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Low-temperature thermodynamic properties of linear-chain compounds exhibiting charge-density
waves (CDW) are examined theoretically within a mean-field theory. A result for the spin suscepti-
bility X is obtained which agrees with the clear-cut available data on Ko 3Mo00; for T <0.97Tp, where
Tp is the Peierls transition temperature. The influence of ordinary impurities on the order parame-
ter A, the half-gap Qg, and spin susceptibility X is calculated. Numerical results are obtained for
A and Q¢ as a function of the impurity concentration x. Substantial difference is found between
the lattice distortion parameter A and the half-gap Q¢ even for relatively small impurity concentra-
tion x, which is directly accessible to experimental verification. Beyond a critical concentration x, ,
the excitation spectrum of CDW condensate does not exhibit a gap. The order parameter also yields
the transition temperature as a function of x, in agreement with earlier results of Patton and Sham
and with recent experiments on TaS; doped with Nb and Se impurities. Impurities are found to
enhance spin susceptibility. However, the susceptibility at zero temperature remains zero for all

concentrations, except in the gapless regime.

I. INTRODUCTION

Inorganic linear-chain compounds which exhibit a
Peierls distortion to charge-density-wave (CDW) states
have received considerable attention recently. The pri-
mary focus has been on the unusual charge transport
properties of the sliding CDW condensate such as non-
linear conductivity and narrow-band noise.> Typical ex-
amples of inorganic quasi-one-dimensional (1D) com-
pounds exhibiting charge-density waves are NbSe;,
TaS;, Ky;3Mo00;, and (TaSey),I. Organic compounds
like tetrathiafulvalene-tetracyanoquinodimethane (TTF-
TCNQ) have also been studied quite extensively; however,
the evidences for collective charge transport for these
compounds are still controversial.>>

The onset of CDW order has remarkable effects on the
thermodynamic properties of quasi-1D conductors as
well, since below the Peierls transition temperature Tp a
gap opens up in the excitation spectrum. Since the early
days of the subject, experimentalists have used thermo-
dynamic measurements to characterize CDW order.>3
However, on the theoretical side, sufficient attention has
not been given to the calculation of the thermodynamic
properties, particularly at low temperatures.  The present
work is an attempt to narrow this gap between theory and
experiments by presenting the calculation of a few ther-
modynamic properties of the CDW condensate.

Our calculations will be performed within the mean-
field theory.*~7 Strictly one-dimensional systems cannot
exhibit any long-range order at any finite temperature,
due to the enhanced effect of fluctuations in one dimen-
sion.” However, even weak coupling between linear chains
can lead to long-range correlations below a temperature
Tp which is significantly lower than the transition tem-
perature predicted by the mean-field theory. Below this
temperature fluctuations are not expected to play an im-
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portant role. For example, it has been shown recently by
Johnston®® that in K 3;Mo0; fluctuations effects die out
below T'=0.9Tp. Thus, our results should be valid at
these low temperatures.

The thermodynamic quantity which is of primary in-
terest to us is the spin susceptibility X. Previous theoreti-
cal studies of the spin susceptibility of the CDW conden-
sate was performed by Lee, Rice, and Anderson.!® The
focus of their work was on the effect of 1D fluctuations
and the Landau-Ginzburg expansion. provided an ade-
quate basis.!! Their theory is in excellent agreement with
the experimental data in the high-temperature fluctuation
regime.® In our calculations we use thermal Green’s func-
tions (mean field) to arrive at a result for X, which com-
plements the results of Lee et al.!® at low temperatures.
Our result for X is in agreement with susceptibility data®
in K¢ 3Mo00; for T<0.97,. In addition, this formulation
of the susceptibility calculation also allows us readily to
include the effects of ordinary (nonmagnetic) impurities.

Impurities are known to have important effects on
CDW properties and to cause interesting phenomena such
as Josephson-type oscillations in the sliding mode.'>'® It
has been pointed out by several authors that impurities
should have a pair-breaking effect on the CDW conden-
sate,*!*15 since the potential due to ordinary impurities
acts with opposite signs on the two members (electron and
hole) of the pair. In this connection, Schuster!® showed
that the effective mean-field Hamiltonian describing the
CDW condensate with impurities can be cast into a form
analogous to that of the effective Hamiltonian appearing
in the Abrikosov-Gor’kov (AG) theory'~'® of supercon-
ductors with dilute magnetic impurities, thus suggesting
that impurities should cause effects in CDW similar to
those obtained by AG. Following his suggestion we shall
study the effects of impurities on some of the properties
(order parameter, energy gap, and the spin susceptibility)

7296 ©1985 The American Physical Society



31 THERMODYNAMIC PROPERTIES OF CHARGE-DENSITY WAVES

of the CDW condensate.

