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Effective-medium theory of percolation on central-force elastic networks.
II. Further results
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The effective-medium theory developed in a previous paper for elastic networks with a fraction p
of the bonds present is extended to networks which have central forces of arbitrary range. The re-
sults are illustrated by studying a square lattice with a fraction p; of nearest-neighbor bonds present
and a fraction p, of next-nearest-neighbor bonds present. We show that effective-medium theory
gives an excellent description of the elastic properties of the networks. An argument using con-
straints is used to show that the network loses its elastic properties when p,+p, <1 and that the
number of zero-frequency modes depends only on p;+p,. We construct flow diagrams to show that
a line of fixed points exists when p;+p,=1, along which the ratio of elastic constants attains a
universal value that depends on p; but rot on the spring constants. The simulations show no signi-

ficant deviations from the effective-medium results.

I. INTRODUCTION

In a previous paper' (henceforth referred to as I) the au-
thors developed an effective-medium theory (EMT) for
networks with nearest-neighbor central forces «, in which
a fraction p of the bonds were present. In that work it
was shown that the elastic moduli Cj; for the triangular
net (which has dimensionality d =2 and z =6 nearest
neighbors) were given by

‘/_
C44=%C11=—4—3am » (1)
where
= D —Dcen (2)
1 —Pcen
and
Peen=2d/z2="% . 3)

Effective-medium theory always gets the initial slope (for
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FIG. 1. Piece of the square net with nearest-neighbor bonds
(solid lines) with force constant a and next-nearest-neighbor
‘bonds (dashed lines) with force constant y.
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small 1— p) correct and in I it was shown that the elastic
constants C;; =0 for p <p.e,. By comparing Egs. (1)—(3)
with numerical simulations, it was found that effective-
medium theory did remarkably well. This is largely due
to the fact that the transition takes place close to the
EMT prediction p.,==. Indeed no significant devia-
tions from EMT were found in I although such deviations
probably exist in the “critical region” around p..,. Simi-
lar conclusions hold for the fcc lattice, with d =3 and
z =12 substituted into Eq. (3), to give peen =7

In this paper we study a model of greater complexity to
see if EMT can still provide a good description of the
simulations. The model we study is a square lattice with
nearest-neighbor central forces @, and next-nearest-
neighbor forces ¥ as shown in Fig. 1. We randomly re-
move a-type bonds with probability (1—p;) and y-type
bonds with probability (1—p,). In the next section we
summarize the properties of the undiluted system. In Sec.
III we use the constraints method® to locate the critical
line in the (p;,p,) plane. In Sec. IV we derive the EMT
equations and in Sec. V we compare the EMT results to
simulations. In the conclusions we discuss the universal
nature of the fixed points that are obtained both in EMT
and in the simulations.

II. PURE SYSTEM

The system under consideration is illustrated in Fig. 1
and described by the potential, '

a A
V=7 > [(ui—uj)'rijlzpl,ij
(ij)
+ L3 [ —u) 2y Pray @

(ij)
where the first term is associated with the horizontal and

vertical bonds in Fig. 1 and the second term with the
bonds at 45° to the horizontal. The angular brackets
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under the summations are to signify that each interaction
is counted only once. The first sum goes over nearest
neighbors, designated by unit vectors %;;, and the second
sum goes over next-nearest neighbors, designated by unit
vectors T;;. The independent probabilities p; ; and p, ;;
are associated with nearest-neighbor and next-nearest-
neighbor bonds, respectively, and are 0,1 with probability
(1—p,),p, for nearest neighbors and (1—p,),p, for next-
nearest neighbors. The wu; are the displacements from
equilibrium of the mass points, all with mass m.

For the pure system all the p, ;;=p, ;;=1 and the equa-
tions of motion define the dynamical matrix D;; via

mwzui=ED,-juj . (5)
J

Of more interest is the Fourier transform of the dynami-
_

2a[1—cos(kya)]+2y[1—cos(k,a)cos(k,a)]

D(k)= 2y sin(kya)sin(k,a)

The normal modes are longitudinal (L) and transverse
(T) along the principal directions and are given along
(1,0) by

moF=2y[1—cos(k.a)],
9
maot =2(a+y)[1—cos(k.a)],

and along (1,1), where k, =k, by

mo%r=2a[1—cos(ka)],
(10
ma?} =2a[1—cos(kya)]+2y[1—cos(2k,a)] .

