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Monte Carlo simulation of the "Kondo necklace"
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The projector Monte Carlo method and finite-size scaling are applied to the solution of the
ground-state properties of the "Kondo necklace" Hamiltonian. The energy and various spin-spin
correlation functions are calculated for chains up to 16 sites in length. Correlations between the
spins on different sites are evaluated, and the nature of the ground-state phase as a function of the
ratio of the exchange coupling J to the bandwidth 8' is examined. Evaluation of the correlation
function (S(i) r(i) & shows that as the coupling between the localized S spins and the r spin chain
increases, the system becomes composed of independent singlets on each site. Contrary to both
mean-field and various approximate renormalization-group calculations, we find that our results are
consistent with an absence of magnetic order as soon as J is different from 0.

I. INTRODUCTION H,fr= g J,(i,j)S,(i)S,(j)

There is considerable current interest in the Kondo lat-
tice Hamiltonian,

H = pe(k)c, (k)c, (k)+ g c,(i)a,t, cs(i) S;,
k, a i,a, b

as a model of concentrated magnetic sites coupled to
conduction-band electrons. Extensive measurements of
the specific heat, electric resistivity, and magnetic suscep-
tibility of such compounds as CeA12 and CeA13 have been
performed, ' and a physical picture of their ground state is
emerging. Focusing on their magnetic behavior, the ob-
ject is to explain the anomalously low temperature for the
onset of magnetic order in CeA12, and the apparent ab-
sence of order even at T=O in CeA13, despite the presence
of unpaired f orbitals. The physical picture suggested by
Doniach and others, is that there is a competition be-
tween a magnetically ordered state arising from the
Ruderman-Kittel-Kasuya- Yosida (RKKY) conduction-
electron-mediated coupling between the local moments
and a nonmagnetic Kondo singlet state in which the con-
duction electrons screen the local moments.

The "Kondo necklace, "

+J„(tj )[S„(t')S„j()+S~(i)&~(j)],

with

J,(i j )=J„(ij)- f (n(i, r)n(jO)&dr,

and

( n (i,r)n (j,O) &— 1

[ It j I'+p'j ]'"—
For the "Kondo necklace, "

13

J,(i,j)— (r, (i,r)r, (j,O) &dr,
0

PJ.(,j)- &..(,.) .(j,O) &d. ,

and according to Luther and Peschel,

&..(,.);(j,O) &- 1

[li j I'+I'f' ]'—'

(r„(i,r)r„(j,O) &— 1

+I'f' l'

(4a)

(4b)

(5a)

(Sb)

H = Wg [r„(i)r„(i+1)+~~(i)r~(i +1)]

+Jg r(i).S(i), (2)

has been proposed as a simpler version of Eq. (1), which
nevertheless retains the essential competition between
magnetic ordering due to the indirect coupling of the S
spins via the ~ spins and the JS r driven singlet forma-
tion. There are, of course, some differences between the
models. The "Kondo necklace, " Eq. (2), neglects the
conduction-electron-charge degrees of freedom. In addi-
tion, the effective coupling of the local S spins differs.
For the Kondo lattice, one has in second-order perturba-
tion theory the one-dimensional (1D) RKKY coupling

for the XY model. Thus, the spatial decay of the effective
couplings is anisotropic in the "Kondo necklace" case,
and in addition the transverse coupling is anomalously
long range. If a Heisenberg coupling r(i) r(i+1) were
taken instead of the XY term in Eq. (2), one would obtain

J,=J„—f [~i —I ~
+Vfr]' dr,

corresponding to the second-order result Eq. (4b) for the
Kondo lattice. This also restores the full rotational sym-
metry which was lost in going from Eq. (1) to Eq. (2).
Despite the differences noted above, Doniach has ob-
served that the scaling behavior of the Hamiltonians (1)
and (2) is identical in the one impurity case. Here we will
treat the original "Kondo necklace" as given by Eq. (2).

