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Elementary excitations and local spectral distributions in nonhomogeneous antiferromagnets
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Elementary excita&ions in antiferromagnets which lack translational symmetry are studied. The
Green s-function formalism is used to describe the local character of the excitations in terms of
spectral distribution functions which are related to the local magnetic moment of the excitations.
Two types of excitations are found: one associated with the "up" sublattice and with total magnetic
moment —gp~, and another associated with the "down" sublattice and with total magnetic moment

gpz. It is argued that in systems where the up and down sublattices are not equivalent a net
ground-state magnetization should appear. After the general formalism is discussed two specific ex-

amples are given: a semi-infinite chain and an infinite chain with a single impurity. Both of these
systems display nonuniform ground-state magnetization and in the case of the semi-infinite chain,
for which the up and down sublattices are not equivalent, a net magnetization does appear.

I. INTRODUCTION II. GENERAL FORMALISM

Double-time Green's functions' provide a powerful tool
for the theoretical description of systems which lack
translational symmetry. ' Their use has proven particu-
larly suited to the study of the local behavior of physical
quantities such as densities of states, charge densities, and
magnetization densities. In most cases there exists a
straightforward connection between diagonal matrix ele-
ments of the appropriate Green's function and local
values of the corresponding physical quantities. Difficul-
ties have been encountered, however, in the application of
the method to the study of the low-level excitations of an-
tiferromagnetic surfaces. Attempts to obtain a local den-
sity of states from the Green's function have been shown
to lead to inconsistencies.

In this paper we present a way to circumvent these dif-
ficulties. We argue that no local density of states can be
defined because the number-of-excitations operator cannot
be decomposed into local number operators. On the other
hand, we find that the total density of states can be
represented as a sum of local terms, each of which is not a
local density of states in the usual sense but can be given a
straightforward physical interpretation in terms of the
magnetic moment carried by the excitations. Moreover,
intrinsically local quantities, such as the ground-state
magnetization and the magnetic moment of the excita-
tions, can be readily extracted from the formalism.

To illustrate these points we report calculations for two
simple models: A semi-infinite antiferromagnetic chain
and a single impurity in an infinite antiferromagnetic
chain.

This paper is organized as follows: in Sec. II the gen-
eral formalism is discussed; in Sec. III the calculations for
the systems mentioned above are presented; and finally in
Sec. IV our results are summarized and some concluding
remarks are presented.

where J)0, 5 runs over nearest neighbors, pz is the Bohr
magneton, g is the gyromagnetic ratio, and Hz is an an-
isotropy field introduced to fix the direction of the mag-
netization in each sublattice.

We now introduce the Holstein-Primakoff transforma-
tion

z =Si c S Qi Qi (2)

and

S g
———S+b b.z

S;b (2S b; b;)'——i b; .—
(4)

When Eqs. (2)—(5) are introduced into Eq. (1) one obtains

A 0
——XzJS —2XSgpgHg

+(JSz+gp&H~ )g(a; a;+b; b; )

+JSg (a~bi +s+bi+sa; ),

where X is the total number of atoms in each sublattice, z

We consider an antiferromagnet which can be divided
into two equivalent sublattices, a and P, of opposite mag-
netization. To a point R; in the a sublattice there corre-
sponds a point R;+6 in the /3 sublattice. The constant
vector 4 is so chosen that the point R;+5 is one of the
nearest neighbors of R;. The spin operator of the ion at
R; is denoted by S;, and that of the ion at R;+h, by
,S;b. The Heisenberg Hamiltonian for this antiferromag-
net can then be written as

A =Jg Si ~ Sr +s, b gP,~H„Q(S—i', —Si'g ),
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is the number of nearest neighbors, and only bilinear
terms have been kept.

The above Hamiltonian may be diagonalized by a Bogo-
liubov transformation of the form

and

5&S, &= —fu~ f2

5&S,', &=I j,'I'.