One of the major results of the AG theory!® of super-
conductors is that one has to make a distinction between
the order parameter A and the half-gap Qg in the pres-
ence of magnetic impurities. In fact AG theory predicts
that for concentrations exceeding a critical value, one may
have a gapless superconductor. However, the prediction
of the theory regarding the difference between the gap and
the order parameter can only be indirectly tested, since ex-
perimentally the superconducting order parameter cannot
be obtained directly. In the case of the CDW condensate
the order parameter A, which describes the periodic lattice
distortion, is directly measurable via neutron, x-ray, or
electron scattering.® Since the experimental value of the
energy gap can also be obtained directly either via
optical-edge studies!® or through tunneling experiments,?®
the predictions of the theory regarding the difference in A
and Qg are easily verified experimentally.

The calculation of the energy gap 2} is also motivat-
ed by the fact that not only do thermodynamic properties
depend sensitively on the occurrence of the gap in the en-
ergy spectrum but other physical properties can also be af-
fected by the changes in the gap brought about by impuri-
ties. The effect on the single-particle charge transport is
obvious, but more interestingly, the unattenuated
collective-charge transport, as first postulated by
Frohlich,’ is also very much dependent on having a gap in
the excitation spectrum. Therefore, our results for the
gap may also bear on the recently observed current-
carrying sliding CDW state in the presence of electric
fields exceeding the threshold electric field E; required to
overcome the impurity pinning.?

The present work on the effects of impurities on the
CDW state is also inspired by some recent experiments?!
which clearly show the impurity effects similar to the ef-
fects caused by magnetic impurities in superconductors.
Last, we point out that explicit calculations of the various
physical quantities are warranted, since not all the quanti-
ties are affected by the impurities in a way one would ex-
pect from the AG theory. For example, we show that the
expression for the spin susceptibility of the CDW state in
the presence of impurities is different from that obtained
in tl;g case of a superconductor with paramagnetic impuri-
ties.

The main features of our calculation on the effects of
impurities are as follows: (i) The order parameter, and
hence Tp, is depressed by the impurities in accordance
with the earlier result of Patton and Sham'# and with re-
cent experiments on TaS; doped with Nb impurities.?! (ii)
The half energy gap Qg and the order parameter differ
substantially even for relatively small impurity concentra-
tions. Further, for concentrations exceeding a critical
value x., the gap goes to zero while the order parameter
remains finite, thus giving a gapless CDW state. (iii) We
show that the ratio A(T'=0)/Tp increases with impurity
concentration from 1.76 to (27)!/2, which is significant in
view of the fact that 1D fluctuations lead to the same ef-
fect of comparable magnitude.® (iv) Impurities enhance
the spin susceptibility X of the CDW condensate. Howev-
er, for all concentrations x less than x/, i.e., except in the
gapless region, X still vanishes at zero temperature. This
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result is in contrast with that of the AG theory,'® where
for any finite concentration of magnetic impurities one .
obtains a finite X(T'=0). (v) Impurities also reduce the
slope of the X-versus-T curve near Tp(x), in much the
same way as the 1D fluctuations do. However, the mag-
nitude of the effect seems too small to be of significance.

The remaining paper is organized as follows. In Sec. II
we develop the formalism, followed in Sec. III by a dis-
cussion of the lattice distortion and the transition tem-
perature. Section IV includes a discussion of the energy
gap and its comparison with the other parameter. The
spin susceptibility of pure CDW is calculated in Sec. V.
The effects of impurities are computed in Sec. VI. Final-
ly, in Sec. VII we summarize the conclusion of our study
and various extensions of the present work.

II. FORMALISM

We start with the Frolich-type model Hamiltonian
describing noninteracting electrons in a linear chain cou-
pled to phonons:

H=T exclocko+ 3 0ablb,+b" jb_,)

k,o q

g(q) ¥ T
+ [Ck +4,0Cko(byg+b_4)+c.c.], (n
§ VN % k +q,0¢ko'\ % q

where C;L, is an creation operator for a 1D. Bloch elec-
tron, with energy €, and spin o. Similarly, b,;r is a
creation operator for a longitudinal phonon with energy
®,. N is the number of atoms in the chain and g is the
electron-phonon coupling. For simplicity we shall consid-
er a half-filled band and will set the chemical potential
equal to zero.