It is useful to review briefly the results of previous stud-
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ies of this model. Doniach s original mean-field treat-
ment used a variational ground state which is the product
of two spin (r,S) wave functions on each site. The energy
is minimized subject to the variation of the triplet and
singlet components. For ratios of the exchange coupling
J to the bandwidth W greater than (J/W), =1, it was
found that the ground state reduces to a product of singlet
states on each site, while for J/W below this value, triplet
components enter. The staggered magnetization order pa-
rameter (( —1)S„(l)& was evaluated and found to behave
as [1—(J/W) ]' below (J/W), and to be zero above
( J/W), . Following this, Jullien, et al. carried out an ap-
proximate real-space renormalization-group treatment and
concluded, in agreement with the mean-field result, that
the system has a second-order transition. End-to-end
correlation functions such as (S+( l)S (2 ) & were found
to have nonzero values below ( J/W), =0.411 in the large
X limit, indicating the presence of long-range order. The
energy was also eva.luated and, depending upon the details
of the procedure (e.g., the number of sites, two or four,
per block), the energy for the J=O case (XY model) was
found to differ from the exact result by between 9 and
21%. Subsequent to this work, Jullien and co-workers
reported further real-space renormalization-group calcula-
tions in which the low J/W phase did not exhibit long-
range order but was suggested to be XY in character.
Hanke and Hirsch reached similar conclusions using
another approximate real-space renormalization procedure
based on an odd number of sites per block. They found a
critical point ( J/W), =0.375 which separates the antifer-
romagnetic and Kondo regimes. They also evaluated the
energy and obtain results which agree with the exact J=O
value to within 20%.

In the work reported here, we have used a Monte Carlo
method described in Sec. II to study the X site "Kondo
necklace, " Eq. (2), with X ranging up to 16 sites. Extra-
polating to N~oo we find the ground-state energy for
0.0& J/W&2. 0 to within an estimated error of 0.5%. To
within even sharper bounds the algorithm agrees with the
exact two and four site solutions. In weak coupling, J=O,
the "Kondo necklace" becomes the exactly soluble XY
model. Energies and correlation functions for systems of
up to 20 sites, generated by Monte Carlo methods, agree
with exact results in this case. These quantities are also
found to fit smoothly onto a strong coupling expansion
generated for J/W large. On-site correlation functions
are obtained. As J/W increases, (S,(i)r, (i) &,

(S„(i)v„(i)&, and (S(i) r(i) & are shown to approach
values consistent with the picture of independent singlet
wave functions on each site. By studying the spatial
dependence of the spin-spin correlation functions, we con-
clude that there is no long-range magnetic order in the
ground state for any value of J/W. Furthermore, while
there remains the possibility of a Kosterlitz-. Thouless-like
phase transition in which the correlations fall algebraical-
ly below some finite critical value of J/W, we find that
our results are more consistent with the existence of a crit-
ical point at J/W=O. In this case, for all J/W~0, the
antiferrornagnetic correlations decay exponentially with a
correlation length that diverges at J/S'=0 where the
"Kondo necklace" becomes the XY model, and correla-

tions decay algebraically. Following a discussion of the
calculational procedure, Sec. III contains our results and
scaling analysis, and Sec. IV our conclusions.

II. TECHNIQUE

A. Basic procedure

In this work we use recently developed methods for the
Monte Carlo simulation of quantum-spin and lattice-
fermion systems. These methods have been applied to
the study of the Gross-Neveu model, the Ising model,
the Peierls-Hubbard model, ' and the calculation of string
tension and roughening in lattice QED." The operator
e ~ is used to project out the lowest energy state of a
given symmetry. The energy and expectation values of
operators are given by

I P & and
I
X& are trial states whose choice is discussed in

more detail below. The operator e ~ is applied by di-
viding P into l. intervals of length br, where b,w is small
enough to allow the approximation

—dER H ) +H2+H3 ) —h.wH (
—heH2 —hvH3

e =e e e

Then, as we will see, this separation of H into various
parts allows us to simply evaluate the relevant matrix ele-
ments. Complete sets of intermediate states are intro-
duced and, following Kuti, ' ' the matrix elements—hrHk(i

I
e "Ij& are divided into elemental probabilities

and scores,

(i
I
e "Ij&=PJ(k)SJ(k) . (7)

This breakup is arbitrary and can be adjusted to optimize
convergence. As described in Blankenbecler and Sugar,
the probabilities are employed to generate the new config-
uration, i.e., if the system is in state