(21)

(22)
a ay. fn ~+niai Uni ~i

Pn =g uniai~+iini/jiP ~ P

where it is required that

[a„,a„]=5„„,
[P. P']=5-

(7)

(9) 5S,', +5S i,
———(

I u„;
I

—
f
u„;

I
)

for an cz excitation and

(23)

pince one expects that in most cases
I u„; I ~

I u„; I, it
follows that a excitations tend to be localized in the a
sublattice while p excitations tend to be localized in the /3

sublattice. Moreover the net magnetization change at the
ith cell is

[an ~~]=xnan

[P„,A ]=e~p„, (12)

p+i g(iimi ) am +umiPm
m

am+(" i) Pm

(13)

(14)

and all other commutators equal zero.
The operator o;„creates an excitatiori of energy e„and

the operator p„creates an excitation of energy en. TheP

commutation relations can be used to find the inverse
transformation

5Si', n+5S', b =(
I

&n
I

un~i —
I

(24)

for a p excitation.
From the orthogonality relation (15) one sees that the

total magnetization change due to an n excitation is —1,
while that due to a p excitation is 1. In antiferromagnets
in which the a and P sublattices are equivalent, a and P
excitations are degenerate and no net magnetization ap-
pears. When the symmetry is broken by, for example, a
surface, one expects a net magnetization. In the next sec-
tion we shall see an example of where such net magnetiza-
tion is found.

The global density of states may be written as

as well as the orthogonality conditions

i(~nn i) 'ni(un'i ) =5nn' ~
p p g p p

(15a)

(15b)

X(co)=+[5(fico e„)+—5(fin) ef )]—.

With the help of Eq. (15) one finds that

N(co) =g[J; (co)+JP(co)],

(25a)

(25b)

+mi ~mj Umi Umj = ij (16a) where

giimi(iimj ) umi( mj ) =5ij (16b)
J; (co) = +5S,'~5(fico —E„), — (26a)

From the above equations one can show that the
ground-state magnetizations at i are given in units of gpss
by

&S,', &=S—g I

u~ I'

and

&S,', &= —S+g (18)

where the angular brackets denote expectation values. For
nonhomogeneous systems these magnetizations will be, in
general, nonuniform.

When an excitation a„(a excitation) is created from the
ground state, the variations in magnetization with respect
to the ground state are given by

JP(co) =+5S;*p5(Ace ef ), — (26b)

and 6S,' and 5S p are the net magnetization changes in
the ith cell due to a and /3 excitations, respectively. We
thus see that JP(co)dco gives the net magnetization change
at the ith cell due to the p excitations in the range
(co,co+dco). The interpretation of J; is the same except
that a sign change is introduced so that both spectral dis-
tributions are normalized to unity.

We see from the above considerations that the spectral
distributions J; and JP provide a meaningful representa-
tion of the global density of states as a sum of local terms.
Is it possible to find a projected density of states in the
usual sense? In order to be able to locally project the den-
sity of states one must be able to define a local particle
density for the excitations. However, the number operator

and'

5&S,'.&= —
I u„, I' (19) X=pa„a„+p„p„ (27)

5&S;;b &=
I u:; I

'.
The corresponding relations for an excitation P„(P ex-

citation) are

cannot be represented as a sum of local number operators
and therefore no single-particle density can be defined.
On the other hand, from Eqs. (2) and (4) we see that the z
component of the total spin, W„may be written as
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W, =gb; b; —a;ct;, (28) and

J; (co) =J;;"(co)+J ;'( —co), (36)
i.e., W, does have a representation as a sum of local num-

ber operators. Since N, W„and A mutually commute
one may classify the energy eigenstates according to the
eigenvalues of N and W, . (As shown above, a and P ex-
citations are one-particle excitations with W, = —1 and
P', = 1.) Thus, it is appropriate to use the local contribu-
tions to the total magnetization to describe the local char-
acter of the excitations.

In systems with translational invariance the explicit
form of the coefficients of the Bogoliubov transformation
can be found by a Fourier transformation to the k-space
representation. In systems without translational invari-
ance it is convenient to introduce the Green's functions

where co is now restricted to positive values.
For a uniform antiferromagnet all of the above spectral

distributions are independent of both the lattice site i and
the sublattice (a or p) and therefore all indices can be om-

itted. In Fig. 1 we display J(co) (solid line) and J(co)
(dashed line) for a uniform linear antiferromagnet. In this
case J(co) coincides with the global density of states per
site.

The ground-state magnetizations at i, given by Eqs. (17)
and (18), may now be expressed as

0
(S,',, ) =S—f dco J'; (co) (37)

GJ'(co)= ——f dt e'"'8(t)(
1iio~ [a;(t),at(0)]

~ $0)

(29)

&5(S,'i, )=—S+ f dcoJ, , (co) . (38)

and

GJ (co)= ——f dt e'"'8(t)($0
~
[b;(t),bj (0)]

~
Po) .

