB) are equal to the resistivities computed with a
rigidly shifted distribution function. For a spherical Fer-
mi surface, this can be proven even without making a
relaxation-time approximation. '

V. INDUCED TORQUE

In an induced-torque experiment (Fig. 11), a single-
crystal sphere is suspended in a uniform magnetic field B.

P(8,$;P') =exp —f S 1 8, + (25)

Breaking the range of integration of P' into sections of
length 2m. and using the periodicity of n(8, $) and r(8,$)
leads to a (summable) geometric series. The formula for
O.~p reduces to

piene 3 dQ 0 1 —P 0
P7, CO~ 4&

X f dP'n (8,P+P')P(8, $;P') (26)

with P(8) =P(8,$;2m)being the surviv. al probability for a
complete revolution.

For Q=Qx, o~, o~, oz„and o~ all vanish by symme-
try. ' In the high-field limit, the exponential in (25) can
be expanded in powers of 1/H, yielding an expansion of
(26). Using the syinmetry of r(8,$), it can be shown that
the leading terms are

/4
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FIG. 11. Induced-torque experiment. Rotation of B induces
currents, which interact with B, producing a torque about the
suspension axis.
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Slow rotation of B (or the crystal) induces circulating
currents, giving rise to a torque on the sample. The
torque magnitude depends on the induced current, which
in turn depends on the magnetoconductivity of the sample
in the field B.

An exact theory of the induced torque, depending only
on Faraday's law of induction, has been derived for a gen-
eral magnetoconductivity tensor. If there is no
longitudinal-transverse mixing, i.e., o.~, o.~, oy„and 0.~
all vanish, the formula for the torque N about the rotation
axis reduces to

N~ (29)
(Pxx +Pzr )(Pyy +Pzz ) Pxypyx

The proportionality constant, which is 4' ~B /15c, de-
pends on the sphere radius a and rotation frequency co.
At low fields, when the induced currents circulate in the
y-z plane normal to dB/dt, the Hall resistivity is negligi-
ble, yielding

pyy +p~
~c&& 1 . (30)

At high fields, when the I.orentz force rotates the current
loops into the horizontal x-z plane, the Hall resistivity
dominates, yielding

For an anisotropic relaxation-time model, the high-field
Hall coefficient is isotropic. (In potassium, the high-field
Hall-coefficient anisotropy Rll/R& is typically about 1.1,
although it can be as large as 1.3. ) Setting R)~/Rq ——1

yields

(t)+ (l)-
Pll +P&

( ) ()) ~ 6)~'T) 1
P~ &+Pll

(35)

If the magnetoresistance were independent of field orien-
tation, i.e., pll" ——pll' and pz" ——pz', the high-field torque ra-
tio W would indeed be unity, implying a decrease com-
pared to its zero-field value.

The magnetoresistance, however, depends on the field
direction. This is illustrated for the model (1) in Figs. 8
and 9. For small g, the perpendicular resistivities are only
slightly affected by the magnetic field, all being approxi-
mately equal. But the high-field, parallel resistivity is
much larger for BIQ than for B~~Q, thus causing the
torque anisotropy to increase.

In high fields, the transverse resistivities pll
' and pz" are

equal to pll and pz, the resistivities computed with a rigid-
ly shifted distribution function; the longitudinal resistivity
pll', being field independent, is equal to the zero-field
resistivity pll. The high-field limit of the torque anisotro-
py (35) is thus

pxx +pzz
Pf cc Nc7)

pxypyx
(31) 5+y'

1+ay
(36)

The Q-vector orientation of the experimental samples
studied in Refs. 9 and 10 is not known. For simplicity,
we suppose Q lies in the rotation plane. Then, at the
maximum of the twofold torque pattern, QJ.B; and at the
minimum, Q~~B. For QlB, pyy=pI"2 and p =PI"; for

Q~ ~B, p =PI") and p~=p(I'. The low-field torque aniso-

tropy A' =N,„/N;„ —is thus
(~) + (E)

Pi, 1+Pll9F= ()) ((), coq'7 ( 1

px, z+px
(32)

As B~O, the perpendicular and parallel magnetoresistivi-
ties are equal, respectively, to the zero-field resistivities p)
and p~(. The zero-field limit of the torque anisotropy is
thus

Pi+Pll
2pi

1+y
2

(33)

as deduced previously. y is the zero-field resistivity an-
isotropy. For the model (1) with g=25' and r'=0. 05,
y = 1.30, so that A'0 ——1.15.