In the mean-field theory*~7 one considers only the in-
teraction of the electrons with a single phonon of wave
vector | Q | =2kp, where kp=mN /2L is the Fermi wave
vector. This phonon condenses below the transition tem-
perature Tp resulting in a static lattice distortion
described by the order parameter A: ‘

28 t
A:.{/ﬁ(bQ"_b—Q)O’ (2)

where { ), denotes thermal average with respect to the
mean-field Hamiltonian HY, obtained from H by replac-
ing the phonon operators by their mean values:

H0= zekcll-ocka"f‘% E(CII+Q,0cka'+cl‘crack +Q,¢r) . (3)

k,o k,o

In writing Eq. (3) we have neglected a term aA2, which is
independent of electron operators. We have also used
Ck +nQ,0=Cko Where n=even integer. A satisfies a self-
consistent equation, obtained by using Eq. (2) and the
equations of motion for phonon operators:

2
A=—E-3 (e} 00tko)o - @
D2k "k

It is convenient for later introducing the effect of non-
magnetic impurities to recast Egs. (3) and (4) in a matrix
representation.*!> In this representation one artificially
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divides the momentum space into k£ and k + Q spaces by

introducing the spinors® -
Cko
Oro= Ck 100 (5)

and the Pauli 2 X2 matrices fl,fz,&. Equation (3) then
becomes

H’= €xBlolsdro+A > ¢Ia§l¢k¢ . (6)
k,o k,o
The thermal Green’s function is defined by

B iw,T
Gkiog)=— [ dre'"(T,pro(mI$Ls(0)) , (1)

where T, denotes time ordering and pB=1/T,
w,=(2n +1)7T. From (6) the inverse of the above ma-
trix is immediately obtained as

[GOk,iw,)] ' =iw, —xb3— AL, . )

From now on, we will drop the spin indices since they are
irrelevant for most of our discussion. They will be rein-
serted wherever necessary. Inverting the above matrix, we
obtain the thermal Green’s function describing the CDW
condensate in the absence of impurities:

Gk, iw,)= slio,+ebs+A8) . 9

—1
wﬁ -+ A2 -+ €x
Next we describe the interaction of the electrons with
ordinary impurities by the Hamiltonian

Hi=—= 33" U@l (10)

i kg

where we have used the definition Eq. (5) of the spinors.
1 is a unit 2 X2 matrix and #; is the position of an impur-
ity along the chain. This interaction gives rise to a self-
energy 2(k,iw,) defined by the Dyson equation

G kiw,)=[GUk,iw,)] ' —Z(k,io,) . (11)

We calculate 2(k,iw,) in the first Born approximation
and assume a random distribution of impurities to obtain

Mkio)= 33 |Up K |G pio,) . (12
i p

Now G (k,iw,) is strongly peaked near the Fermi level.
The only important scattering is that in which momentum
changes by 2kr. The term g=0 in H; causes only renor-
malization of the chemical potential. Thus replacing
U(p —k) by U(2kp)="U, we have

3(k,iw,)=xU*3 G(p,io,)=GClio,) , (13)
p

where x is the impurity concentration. Substituting (13)
in (11), we obtain the inverse of the matrix Green’s func-
tion:

G kyiw,)=iG, —erls—RA, L)), (14)
where

iG,=iw, —Gilio,), (15a)

A, =A+Gplin,) . (15b)

Inversion of matrix (14) immediately gives

G (k,iog)= T (i6, +els+R,80 . (16)

Gi4+AL+e
Equations (13), (15a), (15b), and (16) form a closed set of
equations. The solution proceeds by integrating (16) over
k to obtain G,(iw,) from Eq. (13). The results are sub-
stituted in Eqgs. (15a) and (15b) to give

3, O (17a)

OOt G2 4AL) :
~ 1 A,

~T T @24R02 4

n

where 7~ !'=xU?/hvg is the electron lifetime due to im-
purities. As in other similar problems,'®'® we find it con-
venient to introduce the quantity u,:

U, =0, /Z,, ,
(18)
un

Aty = ++—
Uy wn+T (1+u3)1/2

Use has been made of Eqs. (17a) and (17b) in obtaining
the second expression.

Equation (16), along with Egs. (17a) and (17b) [or Eq.
(18)], completely determine the thermal Green’s function
describing the CDW condensate in the presence of an or-
dinary impurity. We note in the passing that Egs. (17a)
and (17b) determining &, and A, in terms of w, and A
are the same relations as those occurring in Abrikosov-
Gor’kov'® theory of superconducting alloys with
paramagnetic impurities. The origin of this analogy is
due to the fact that in both cases impurity potential acts
with opposite signs on the “particles” of the bound pair.
Similar relations have also been obtained in the theory of
exciggnic insulator in the presence of nonmagnetic impuri-
ties.

III. LATTICE DISTORTION
AND THE TRANSITION TEMPERATURE

We first derive an equation for A describing the lattice
distortion valid for arbitrary temperatures and concentra-
tions, and then discuss the solution for various limiting
cases which also yield an equation for the transition tem-
perature Tp. The complete numerical solution of the
equation for A is given in the next section in a graphical
form.