I
i &, then

I
j& is

chosen for the state at time b.v later with probability
PJ(k). The scores for each time slice are multiplied to-
gether to form a weight, and the expressions of interest
are then approximated by the average of the weights over
many trials

i3L+, &SE3L+]E3+(3) ~ . .
number of trials —+ 00

It is important that the matrix elements be positive,
since the probabilities must be positive, and averaging
over scores that vary in sign engenders cancellations that
introduce large statistical fluctuations. For this reason a
rotation is performed on the Hamiltonian (2) to cast it
into the form

e '= lim [(X I
e '~+ ~'

I
P&/(X

I

e ~
I P&], (6a)

P~ ao

&4o I Q I fo&

= lim [(g Ie ~ Qe ~ IP&/(7 Ie ~ IqS&] . (6b)
P~ co
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H = —Wg [r„(i)r„(i+1)+r„(i)r„(i+1)]

+J [S,(i)~, (~') —S„(~')r„(i)—&~(0~~(0] .

Next, the Hamiltonian Eq. (9) is divided up so that
H =H

~ +H2+03 with

H2 ——JQ [Sz(i)r, (i) S„(i—)r„(i) Sy(i—)ry(i)], (10)

H3 ———8 g [r„(i)r~(i + I)+r~(i)r„(i + 1)]
i even

It is seen that Hi, H3, and H3 are each composed of a
sum of mutually coinmuting pieces. The application of—A~Hk
the operators e to the lattice of spins then involves
only solving independent two-site problems. Because we
are interested in the question of magnetic order in the X-
Y plane, it is convenient to work in the (r„S„)-diagonal
representation. If one works in the (r,S, )-diagonal repre-
sentation, the Monte Carlo calculation of nondiagonal
correlation is considerably more time consuming and sub-
ject to larger statistical fluctuations. ' The reason is that
to calculate any operator ground-state expectation value,
according to Eq. (6b) we first project from 0 to p, generat-
ing a product of scores. We then apply the operator. If it
is diagonal, this just yields a number and leaves the state
at P unchanged, We then project from P to 2P and obtain
the remaining scores. Since the state is unchanged in ap-
plying a diagonal operator, the same sequence of scores
can be used in the denominator of Eq. (6b). If the opera-
tor were not diagonal, only the scores from 0 to P could
be shared, since the states at P before and after the opera-
tor acts are now different and must be propagated
separately from P to 2P. The advantage in evaluating a
diagonal operator is not only the obvious time saved, but
also that the use of the same set of scores in numerator
and denominator reduces statistical fluctuations.

The matrix elements for the above division of the Ham-
iltonian are

e '
I ++ &=e'[cosh(a)

I
++ &+sinh(a)

I

——&],
'

I

—.—
& =e'[sinh(a)

I ++ &+cosh(a)
I

——&],
(1 la)

'
I + —

& =e '[cosh(a)
I
+ —&+sinh(a)

I

—+ &],

e '
I

—+ & =e '[sinh(a)
I
+.—&+cosh(a)

I

—+ &]

[with
I
++ &=

I
~„(i)=+—,, ~„(i +1)=+—, &, and

a = 6'b, r/4], and similarly for H3 FO1' 'I++&=e 'I++&, H2I ——&=e 'I ——&,

e '
I
+ —

& =e "[cosh(2b)
I
+ —&+sinh(2b)

I

—+ &],

(1 lb)

I

—+ & =e"[sinh(2b)
I + —&+cosh(2b)

I

—+ &]

[with
I ++ & =

I
r„(i)=+—,, S„(i)=+—, &, and

b =Jgr/4] The lattice is ch. osen to have N sites, and the
boundary conditions are chosen so that the above formu-

P(
I ++ &~

I ++ &)=cosh(a)/[sinh(a)+cosh(a)],

S(
I
++ &~

I ++ &) =e'[cosh(a)+sinh(a)] .
(12)

However, for J/8'small, we expect considerable correla-
tions between neighboring w spins. It is generally found
that convergence is improved by examining r„(i —1) and
7„(i+2) and modifying the probabilities and scores ap-
propriately. For example, if they are both +, we may
enhance P(