Using conventional elasticity theory,® the three elastic
moduli can be extracted from (9) and (10) in the long-
wavelength limit:

C11=a+y, (11)

C12=C44=’]/ . (12)

Equation (12) is a manifestation of the Cauchy relation*
which states that C;;=C, for systems with central
forces only in which every atom is at a center of symme-
try. The maximum frequency in the system (wp,,) is
given by

Mmool =4a+vy) . (13)

III. CONSTRAINTS METHOD

This is a very powerful and simple method that can be
used to estimate where the phase transition takes place.!?
The number of zero-frequency modes (2fN) is equal to
the number of degrees of freedom (2N) minus the number
of constraints [2N(p;+p,)] where N is the number of
atoms. Hence

f=1=(py+p,) (14)

2a[1—cos(kya)]+2y[1—cos(k,a)cos(k,a)] | *
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cal matrix,

D(k)= ¥ D;;exp[ik-(r; —r;)] (6)

ij

=a 3 [1—exp(iak-8)] 58
3
+7S[1—explibk-8)]5%" %
<

where the nearest-neighbor separation is a =b/ V2 and 8
is any one of the four possible T;; and &' is any one of the
four possible T;;'. Associating x and y Cartesian coordi-
nates with the horizontal and vertical directions in Fig. 1,
the dynamical matrix may be written as

2y sin(k,a)sin(k,a)
(8)

and the transition takes place when f =0 or
pi+pi=1, (15)

where the superscripts ¢ denote the values at the transi-
tion. The quantity f is the fraction of modes that have
zero frequency.

We have done simulations to test Eq. (14). Periodic
networks with 20X 20=400 atoms were constructed with
a fraction p; of the nearest-neighbor bonds present and a
fraction p, of the next-nearest-neighbor bonds present.
The number of modes at zero frequency were calculated
by constructing the dynamical matrix and finding the to-
tal number of eigenfrequencies with w? < € where € is very
small (we took €~ 107502 ,,). This was done for a num-
ber of samples along tracks 1 and 3 in Fig. 2. Track 1 is
characterized by p,=p, and track 3 by p,;=2.37p, (the
reasons for the choice of the somewhat curious number
2.37 are explained in Sec. V). Because Eq. (14) predicts
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FIG. 2. Showing the rigid and floppy regions in the (py,p,)
plane. The dividing line between these two phases is given by
Eq. (15). Three “tracks” are shown and numbered in the plane.
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FIG. 3. The fraction of zero-frequency modes (f) as a func-

tion of p=%(p1+p2) along two different tracks (see Fig. 2).
The straight line represents (14) and the symbols are the result
of simulations averaged over three (20X20=400)-atom net-

works.

that the results should only depend on the sum p;+p,
and not on p; and p, individually, we plotted the results
for f against p=+(p, +p,) as shown in Fig. 3. It can be
seen that the results from both tracks do fall very close to
the result (14). The rounding close to p°=+(p§ +p5)=
is partially due to finite-size effects. Some of the round-
ing is intrinsic as small floppy inclusions are present in
the rigid percolating region at the transition.> More care-
ful simulations are required in this region, as a function of
sample size, in order to study these effects.

As in I, we again see the power of the constraints
method in locating the critical point. The reason that it is
much more successful in vector rather than scalar per-
colation problems is not understood.’

IV. EFFECTIVE-MEDIUM THEORY

In I an effective-medium theory (or coherent-potential
approximation) was developed for the case where all the
bonds were identical. The same result was obtained by
two distinct methods. In the static method, the average
strain around a “wrong bond” in an effective medium was
set equal to zero. This condition determined the
effective-medium parameter. In the second method, the
average T matrix was set equal to zero for scattering from
a wrong bond in an effective medium. Again this condi-
tion determined the effective-medium parameter. The re-
sults found in I can be summarized as

1

21 —r,,)—

Q2+r, ey +cy)+ 247,00 +7m¢ )k

(16)

206,,, A LAA
a*=——3Tr{[1—exp(iak-8)]86-D~1(k)} , (17)
Nz i

D(k)=a,, 3[1—exp(iak-5)] 55 . (18)
8

These equations determine the effective-medium parame-
ter a,,(p) and hence the elastic moduli can be found. The
number of nearest neighbors is z and there are N sites.
For the case of only a single type of bond, the sum in (17)
can be done explicitly to give a*=2d /z. The transition
takes place when p., =a* =2d /z.