Combining Egs. (4) and (7), we have

A==273 [ %Gn(k,iw,,) . (19)

Wik

Use of Eq. (16) immediately gives

A
A@*+A2+€d) ]

1= N 013 [ de (20)

Dok

where we have assumed a constant density of states
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N(0)=(2w#ivp)~" and introduced a cutoff €o~wy, be-

cause the effective interaction between electrons and holes
is restricted to a small region around the Fermi level €f.
To proceed further, one adds and subtracts under the in-
tegral sign the corresponding expression in the pure
(7~ 1=0), metallic (A=0) state. This allows one to extend
the integration over € in the difference to infinity, while
the added term can be evaluated in a straightforward
manner. The result is

2y o

28
1= NOl
© T kgT

Dok

1 1
Al+ud)'? " o, ]

+w2g l(O)ﬂTz ., @1

2%k

where y=1.78 is an Euler’s constant. The coupling g in
the above equation can be eliminated in favor of Tpo, the

transition temperature in the pure case, by noting that in
the pure case as A—O0, the difference. terms in Eq. (20)
vanishes. Thus one obtains the standard BCS-type result:

kBTpo.:%ry—eoe—l/k , (22)

where A=2gN 10wy, is the dimensionless electron-
electron coupling. Using the above result, we can rewrite
Eq. (21) as

1 1
AQ+u)? |,

In (23)

=T,
w"

Tp,

This equation determines A for all temperatures T and
concentration x. However, in the following we consider
only the various limits of the above equation. .In the re-
gion near the transition temperature TP, where A is small,

we can expand Eq. (17) for small u,' to obtain
1 1 A> @
- +0AY, (24
A(l4u, )‘/2 o+ 2 (0, +T)*

where I'=7"" is the electron scattering rate from impuri-
ties. In this limit, Eq. (22) becomes

7299
In |- | =L +p) =)
Tp,
Az (2)( 1 (3) 1
—(2ﬂT)2[:/: (7 4+p)+¢ (5 +p)]. (25)

Here (z) is the digamma function and #™(z) its nth
derivative. p=I"/27Tp is the pair-breaking parameter.
The equation of the transition temperature Tp(x) is ob-
tained by setting A=0 in Eq. (25):

=¥z +p)—P(3) . (26)

P
1 ——
n TP

0

This describes the suppression of the transition tempera-
ture by nonmagnetic impurities in the same manner as for
the excitonic insulator,!® and is in agreement with earlier
results.!* Equation (26) shows that initially 7, will de-
crease linearly with the impurity concentration x. This
prediction has recently been confirmed by experiments?!
on TaS;, with Nb or Se added as an impurity. Similar
suppression of Tp has also been observed in NbSes, doped
with Ti (Ref. 23) and Ta (Ref. 24) and with irradiation-
induced defects.

Equation (26) also predicts that at a critical concentra-
tion x., given by

U?
. A A 7

‘ITTPO ’

Tp vanishes. Unfortunately, in addition to the effects
considered here impurities also tend to smear out the
Peierls transition.?’> Thus one may be not able to experi-
mentally determine x. precisely. However, a 5% Ta dop-
ing in NbSe; depresses the lower transition (Tp =59 K)
so much that it is no longer detectable?* and thus provides
credibility to the above result.

Next we consider the T=0 limit of the lattice distor-
tion parameter A(0). In this case one can replace the sum-
mation over o, by an integration

1 ©
T%—»; f_w

and proceed as before, to obtain from Eq. (19)

2g €o 1 1
1= (0)In + 0+ do — 28
o, M A(O) ors [ AO)14+u?)'?  [0?+A%0)]'2 2
The order parameter Ay(0) for the pure case is immediately obtained by settihg the second term equal to zero:
Ay(0)=2€pe 17, (29)

The integration in Eq. (27) for the second term is easily performed by changing the variable: w-—u, where u is given by
Eq. (18). The result after some algebra and use of Eq. (29), can be written as

—Ta, a=(rA)"'<1

A(0) 4

Ay(0)

In

7 (a

-—ln[a+(a2— 1)1/2]_ o

2_ 1 )1/2
(12

(30)

—tan"[(®—=1)1?] |, a>1.
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IV. ENERGY GAP

In the following we consider density of states in order
to calculate the energy gap 2Q¢ and show that there is a
substantial difference between Qg and the order parame-
ter A even for small impurity concentration. Further-
more, beyond a critical concentration x, the CDW con-
densate does not exhibit a gap in the energy spectrum. It
is also pointed out that impurities cause strong deviations
from the relation A(T=0)=1.76kpg Tp,. The density of

states is given by

N(w)=— f_w —ImTrG(k i0y) o, 0> (31

where G is given by Eq. (16). A’ factor of 5 is inserted to
avoid double counting in k space. The integration over k
is easily performed to give

u
N(w)=N;(0)Re m s . (32)
where u =w /A is now given by

T (u 2_ 1 )1/2 *
In the absence of impurities (7~!=0), Eq. (31) reduces to

0, || <A
N(w) (34)

= (0]
NI(O) (wZ_A(Z))l/Z’ ’(z)| <A0.