I
+ + &

—+
I
+ + & ). Of course, we must add a

compensating factor to the score to keep the product of
probability and score, the matrix element, unchanged.
Similarly for large J/8', convergence rates are improved
by adjusting the probabilities to favor moves to states
where the ~ and S spins are antialigned. Again choosing
Hi as an example, we may increase P(

I ++ &~
I
——&)

if both S„(i) and S„(i+ 1) are + and decrease the corre-
sponding score S keeping PS constant. In any event, it
should be emphasized that while this procedure provides
an opportunity to insert some intuition concerning the
physics into the algorithm, the results are consistent with
each other for different divisions of the matrix element.
Only the rate of convergence, not the final value is affect-
ed.

It is worthwhile to mention that the trial state
I P & can

also be chosen to optimize convergence. Usually
I
X& is

chosen to be the broad state

summed over all states
I

A, & so that the final quantity
&X I13N+1& ill Eq (g) has the txlvial va~lle 1/3/~& and
need not be calculated explicitly. The closer

I P& is to the
ground state to begin with, the smaller P can be.

I P & can
thus be chosen to be the result of some variational calcula-
tion of the ground state. More simply, we might choose

I P & to have considerable correlations between spins when
J/W is small, while for J/W large we might choose
states with S and z on each site antialigned. As before, it
is verified that different choices for

I P & give the same re-
sults to within statistical fluctuations.

As discussed in Kung et al. , it is often useful to em-
ploy a slight modification of the basic technique described
above. ' Up to now we have imagined that single con-
figurations, chosen with a probability given by their ma-
trix element with a trial state, are individually evolved
employing the elemental probabilities P;J and the resulting
product of scores S,J recorded. In the modified procedure
which we will use here, a "population" of configurations
is evolved. Suppose

I
i & were a configuration in the pop-

ulation. After a time step h~, a new configuration
I j & is

generated with probability PJ and score SJ. (Actually, of
course, many probabilities and scores are really involved
in even a single time step since many two-site pairs are

las ho1d for the link connecting the first and Nth sites,
i.e., periodic for X =2, 6, 10,. . . and antiperiodic for

4, 8, 12,. . . .
Frequently the simplest division of the matrix element

into probability and score is adequate. For example, for
exp( hr—H& ) in Eq. (11a),



31 MONTE CARLO SIMULATION OF THE "KONDO NECKLACE" 7319

TABLE I. Comparison of Monte Carlo results and exact diagonalization for %=2 sites. Errors quoted in the tables, and in the

figures and text, are obtained from [ g, , (x; —x; ) ]'~ =(Nr )i'~ cr, where i labels independent trials.

—e,„(1)=—err(1 } —c (1)= —ct (1) &stz —S"7

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.75
1.00

0.5000(00) 0.5000 0.2500(00)
0.5029(08) 0.5033 0.2484(13)
0.5144(06) 0.3144 0.2400(10)
0.5341(01) 0.5343 0.2307(19)
0.5629(12) 0.5633 0.2146(15}
0.6010(05} 0.6008 0.1972(12)
0.6469(07) 0.6457 0.1777(14)
0.6960(04) 0.6966 0.1612(18)
0.7518(18) 0.7523 0.1454(08)
0.8115(13) 0.8115 0.1327(11)
0.8736(11) 0.8735 0.1201(19)
1.0042(06} 1.0035 0.1022(16}
1.1403(05) 1.1390 0.0879(14)
1.2085(18) 1.2081 0.0821(12)
1.5633(16) 1.5624 0.0626(23)

0.2500
0.2482
0.2411
0.2305
0.2148
0.1968
0.1784

' 0.1612
0.1458
0.1324
0.1209
0.1023
0.0884
0.0827
0.0623

0.0000(00)
0.0268(13)
0.0589(21)
0.0927(17)
0.1218(18)
0.1509(26)
0.1722(24)
0.1885(24)
0.2010(19)
0.2101(10)
0.2177(13)
0.2268(05)
0.2373(12)
0.2355(08)
0.2424(09)

0.0000
0.0274
0.0588
0.0917
0.1230
0.1501
0.1718
0.1885
0.2011
0.2106
0.1278
0.2275
0.2335
0.2356
0.2420