(30)

The diagonal elements of these Green's functions have
the spectral representations

Q 2

G (co)=g (31)
n ~—en+&A An)+ a~+i Ag

G;; (co)=g
fKO —E'~ + l A'g Aco+ e„+iAg

(32)

From the above equations we see that 6 becomes singu-
lar when %co belongs to the spectrum of a excitations and
also when fico belongs to the spe—ctrum of p excitations.
The behavior of 6;; is similar except that the roles of a
and p excitations are interchanged. We may define the
spectral distributions

III. ONE-DIMENSIONAL ANTIFERROMAGNETS

In this section we present the results of calculations for
two specific systems: a semi-infinite antiferromagnetic
chain with constant J ("surface" case) and an infinite an-
tiferromagnetic chain in which all J's are equal except for
that at a single bond, which takes the value Jo (impurity
case). All spins S are taken to be —,'.

One-dimensional antiferromagnets do not sustain spon-
taneous magnetization in the absence of a magnetic field.
So that antiferromagnetic order appears we assume an an-
isotropy field, H~ equal to 0.1 (in units of gpii/zJS). The
Green's functions 6;i'(co) and GJ (co) are found by means
of the transfer-matrix technique. The formalism of the
previous section is then applied to obtain the results that
follow.

In Figs. 2 and 3 we display J; (co) and JP(co) for several
values of i in the semi-infinite chain. A surface mode ap-
pears below the band edge. This mode is not present in
JP(co) and is, therefore, an a excitation. At i =4 both
spectral distributions resemble the bulk density of states,

J'; (co) =—ImG (co)
'IT'

J;;"(co)=—ImG;; (co) .
7T

(33a)

(33b)

4— I I I I

I
I

I

I

I
t

I
i

These can be expressed as

J';t'(co) =g
~
u„;

~

5(irico —e„)—g ~

Ug
~
'5(Aco+ef) (34a)

Seaa

L

0

and

J'-'( )=X
I . I'5(ir —.) —y I:I'5(i' +:) (341)

We can now express the spectral distributions J; and
J~ as

I

-08
I

-04 00
I I

0.4 08
%co/2JS

J; (co)=J;'(co)+J;; ( —co) (35)
FICr. 1. Local spectral distributions J(co) (solid line) and

J(co) (dashed line), for a uniform linear antiferromagnet.
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FIG. 2. Local spectral distribution of a excitations, J; (m),
for i =0, 1, and 4 in a semi-infinite antiferromagnetic chain.
The solid bars represent a localized state. The height of the bar
is equal to ten times the weight of the state at the given site.
The vertical scale for the continuum is the same for all values
of l.

FIG. 3. Local spectral distribution of P excitations, J; (co),
for i=0, 1, and 4 in a semi-infinite antiferromagnetic chain.
The solid bars represent a localized state. The height of the bar
is equal to ten times the weight of the state at the given site.
The vertical scale for the continuum is the same for all values
of i.

except for oscillations which become more rapid as one
goes into the bulk. This is characteristic of one-
dimensional systems, where local densities of states con-
verge to the bulk density of states in the distribution
sense, but not pointwise. For a given i, the spectral distri-
butions may become negative for some values of co. This
is no cause for concern since it simply means that the lo-
cal cell-magnetization variations due to the excitations
corresponding to such co's change sign. For example, an a
excitation, which produces an overall magnetization
change of —1, could actually increase the magnetization
of some particular cells.

The spectral distributions for the impurity systems
behave similarly. For Jo &J there appear two degenerate
local modes below the band: an e excitation with most of
its weight to the right of the impurity, and a P excitation
with most of its weight to the left. When Jo ——0 these
modes correspond to the surface modes of two uncoupled
semi-infinite chains. When Jo ~J the local modes appear
above the band. As the ratio Jc/J is made larger the size
of the fluctuations (i.e., the value of (a; a;)) at the sites
adjacent to the impurity gro~s without bound. At some
value of Jo/J (about 4 for the anisotropy field chosen
here) the fluctuations are so large that the one-magnon
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FIG. 4. Local magnetization in the vicinity of the end point
of a semi-infinite antiferromagnetic chain. The heights of the
bars are given by the difference between the absolute value of
the local magnetization and that of the corresponding bulk mag-
netization. The bars to the left and right of a ceil index i corre-
spond to a and b sites, respectively.