As expected the pure system exhibits a gap 24 in the ex-
citation spectrum.

In the presence of impurities, u is, in general, a com-
plex function of w'=w/A. However, for small values of
o' (and a), u is real and less than one. Thus N (w)=0 for
small w. The half-gap Q¢ is determined by the maximum
value of w, such that Eq. (33) has a real solution, with
u < 1. Thus maximizing (33), we have

Qg =A(1—a?7)32 (35)

for a < 1, while Q=0 fora < 1.

Equation (35) clearly shows that in the presence of im-
purities a distinction has to be made between the order pa-
rameter A and the half-gap Q4. For example, the half-
gap Qs and the order parameter exhibit quite different
concentration dependences as shown in Fig. 1 at T=0 K.
The order parameter has been calculated from Eq. (30).
Even at small concentrations, for example, 10% of x,,
Q¢ and A differ significantly. A can be measured directly
by neutron scattering, electron diffraction, or x-ray
scattering while the half—gap Q¢ can be obtained dlrectly
by optical-edge studies!® or tunneling experiments.?° Qg
can also be deduced from low-temperature spin suscepti-
bility (see Sec. VI) or specific-heat measurements. Thus
the predictions of the theory shown in Fig. 1 are easily
verifiable.

Figure 1 also shows that the difference between Qg and
A increases with the concentration, until at another criti-
cal concentration x., Q¢ vanishes, though the value of
the order parameter is still about 50% of its pure value
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FIG. 1. Comparison of the concentration (x) dependence of
the order parameter A and the half-energy gap Q¢ at T=0 K.
The gap vanishes at x, =0.912x,, where x, is the critical con-
centration at which CDW order disappears.

Ag(0). Thus for the concentrations x such that
X, <X <X, there is no gap in the energy spectrum,
though we are in a Peierls state, as was first suggested by
Schuster.'> The new critical concentration x, at which
the gap vanishes is determined by the condition a=1. At
T=0 K we can use Egs. (30) and (27) to obtain

, hUF
X, =—U?exp( —p/4)Ay(0)=0.918x, . (36)

The absence of the gap in the energy spectrum for
X, <X <X, has important implications for spin suscepti-
bility and specific heat. For example, in the gapless re-
gion one expects X(T=0)s£0, as will be confirmed in Sec.
VI. The absence of the gap obviously effect the single-
particle charge transport. The unattentuated collective-
charge transport as first suggested by Frohlich® hinges on
having a gap in the single-particle excitation. Thus the
collective charge transport is also expected to be affected
by having a gapless CDW condensate.

It should be noted that for any finite concentration x of
impurities, there is always a temperature region where the
gap vanishes. The curve that separates the boundary of
the gapless region from the region with a gap is given by

7~!=A(T). The gapless region is shown in Fig. 2 as the
T T T T ] T T T T T
10 —
4
A(T) i
Ad0) ¢ _
0, 0.5 ] 1.0

1/ Too

FIG. 2. Temperature dependence of the order parameter for
various values of the concentration. The dotted area shows the
gapless regime.
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dotted area, where A(T) has been evaluated numerically
using Eqgs. (23) and (18). The calculational details of the
numerical solution, which requires solution of the com-
plex Eq. (18) can be found in Ref. 26.

Another important effect is that the BCS relation for
the pure case A(0)=1.76Tp between the order parameter

at T=0 K and the transition temperature does not hold in
the presence of impurities, as can be inferred from Fig. 2.
The ratio A(T =0)/Tp increases with the impurity con-
centration from 1.76 to its limiting value of (27)'/2 at
x =x.. We feel this result is especially important in
CDW systems since the observed T is always less than
the Tp one obtains from the BCS relation A(0)=1.76Tp.
For example, in K; ;M00;, the experimental value of A(0)
gives a Tp=320 K, which is about 75% larger than the
observed Tp. This reduction in the critical temperature
is usually attributable to the enhanced fluctuation effects
in one dimension.”!! However, we see here that the im-
purities can cause a very similar effect, of comparable

B
X(@)=p} 3, 00" [ d1(T,c) 1 40(Nepo(T)cy _g0(0)cy o(0))

pp’
o,0’
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magnitude, and therefore, one must be very careful in
identifying the source of the discrepancy between the
measured Tp and the value of Tp deduced from A(0).