0.2500(00)
0.2472(04)
0.2371(01)
0.2195(11)
0.1971(12)
0.1710(08)
0.1451(13)
0.1239(18)
0.1042(13)
0.0884(21)
0.0756(20)
0.0571(14)
0.0426(21)
0.0368(17)
0;0231{22)

0.2500
0.2471
0.2373
0.2200
0.1968
0.1712
0.1460
0.1235
0.1043
0.0884
0.0754
0.0560
0.0428
0.0379
0.0222

0.0000(00)
0.0173(23}
0.0344(19)
0.01601(24)
0.0880{18)
0.1151(07)
0.1379(17)
0.1578(20)
o.173o(1s)
0.1858(14)
O. 1967(12)
0.2105(05)
0.2202(11)
0.2234(07)
O.2348(12)

0.0000
0.0151
0.0357
0.0608
0.0881
0.1145
0.1379
0.1575
0.1734
0.1861
0.1962
0.2108
0.2203
0.2239
0.2349

0.0000(00)
0.0709(30)
0.1522(25)
0.2435(41)
0.3349(27)
0.4159(27)
0.4817(23)
0.5430(19)
0.5751(28}
0.6072(15)
0.6327(13)
0.6641(07)
0.6870(09)
0.6944(11)
0.7196(15)

0.0000
0.0699
0.1533
0.2442
0.3341
0.4147
0.4815
0.534S
0.5756
0.6073
0.6318
0.6658
0.6873
0.6951
0.7189

separately evolved. ) We compare S;~ with an average
score S,„by computing r =S,JIS,„,and if 0 & r & 1, keep

~ j ) with probability r; if 1 & r & 2, always keep one copy
of

~ j) and make a second with probability r —1; if

2 & r & 3, always keep two copies of
i j ) and make a third

with probability r —2 etc. This extra "copying factor"
has modified the elemental probability P,z of generating

~
j) from

~

i). It must be removed from the score. The

TABLE II. Comparison of Monte Carlo results and exact diagonalization for IV=4 sites.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.75
1.00

—Eo

0.7078(05)
0.7101(03)
0.7224(06)
0.7413(07)
0.7670(14)
0.7991(03)
0.8339(08)
0.8732(08)
0.9166(04)
0.9643(12)
1.0141(15)
1.1207(09)
1.2418(18)
1.3010(16)
1.6327(13)

0.7071
0.7109
0.7226
0.7417
0.7673
0.7983
0.8340
0.8739
0.9'175
0.9464
1.0149
1.1239
1.2420
1.3039
1.6320

~tx 2

0.125 i {08)
O. i249(16)
0.1247(13)
0.1248(09)
0.1222(14)
0.1201(17)
O. 1173(O9)
0.1134(12)
0.1062{15)
O. 1021(7)
0.0944(08)
0.0829(17)
o.068s(14)
0.0632(16)
0.0391(13)

0.1250
0.1250
0.1248
0.1242
0.1228
0.1205
0.1172
0.1130
0.1077
0.1018
0.0953
0.0818
0.0690
0.0632
0.0410

csÃ 2

o.2soo(oo)
0.1802(55)
0.1580(41)
0.1461(27)
0.1423(16)
0.1388(14)
0.1291(17)
0.1246(23)
0.1155(32)
0.1084(28)
0.0997(24)
0.0883(32)
0.0721(29)
0.0645(23)
0.0433(21)

0.1538
0.1507
0.1464
0.1415
0.1359
0.1298
0.1231
0.1158
0.1082
0.1004
0.0851
0.0711
0.0649
0.0416

—S V

0.0056(39)
0.0751(49)
0.1568(35)
0.2250(46)
0.2870(33)
0.3357(41)
0.3788(28)
0.4201(24)
0.4532(30)
0.4863(27)
0.5191(24)
0.5697(18)
0.6083(21)
0.6271(14)
0.6790(12)