Since the induced-current loops rotate into the horizon-
tal plane as B increases, it might be expected that the
torque would be isotropic at high fields. For QLB,

( I') (I)p~ =p~~, p~ =p), and py&: pz yR B,)for Q) ~B,

p~ =pg'), p~ =pll', and py
———p y

——RllB. The high-field
torque anisotropy is thus

a=25
Tvr =0.05

O
~~
CO

Cf.
2.0

U
OI-

0
I

10
CO, T

I

20

where y'—=pI~/PI, f)—:PI '/PI", and e—:p) /pj. For the
model (1) with g=25' and r'/r=0. 05, 5=0.85, @=0.81,
y=1.30, and y'=4. 71, so that W =2.70.

The torque ratio, evaluated from (29) for the model (1),
is plotted in Fig. 12. ' The small dip at low fields is a
consequence of the torque formula, the resistivities them-
selves increasing monotonically. The initial decrease,
which may be masked in a polydomain sample, arises
from the linear field dependence of the (QIB) resistivities
in the denominator of the torque-ratio formula (32).

(t) + (I)
II

(t) (1)
Px, ]+Pl(

(34)
FIG. 12. Theoretical ratio of the torque maximum and

minimum. The zero-field and high-field values are A'0 ——1.15
and A =2.70.
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VI. DISCUSSION

The low-field, induced-torque experiments by Elliott
and Datars ' show that the residual-resistivity anisotro-
py of sodium and potassium increases with increasing
magnetic field. For potassium, the zero-field torque an-
isotropy (for the samples studied) was in the range
1.05—1.25. In an applied magnetic field, this anisotropy
increased by about an order of magnitude.

If one believes that potassium and sodium have cubic
symmetry, these results are triply perplexing. First, how
can the zero-field resistivity be anisotropic? Second, how
can the resistivity anisotropy increase in a magnetic field?
Third, how can the measured resistivity anisotropy vary
for nominally identical samples?

The zero-field resistivity anisotropy is explained by an-
isotropic scattering, caused by the charge-density-wave po-
tential. As we have shown here, this same mechanism
also explains the increase of the resistivity ani. sotropy in a
magnetic field. The uncontrolled domain structure, de-
pending on metallurgical history, explains the variability
of the data from sample to sample.

Exact numerical calculations of the zero-field resistivity
anisotropy in potassium, based on a microscopic theory of
electron-impurity scattering for a charge-density-wave
state, yield an anisotropy of about 2. (This value, which

applies to a single Q domain, is.an upper bound for exper-
iment. ) By Eq. (33), the zero-field torque anisotropy is
about 1.5, agreeing with experiment.

The low-field, induced torque of sodium and potassium
spheres is expected to be isotropic if the Fermi surface is
spherical. Three symmetry-breaking mechanisms have
been suggested: (i) nonspherical samples; (ii) oriented,
nonspherical scattering centers; (iii) a nonspherical Fermi
surface. The first two have been ruled out. ' ' Only the
third, caused by a charge-density-wave structure, explains
the main features of the data.
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e-—E-
k k

—G1

2

—G1

2

e - —Ek+Q k

=0, (A3)

which has two solutions for the energy eigenvalue E
k

The lower one, belonging to the state below the gap, is
1E-= —,(e-+e- - )

k 2 k k+Q
——'[(e- - —e-) +G ]'~, k &0. (A4)

If the corresponding eigenfunction is denoted by

g-=cos(g)e' " ' ' —sin(g)e' "+ ~ ' ', (A5)

the degree of mixing g( k ) =2 sin g is

g(k) =2(e-„—E-„)'/[( —,
' G)'+(e-„—E-„)'] . (A6)

For k, & 0, we assume that the plane-wave state k mixes
only with k —Q, yielding the energy eigenvalue

1E-= —,(e-+e- - )
k 2 k k —Q

——,'[(e —e ) +G ]'i, k, &0.