V. SPIN SUSCEPTIBILITY (PURE CASE)

We now derive an expression for the spin susceptibility
X using the thermal Green’s function G discussed in
Sec. ITI. This formulation of the susceptibility calculation
also allows one readily to introduce the effects of impuri-
ties, which will be the subject matter of the next section.
The result derived below is in agreement with experimen-
tal data on Ky 3MoO; up to T=0.9Tp.

We first obtain a general expression for the wave-
vector-dependent susceptibility X(g), which easily yields
the desired result for X in the limit g—O0.

’2l;he wave-vector-dependent spin susceptibility is given
by

(37

where 0,0’ (+1) are the spin indices. To perform the sum over o and o', we note that in the charge-density-wave con-
densate there is no correlation between electrons of opposite spins and hence only o =0’ terms contribute. This situation
is in contrast with a BCS superconductor where strong correlation exists between electrons of opposite spins and o0’
terms must be kept. Despite this difference, we show below that the final expressions of X(gq) are exactly of the same
form in the two cases. However, this difference is important in considering the effects of impurities on X as will be seen
in Sec. VI. ‘ '

Thus, using 02=1 and dropping the spin indices, the above correlation function can be written as a product of pair-
wise time-ordered averages: ) '

B
Xg)=—=2p} [ dr 3 (Trc(0)c 14 (M) Tcp(r)e)_y(0)) . (38)
p.p
[
One can express the right-hand side of the above equation o Y u?
in the terms of the various components of the Green’s Gn(k,w,)=- 7t Ak (40b)
function G° describing the CDW in the absence of impur- 1On— Bk 10p+ Dk
ities. Using Eq. (7) and the usua} definition of the Fourier G ko, )=G(k,w,)
transform to w, space,?’ we obtain
2 0 0 = -
X(q)=——2IJ'BTw22[Gll(k+q’a)n)Gll(k,wn) U Uk iwn_Ek iCl)n+Ek ’ (40C)
+G%(k +4,0,)G 5 (k,0,) where
2_ 2 24172 -
+G%(k +4,0063 (k) Fe=+Ara) @b
o o and the coherence factors are given by
+ Gk +q,0,)G12(k,0,)] . (39)
‘ UV =——— , (42a)
The matrix G° is given by Eq. (9). To perform the sum 2E;
over w,, we find it convenient to express various com- ul=1—v}=1+e&/E; . (42b)

ponents of G° in the following form:
€, is the free-electron energy measured from the Fermi
level. With this form, the sum over @, in Eq. (39) is easi-
ly evaluated by conventional contour integration to give

2 2
Uk Uk
Go\(k,w,)=
ll( wn) im,,—Ek ia),,+Ek

, (40a)

S JE)—f(E 1 4)
Ey—Eg.q

1= f(E)—f(Eiyg)
E,+E; +q

X(g)=—2up E(ukuk+q+vkvk+q) —(uk+qvk-—ukvk+q)2 - (43)
k
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This is our final expression for the wave-vector-dependent
spin susceptibility X(g) of the CDW condensate valid for
arbitrary temperature 7. As promised, it has the same
form as that of the spin susceptibility X(q) of a BCS su-
perconductor.”® The wave-vector dependence of X(g) is
crucial to the question of coexistence of the CDW state
and magnetic order and to the related problem of indirect
magnetic interactions in the CDW condensate. These is-
sues will be addressed elsewhere.”’ Here we focus on the
g=0 limit.

In the limiting case of ¢=0, the second term in the
above equation vanishes, while the first term yields
[xX=X(g=0)]

of (Ex)
X=—ZM§EL~

(44)
< " 3E;

This is our final result for the spin susceptibility in the
CDW condensate. The corresponding result for the BCS
superconductor, which again has the same form as above,
was first obtained by Yoshida.’® This result can be writ-
ten in a more useful form, by using the variable y =BE;,
where E; is given by Eq. (41):

X @ ey y

v s Vi e “
where 8=A and X?=2u}N,(0) is the Pauli susceptibility
in the metallic state.

As A—0, the right-hand side of Eq. (45) becomes unity.
Thus the paramagnetic susceptibility decreases from its
metallic state value XP at the transition temperature 7Tp
with decreasing temperature and vanishes exponentially as
T—0 K. The complete temperature dependence of X is
shown in Fig. 3.