FIG. 6. Local magnetization to the right of an impurity bond
in an infinite antiferromagnetic chain. The impurity exchange
integral is given by J0——2J. The heights of the bars are given by
the difference between the absolute value of the local magnetiza-
tion and that of the corresponding bulk value. The bars to the
left and right of a cell index i correspond to a and b sites,
respectively.

approximation breaks down:
The ground-state magnetization of both systems con-

sidered can be obtained from Eqs. (37) and (38). For com-
parison it is useful to define a local magnetization relative
to the bulk magnetization as follows:

(39)

and

mi gPB( I
&~', b & I

—
I &~bulk &

I
) . (40)

Thus, if m (m; ) is positive it indicates that the absolute
value of the magnetization at the a site (b site) of lattice
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FIG. 5. Local magnetization to the right of an impurity bond
in an infinite antiferromagnetic chain. The impurity exchange
integral is given by Jo ——O.SJ. The heights of the bars are given
by the difference between the absolute value of the local magnet-
ization and that of the corresponding bulk value. The bars to
the left and right of a cell index i correspond to a and b sites,
respectively.

point i is larger than the absolute value of the bulk mag-
netization, and vice versa.

In Figs. 4, 5, and 6 we display m and rn; for the
semi-infinite chain, the infinite chain with J0/J=0. 5, and
the infinite chain with J0/J=2.0. Only sites to the right
of the impurity bond are shown for the infinite chains, as
the magnetizations are antisymmetric with respect to re-
flections about the impurity. From Fig. 3 we see that the
absolute value of the magnetization of the surface ion in-
creases, while that of neighboring ions decreases. Fur-
thermore, a net magnetization appears at the surface, as
we expect from the lack of symmetry between the a and P
sublattices. For the infinite chain with JD/J=0. 5 the
behavior of the magnetization is similar to that of the sur-
face except that, due to symmetry, no net magnetization
appears. When JD/J=2 (and in general when JD/J & 1)
the situation is reversed: the absolute value of the mag-
netization of the ion nearest to the impurity decreases,
while that of the neighboring ions increases.

IV. SUMMARY AND CONCLUSIONS

We have considered the local description of excitations
in a nonhomogeneous antiferromagnet. We have shown
that a physically consistent picture can be given in terms
of two types of excitations which correspond to changes
in the z component of total spin of 1 and —1, respective-
ly. The relevant local "density" associated with a given
excitation and a given lattice point, turns out to be the net
magnetization of the two ions corresponding to the lattice
point. Once this point of view is taken a11 local quantities
are readily extracted from the appropriate Green's func-
tions.

We have also studied two one-dimensional systems: an
infinite chain with a single impurity and a semi-infinite
chain. The .loss of translational symmetry leads to a
nonuniform local magnetization in both systems. In the
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semi-infinite chain a net total magnetization also appears,
a fact that can be thought of as the result of the loss of
the equivalence between the spin-up and spin-down sub-
lattices. (When these sublattices are equivalent the two
types of excitations are degenerate and their contributions
to the magnetization cancel out. ) In three-dimensional
systems fluctuations tend to be smaller. Nonetheless,
since the two effects above are related to the loss of sym-
metries and not to the specific properties of one-
dimensional systems, one expects them to be present in

three-dimensional systems as well, although they should
be relatively weaker .Thus, in particular, the surface of an
antiferromagnet could have a net magnetization, even at
T =0.

ACKNOWLEDGMENT

This work wag supported in part by Grant No. Sl-1207
from Consejo Nacional de Investigaciones Cientificas y
Tecnologicas (CONICIT) of Venezuela.

'Visiting Scientist: Centro de Fisica, Instituto Venezolano de
Investigaciones Cientificas (IVIC), Apartado 1827, Caracas
1010A Venezuela.

~D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys. Usp.
3, 320 (1960)].

2R. J. Elliot, J. A. Krumhansl, and P. L. Leath, Rev. Mod.
Phys. 46, 465 (1974).

R. J. Elliot, in Excitations in Disordered Systems, 1981, NATO
Advanced Study Institute Series B, Physics: 78, edited by M.
F. Thorpe (Plenum, New York, 1982), p. 3.

Miguel Kiwi, Tsung-han Lin, and L. M. Falicov, Phys. Rev. 8
25, 432 (1982).

5G. A. Gonzalez de la Cruz and C. E. Goncalves da Silva, Rev.
Bras. Fis. 9, 193 (1979).

6C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963),
p. 58.

7S. Nakajima, Y. Toyozawa, and R. Abe, The Physics of Ele
mentary Excitation (Springer, New York, 1980), p. 183.

L. M. Falicov and F. Yndurain, J. Phys. C 8, 147 (1975).