The degree of mixing g(k) is the same as for k, &0.
It is convenient to introduce the dimensionless variables

u =k„/Q, v=k~/Q, a=(u +v )', and

V f„+Gcos(Q r)Q-=E-„Q-„. (A 1)

For Q=Qz, the energy denominator for the mixing of the
plane-wave state k with k+Q is

e —e-=(A' /2m)(+2k, Q+Q ) . (A2)

Thus, if k, &0, the state k is mixed most tvith k+Q; if
k, & 0, the state k is mixed most with k —Q.

Because Q is slightly greater than the diameter 2kF of
the free-electron Fermi sphere, only the states below the
energy gap (at k, =+Q/2) are occupied. For these states,
an approximate solution is derived as follows. For
k, & 0, we assume that the plane-wave state k mixes only
with k+Q. This leads to the secular equation

APPENDIX

The angle g in the relaxation-time model (1) can be es-
timated if the region of umklapp scattering is determined
by the wave-function mixing (rather than by the Fourier
components of the impurity potential). The CDW'poten-
tial V=6 cos(Q r) mixes the plane-wave state k with
k+Q. The degree of mixing, which is complete (100%)
at an energy-gap plane, decreases with increasing distance
of the state k from the energy gap plane. This continu-
ous change is modeled in (1) by an abrupt transition. The
boundary between complete and zero mixing is found by
equating the average mixing of the occupied states for the
relaxation-time model and a CDW state.

In a CDW state, the electron wave functions satisfy the
Schrodinger equation

(k, + —,
' Q)/Q, k, &0

(k, ——,'Q)/Q, k, &0
(AS) '

Makirig these substitutions yields

g2~ 2
Q [K&+w2+ ~ —(w&+A&)ll&]

2m
(A9)

g(k) =1—w(w'+az) (A10)

with a—:mG/(fizQ ).
W'e assume that the Fermi surface makes critical con-

tact with the energy-gap planes, as shown in Fig. 2. For
k =

z Q, e-=e- =Pi ( —,Q) /2m. Substituting in (A7)
k k —Q

yields the Fermi energy
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E~ fi ——( —,
'

Q ) /2m ——,
' G . (A 1 1) (g) =1——,(Q/kF)'[ —,

' —( —,', +a ——', a2)( —,'+a2)'~2

From (A9), the equation of the Fermi surface is then + (1 —.—,'a)a ] . (A14)

tc2 ( to 2+ tz2)1/2 to 2 (A12)

The magnitude of Q as a function of G is found by equat-
ing the volume within the Fermi surface (A12) to the
volume (4~/3) kF of the free-electron Fermi sphere, yield-
ing

kz ———,
'

Q
3

—,
'

( —,
' +a )

'~ +ct sinh 1 —CX12

(A13)

with a=mG/(fi Q ) and kF ——3m. n. Finally, averaging
the mixing (A10) over the occupied states, we obtain

In the relaxation-time- model, the degree of mixing /=0
for

~
k,

~
&k~cos71 and (=1 for k~cos21 &

~
k,

~
&k~.

The average mixing of the occupied states is then

(g) =1——', cosy+ —,
' cos'2l . (A15)

For sodium, the free-electron Fermi energy
EF——A kz/2m is 3.24 eV; the CD%'-potential amplitude
6, equal to the threshold energy of the optical absorption
anomaly, is 1.2 eV; and 6/EF ——0.37. For potassium,
Ez ——2. 12eV, G =0.6eV, and G/E~ 0.28. —'

—. Solving
numerically Eqs. (A13), (A14), and (A15) yields g=27
for sodium and 2l =24' for potassium.
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