0.0000
0.0772
0.1S53
0.2253
0.2855
0.3346
0.3786
0.4181
0.4543
0.4875
0.5180
0.5695
0.6100
0.6262
0.6796

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.75
1.00

0.1768(12)
0.1753{23)
0.1734(19)
0.1688(14)
0.1630(17)
0.1589(22)
0.1521(38}
0.1452(18)
0.1382(19)
0.1318(24)
0.1267(21)
0.1108(32)
0.0984(30)
0.0918(29)
0.0747(25)

0.1758
0.1758
0.1729
0.1685
0.1634
0.1577
0.1517
0.1453
0.1385
0.1314
0.1243
0.1101
0.0970
0.0911
0.0682

0.2500(00)
0.2284(61)
0.1702(47)
O. i650(26)
0.1598(19)
0.1551(23)
0.1510{18)
0.1437(14)
0.1375(25)
0.1322(16)
0.1261(18)
0.1 I06(21)
0.0978(38)
0.0902(20)
0.0701(17)

0.1709
0.1687
0.16SO
0.1606
0.1556
0.1500
0.1440
0.1376
0.1307
0.1237
0.1098
0.0968
0.0910
0.0681

Q.ooo(00)
0.0388(25)
0.0666(38)
0.0938(26)
0.1179(19)
0.1345(17)
0.1477(21)
0.1621(15)
0.1710(10}
0.1804(14)
0.1862(11)
0.2033(13)
0.2140(08)
0.2178(14)
0.2324(11)

4str

0.0000
0.0370
0.0675
0.0954
0.1171
0.1344
0.1484
0.1604
0.1709
0.1804
0.1888
0.2029
0.2137
0.2180
0.2320

0.0000(00)
0.0081(21)
0.0220(17)
0.0339(22)
0.0504(18)
0.0666(15)
0.0808(17)
0.0981(08)
0.1127(09)
O. 1265(13)
0.1394(10)
0.1646(07)
0.1822(08)
O. 1897(10)
0.2153(07)

&stz

0.0000
0.0082
0.0202
0.0347
0.0502
0.0600
0.0818
0.0973
0.1124
0.1268
0.1403
0.1639
0.1826
0.1902
0.2156
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TABLE III. Comparison of Monte Carlo results and exact diagonalization for J=O and N =2,4, . . . , 16 sites.

Ep
c (1)

. cm(2)
c (3)
c:(4)

N=2

0.5000(00)
0.2500(00)

0.5000
0.2500

0.7081(12)
0.1790(13)
0.1259(11)

0.7071
0.1768
0.1250

N=6

0.6664(15)
0.1679(17)
0.1138(20)
0.1117(19)

0.6667
0.1667
0.1111
0.1111

N=8

0.6542(21)
0.1658(29)
0.1119(18)
0.1024(22)
0.0940(25)

0.6533
0.1633
0.1067
0.0986
0.0911

Ep

c~x(2)
c~~(3)
c,„(4)
c.(5)
c~(6)
c {7)

0.6476(28)
0.1627(17)
0.1047(18)
0.0938(27)
0.0821(26)
0.0816(33)

0.6572
0.1617
0.1047
0.0936
0.0838
0.0838

N= 12

0.6464(27)
0.1590(21)
0.1024(26)
0.0882{31)
0.0757(29)
0.0718(32)
0.0665(30)

0.6440 0.6433(25)
0.1600(27)
0.1050(25)
0.0923(29)
0.0772(34)
0.0761(37)
0.0714(41)
0.0673(38)

0.6420

N=16

0.6418(32-) 0.6407

effect of this procedure is to make the scores for the dif-
ferent configurations in the population equal since

Pgq ~P,Jr,

, (I)=( „(') „('+I)),
,„(I)= (S,(')S„('+l)),

e„„=(S(i)r„(i)),
(13)

S,J ~S,~/r =S„.
Such a procedure minimizes statistical fluctuations. '
Indeed, for this problem, this is found to be the case. The
average score is updated at each time step by the ratio of
the new population size to the old one to stabilize the
number of configurations. Typically to generate the data
presented below, configurations of size 250+% were
evolved for between 10 and 100 iridependent trials. Care
was taken to ensure that P was sufficiently large to project
out the ground state by' looking at the p dependence of the
results. Similarly, it was verified that hw was sufficiently
small. Usually P=N/2 and 5&=0.25 were chosen.