The above result can also be obtained in a phenomeno-
logical manner by assuming as 1D semiconductor model,
with a gap 2A,. Johnston® uses such an approach to
analyze his experimental data on Ky ;Mo00; which are the
only clear-cut available data. He employs Ag(7) measured
by Sato et al.3! via neutron scattering and shows that the
above result is in precise agreement with experiments up
to about 0.97p, where Tp=183 K. At higher tempera-
tures strong deviations from the theory are found due to
the effects of 1D fluctuations.!! For high temperatures
the theory of Lee et al.,'° which incorporates the effects
of 1D fluctuations, but is based on Landau-Ginzburg ex-
pansion,!! provides an excellent fit to the experimental
data.® It should be noted that although the experimental
order-parameter results of Sato e al.’! follow closely the
BCS-type temperature dependence, the data probably in-
cluded some three- or two-dimensional effects. The spin

J
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FIG. 3. Spin susceptibility Xcpw in the absence of impurities
as a function of reduced temperature T/ Tp,. Xx° is the Pauli

susceptibility.

susceptibility of other quasi-1D systems, e.g., TaS; and

(TaSe;),I, show similar temperature dependences.®

NbSe; also shows a decrease in susceptibility at both tran-
.. 33 . .

sitions.”> However, the decrease in X is much less than

expected from our result. This could be due to an increase

in the Van Vleck magnetism at low temperatures.*3

VI. EFFECT OF IMPURITIES
ON SPIN SUSCEPTIBILITY

In the following we discuss the effect of nonmagnetic
impurities on the spin susceptibility of the CDW conden-
sate. From Eq. (39) it is clear that in the presence of im-
purities, one needs to calculate the average over the ran-
dom positions of impurities of the product of two Green’s
function. This requires calculating (i) the averaged
Green’s function, i.e., the self-energy correction and (ii)
the vertex corrections, since the average of the product of
two Green’s function is not equal to the product of aver-
aged Green’s functions. The averaged Green’s functions
were obtained in Sec. II. Thus, in the following we main-
ly focus on the vertex correction.

As the scattering from ordinary impurities does not
mix the up- and down-spin spaces, it is sufficient to con-
sider only one spin direction. Then the generalization of
Eq. (39) in the presence of impurities is

X=243TS —g;]:_—Tr[G(k,w,, AU0,)G (kywn)],  (46)

where G is the matrix Green’s function given by Eq. (16)
and includes the self-energy corrections due to impurities.
A(p,w,) is the vertex function and in the standard ladder
approximation is determined by the integral equation:

Apo,)=1+3= [ dp'[Ulp —p")G (p",0,)Ap',0,)G (p',0,)Ulp" —p)] 47)

The solution of the above equation is obtained by not-
ing that since the integrand decreases rapidly on going
away from the Fermi level, one can assume
A(p,0,)=A(w,). Further, we make the following ansatz
regarding the form of A(w,):

Alw,)= 48)

A% Al

Al AZ}

We note that this ansatz is slightly different than the one
used by Gor’kov and Rusinov?? in their calculation of the



spin susceptibility of a superconductor with magnetic im-
purities. This is due to the fact in our calculation elec-
tronic spin does not play any important role.

With this ansatz, integration in Eq. (47) is easily per-
formed to give

A'=14+1,A'+1,A?, (49a)
AN=AT;+ A%, , (49b)
where
Iy = -;— , (50a)
iu, '
I,=I;= , 50b
2=lh=— (50b)
Lol (50¢)
4=~ C
with
D =27A,(1+ul)*"?. (51
The solution of the above coupled equations is
1+u?/D
Al= ——+T"———— , (52a)
1+(u,—1)/D
iu,D
A? D (52b)

T 14+@wl-1/D

The integration over k in Eq. (46) is formally divergent
and one must sum over w, first. However, this formal
difficulty can be overcome by adding and subtracting
-under the integral sign the corresponding expression in the
metallic state. Then it is legitimate first to integrate over
k in the difference term to obtain

%= 1—7T 3 [ A +1,A%27] , (53)
(9]

which upon using Eqgs. (49a) and (52a) immediately yields
X _ 1—7T 3, L
XP © 2

* (1+4u,)

A, (14+ul) 24—

(54)
This result can be written in a more convenient way by
the use of Eq. (17b) for A,,:

X _, aT 1

=1

X

11

1 2\1/72
(1+uy) A 1t

“n (14u2)

(55)

This is our final result of the spin susceptibility describ-
ing the effect of impurities. Note that this expression is
different than the corresponding expression of the spin
susceptibility in the AG theory of superconductors with
dilute magnetic impurities.??

To discuss the concentration dependence of X, we con-
sider the T=0 K case. In this case the sum over w, can
be converted to an integral over @ which in turn can be
written as an integral over u by the use of Eq. (18) and we
get
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)

l—a 1 1
(1_|_u2)3/2 (1+u2)3/2_a
(56)

where a=(7A)"!. uy=0 for a<1 and ug=(a®—1)"2
for a> 1. We have evaluated the integral numerically and
the results for the susceptibility X as a function of impuri-
ty concentration x are shown in Fig. 4. For x <x,; we
find X(T=0)=0 due to the fact that for x <x/, the exci-
tation spectrum has a finite gap. Note that this result is
qualitatively different than that in the AG theory, where
any finite concentration of magnetic impurities gives rise
to a finite value of the spin susceptibility. For x >x., X
first increases rapidly with the concentration and then
goes over smoothly to its metallic state value X? as x —x,.
Indirect experimental verification of our results shown in
Fig. 4 comes from recent experiments®* in a similar sys-
tem (heavily doped polyacetylene), which also shows a
transition to a gapless Peierls state.