III. DETAILED RESULTS

The Hamiltonian (9) was studied first for several exact-
ly soluble limits. For the purpose of describing the mag-
netic order in the system, it is useful to introduce the
correlation functions

and similarly for x replaced by z. In Tables I and II,
Monte Carlo values for the ground-state energy and corre-
lation functions are compared with exact diagonalization
of the two and four-site cases. This provides one test that
the program accurately calculates in all regimes of J/W.
In Table III the results for c, (l) and Eo are compared
with exact values in the weak coupling (J=0) case with
N=2, 4,6,8,10. This provides a partial check of the algo-
rithm for larger systems. A further check is provided by
the strong coupling expansion described below.

It is interesting to note several exact results that are
borne out in the Monte Carlo simulation. The correlation
function c~(N/2) falls to zero as N increases at J=O
(Table III). It also must be zero in the large J limit since
the Hamiltonian then describes X independent sites.
[More precisely, in strong coupling, the first contribution
to c,„(l) goes as ( W/J)', which clearly goes to zero for J
large and I—+Do. ] Finally, the effect of increasing J,
when N=2, 4, appears to be to decrease c,„(N/2) mono-
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FIG. 1. Ground-state energy as a function of 1/N for a typi-
cal value J/8'=0. 4. For N & 10, a well defined N —+ ao result
has been attained.

FIG. 2. N~ao extrapolated value of ground state energy
versus J/O'. The strong coupling curve Eq. (,14) is shown. The
J=O Monte Carlo va1ue is —0.6361+0.0012, and the exact J=O
(XFmodel) result is —2/m = —'0.6336.
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FICx. 3. X—+ ao extrapolated value of (S(i) r(i) ) versus
J/O'. The strong coupling curve is shown. For large J/8' two

spins have condensed into singlets (S(i).v(i)) = —
~ on each

site.

FIG. 5. K'f„' versus J/8' for %=2,4,6,8,10,12,14. For large
J/8' 4'~' is independent of X, while for small J/8', X~' in-

creases with N, showing the effect of a finite-size lattice.

3J l 8
4 '+3 J (14)

tonically from its J=O value. These three facts suggest
that the correlation function at maximum separation
e,„(N/2) falls to zero for all J in the large' N limit, i.e.,
there is no magnetization in any regime of J/W. This
may appear obvious since Eq. (9) is a one-dimensional
Hamiltonian possessing a continuous symmetry. Howev-
er, a perturbation theory in J/W shows there is a long-
range effective coupling Eq. (Sb) between the S spins
which might allow the existence of long-range order. It
should be mentioned that the effective Hamiltonian Eq.
(3) with the J (i,j ) coupling given in Eq. (5b) is no longer
thermodynamic, while the original Hamiltonian obviously
is. This clearly shows that perturbation theory fails and
would be consistent with the occurrence of a critical point
at J=O.

Following these tests, the Monte Carlo analysis was ex-
tended to chains of 6, 8, 10, 12, 14, and 16 sites and non-
trivial values of the parameters J and W. The ground-
state energy for J/W=0. 4 is shown as a function of 1/N
in Fig. 1. The results have approached a well defined in-
finite system result for N) 10 sites. These continuum
values of Eo are shown versus J/W in Fig. 2. The Monte
Carlo calculation gives the correct %~~XX result at
J=O, Eo ———2/m, as well as joining smoothly with the
strong coupling expansion,

well-defined result for N=12, 14,16. In accordance with
the physical picture suggested above, as J/W increases
(S(i).r(i) ) approaches the limiting value ——, appropriate
for a singlet wave function on each site. It, however, ap-
proaches this value smoothly, and cannot be used to ex-
tract information concerning critical properties.

Instead the correlation functions, c,„(l) and c,„(l) given
in Eq. (13) are examined. In Fig. 4 we show

(r„(i)r„(i+4)) versus J/W' for N=8 sites. Because of
our use of periodic boundary conditions, N/2 sites is the
furthest separation of any two spins on the chain. Note
that as J/W increases, the correlation function
(~„(i)~„(i+4) ) decreases. As N increases
(~„(i)~„(i+N/2) ) does not approach a well-defined
value, but rather falls to zero for all J/W, clearly indicat-
ing the lack of long-range order. The Q=O magnetic
structure factors

N

I=1
(15)

are shown in Fig. 5 for N = 8, 10, 12, . ; . for various values
of J/W. As J/W decreases below O.S, finite-size lattice
effects are clearly evident. Fits to the data for J/W) 0.4
show the decay is exponential. In order to analyze further
the magnetic structure factor data shown in Fig. 5, we

note that according to finite-size scaling
which is shown as the smooth curve in Fig. 2.

The ground state expectation value of S(i) r(i)
=2c„„+e„,is shown in Fig. 3. It also has approached a

O.IOI I

I ~ ~

+
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FICr. 4. (v„(i)r„(i+4)}versus J/&for %=8 sites.

FIG. 6. Finite-size scaling is applied to the data of Fig. 5.
X',„'/X" 'I' is plotted versus ¹

"/ . The values for different
X now form a fairly well defined scaling curve.
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looking at e,„(l) for a fixed system size N and different 1
because of the complications introduced by the use of
periodic boundary conditions. The resulting value of g
for the power of the decay below the value ( J/W), =0.4
estimated from Fig. 5 are shown in Fig. 7. Above
( J/W), we show the correlation length g(J) for the ex-
ponential decay in that regime. At J=0 we find
q= +0.525(30) in reasonable agreement with the exact
XY result, + 0.500. However, the decay becomes increas-
ingly rapid as J/W~(J/W), . Furthermore, one sees
from Fig. 7 that g increases as J/W~(J/W), and never
equals 4 as in the usual XY transition.

FIG. 7. Data of Fig. 5 is fit to an algebraic decay below

( J/W), and to an exponential decay above. The resulting

power q is shown for J/8' ~ (J/W), and the correlation length
for J/8'& (J/8'), .

N ~ e
—I/g

KI„'= g e,„(l)~f dl =N' "f— (16)

Fi ure 6 shows the data of Fig. 5 replotted as
C,„'/[N' "] versus N/g with r) =0.5 to agree with the
J=O XY result and g assumed to vary as exp(A/J). In
this plot A =3, but somewhat larger values of 2 also give
similar quality fits. In addition, we could not rule out
prefactors such as V'J exp(A/J) or in fact some power-
law divergence of g such as g-1/J . Nevertheless, the
structure-factor data is consistent with a J=O critical
point and a correlation length (or gap) which onsets as an
essential singularity similar to the Hubbard model.

An alternative possibility which we also considered is
that the critical point occurs at a finite value of J/ W and
is XY-like in character. In this case above the critical
point, in the Kondo singlet regime, the magnetic correla-
tions decay exponentially while at values of J/W less
than the critical value the magnetic correlations have a
power-law decay. Adopting this view, Fig. 5 would be in-
terpreted as indicating the existence of a phase transition
at finite ( J/W) to a regime of algebraic decay. In order
to extract a numerical value for the power of the algebraic
falloff below ( J/W), we fit a plot of 1n[c, (N/2)] versus
ln(N) to a straight line. This turned out to be preferred to

IV. CONCLUSIONS

Our Monte Carlo calculations clearly show that the
"Kondo necklace" does not exhibit long-range magnetic
order in its ground state for 0& J/W&2. In fact, the
finite-size scaling analysis of the magnetic structure factor
is consistent with a critical point at J=O. In this case, for
any finite J the magnetic correlations decay exponentially.
A similar behavior has been reported by Jullien and co-
workers for the 1D Kondo lattice Eq. (1). However, they
obtained this result using approximate real-space
renormalization-group procedures which predict a finite
( J/W), ratio for the "Kondo necklace. " While we cannot
rule out an XY-like phase with algebraic decay for
J/W & (J/W)„ the 7t values are large. Furthermore, the
exact two- and four-site results are consistent with the
picture that increasing J from 0 immediately decreases
correlations along the chain. The ground-state energy of
the "Kondo necklace" is evaluated to an estimated error
of 0.5%, and a plot of (S(i)e~(i)) shows clearly that as
the exchange coupling is increased the S and ~ spins con-
dense into independent singlets on each site.
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