Figure 5 shows the susceptibility X as a function of re-
duced temperature T/Tp(x) for four different values of
the concentration. There is a general enhancement of the
spin susceptibility due to the pair-breaking effect of im-
purities. However, all the curves still start from zero, ex-
cept the curve x=0.94x, which represents the gapless re-
gime. Even in this latter case, the initial value of X is less
than X? since the density of states at @ =0, though finite,
is still less than N;(0), the density of states in the metallic
state. It is interesting to note that near the transition tem-
peratures, impurities cause a decrease in the slope of the
X-versus-T curve. This is qualitatively similar to the ef-
fect of 1D fluctuations.!® Unfortunately the size of the
decrease in the slope seems too small to be of significance
in relation to the experimental data.

Lastly we consider the low temperature (7 << Tp) re-
gime to show that qualitatively different temperature
dependences are obtained in the gapless regime and the re-

T A T T

[OX:-] of

XX

0.2

0 i 1
090 092 0.94 0.96 0.98 10
X/ X

FIG. 4. Concentration dependence of the spin susceptibility
at T=0 K. Note that X first become nonzero at x=0.912x,,
where the gapless regime begins.
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FIG. 5. Temperature dependence of the spin susceptibility
for several values of the impurity concentration. Note the de-
crease in the slope near Tp(x).

gime with a gap. For temperatures slightly above T=0
K, one can write Eq. (56) as!’

X 1 © o 1
XP A Yo (1+u???—a

2 o 1
_—A—fo do f(o0)Im [ml ,

(57

where f(w) is a Fermi function. Evaluation of the right-
hand side gives

172

27T —Q4/T
_ 3/2y—1/4_—3/2 G 1
y (1—a®’?) a A , a<
—_— o 2
P
X a(aZ_1)1/2+%a——4(a2_1)-5/2 7rAT , a<1 .

Thus in the concentration regime with a finite gap (a < 1),
X shows an exponential variation with the temperature.
On the other hand, in the gapless regime, the initial tem-
perature dependence is quadratic.

VII. CONCLUSIONS

We have derived a low-temperature result for the spin
susceptibility, which agrees with the experiments. We
have shown impurities enhance spin susceptibility, due to
their pair-breaking effect on CDW pairing. The finite-

impurity results follow closely the energy-gap results and
hence are in basic agreement with a semiconductor model
commonly used to describe electronic properties of the
CDW condensate. Furthermore, our result for X in the
presence of impurities is different than the corresponding
result in the AG theory.?? Similar differences should also
be expected in the other physical quantities such as nu-
clear spin-relaxation rate, where conduction-electron spin
enters explicitly.

Perhaps the most interesting result is the significant
difference between the lattice-distortion parameter and the
half-gap Qs caused by the impurities, which can be tested
directly by experiments. In this regard, a recent calcula-
tion on the effect of localization on the Peierls transition
by Abrikosov and Dorotheyev?’ should be noted. These
localization effects must be considered for strictly one-
dimensional conductors. They found the energy gap is
absent at any impurity concentration due to the localiza-
tion effects of random impurity potential. ‘Thus careful
experimental determination of the concentration depen-
dence of the energy gap in the materials of current interest
(NbSe;, Kg3Mo00;3, etc.) would be very useful in distin-
guishing the two effects: the lifetime effects considered in
the present work and the localization effect.>®> This in
turn can help us in understanding the novel transport
properties exhibited by these materials.

Some of the impurity effects are found to be similar to
those stemming from 1D fluctuations. Notable among
these is the substantial increase in the ratio A(7T=0
K)/ kg Tp with impurity concentration.

The specific heat is also a basic thermodynamic proper-
ty. However in this case, in addition to electronic specific
heat, one must calculate the lattice contribution to heat
capacity as well. The electronic part is expected to be that
of a 1D semiconductor and should show a jump at the
transition temperature. Further impurities should reduce
the size of the jump. The calculation of specific heat,
which requires evaluation of the free energy are underway
and will be published elsewhere.

Our theory does not take into account explicitly the
weak interchain coupling, which gives rise to the transi-
tion to the Peierls state at a finite temperature. A more
complete theory of quasi-1D compounds should take into
account this weak interchain coupling and other three-
dimensional effects. This problem is under investigation.
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