These equations are easily generalized to an arbitrary
number of central forces which can have an arbitrary
range. Inclusion of angular forces is much more difficult.
In the present case we must introduce two effective-
medium parameters «,, and y,,. Because the two kinds
of bonds are present randomly, a,, and y,, can be deter-
mined separately by either of the methods in I. The re-
sults are

Gm _P17%1 , (19)
a 1—a,
Ym _P27d2 , (20)
Y l—a,

« 2
al = 7V—2—2Tr [1—expliak-8)]85- D lk)}, 21

1
* 27 1
a;= S Tr{[1—exp(ibk-5')]85-D~ (k)} , (22)
Nz, i

and the dynamical matrix is given by (7) with a,y re-
placed by «,,,7,,. The numbers of nearest neighbors z,
and next-nearest neighbors z, are both 4 in the square net.
The equations for «,,,¥,, are coupled through the dynam-
ical matrix. In the present case a} and a3 cannot be
evaluated in closed form. The transition takes place when

p$=a} and p§=a3} . (23)
It can easily be seen from (21) and (22) that
al +a5=1, ’ (24)

so that p{+p5=1 as found previously using the con-
straints argument leading to (15). Because of the result
(24) it is only necessary to compute a’} which can be writ-
ten explicitly as

ay =%f0"foﬂdx dy

where 7, =vp,/a,, cx=cos(ka), and c,=cos(k,a).
This integral was evaluated using a 2222 point Gauss-
ian quadrature routine. The results are discussed in the
next section.

We note that these results can easily be extended to
more distant central-force interactions. If there are z;

1427, +12(cy —cy 24 (1-2r, Jexey,

(25)

— (147, —rmexey, ey +cy) ’

[

bonds from a given atom to equivalent neighbors in the
ith shell, which are each randomly present with probabili-
ty p;, and if there is a total of r such sets of neighbors,
then the EMT will contain r equations such as (19) and
(21) which are effectively coupled through the appropriate
dynamical matrix. In an obvious generalization of previ-
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ous notation, these equations are

*
Qim  Pi—4;

— , (26)
a; 1'—(1,*
2 i ~ AA
ai*= ;m ETI{[I—CXp(la,kS,)] S,S,D—l(k)} ’
Zi k8,
27
r ~ AN
D(k)= 3 a;, > [ia;k-5;)15;5; , (28)
i=1 8;

1

where a; (not to be confused with /g,»*) is the distance to
the neighbors in the ith shell and §; are unit vectors to
atoms in the ith shell. The following sum rule is easily
proved from (27) and (28): '

r

S za=2d, (29)
i=1
leading to
r
2zpi=2d, (30)

i=1

which defines the critical surface. We note that this same
result is also obtained (more easily) by a simple generaliza-
tion of the constraints argument in the preceding section.

V. RESULTS

We present results for the elastic moduli along track 1
(with p; =p,) and track 2 [with (1—p,)=2.37(1—p;)] in
the (py,p,) plane as shown in Fig. 2. In all cases the re-
sults are displayed as a function of p=+(p;+p,) so that
there is a common critical value p°=0.5.

The simulations were performed as described in I using
(40X 40=1600)-atom networks.® A suitable external
strain was used to redefine the vectors that define the
periodically repeated unit “supercell” containing 1600
atoms. The atoms were moved towards positions where
there is no force on them. The elastic modulus was ex-
tracted by measuring the total strain energy in the system.
In this way we computed C;;, C44, and the bulk modulus
%(C 11+C12). The results for C,; were averaged over the
two directions. Because of rotational invariance there is
only a single Cy, for each sample.!

In Fig. 4 we show results for Cy, and C,. Within the
error bars of the simulations they appear to be equal.
They should be equal for the pure system (p;=p,=1) as
shown by Eq. (12). This is because the conditions under
which Cauchy’s theorem is usually stated* are satisfied:
The potential contains only central forces and every site is
at a center of inversion symmetry. When bonds are cut,
sites are no longer centers of inversion symmetry and yet
surprisingly C;, =C,4 still appears to hold (see Fig. 4).
We suspect that Cauchy’s theorem may be true under
more general conditions than have heretofore been proved.
In particular, it appears that macroscopic inversion sym-
metry may be sufficient and microscopic inversion sym-
metry is not required.

In Fig. 5 we show the results of simulations for C;; and
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FIG. 4. Showing results for three initial values of y /a from
simulations along two tracks (see Fig. 2) averaged over five
(40X 40=1600)-atom networks for C;, and C4. The elastic
moduli are in units where a=1 and p = -;—(pl +p>).

Cy. Note that C;;, Ci;, and Cyy all go to zero at
p°=0.5 to within the accuracy of the simulations.

From the effective-medium equations, we extract a,,
and ¥, and hence [see Egs. (11) and (12)] we obtain
Cp=Cy=Ym and C; =a,,+VY, The effective-
medium equations, by nature, predict Cy; =C,,. The fits
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FIG. 5. Showing the results for three initial values of y/a
along two different tracks (see Fig. 2). The points are from
simulations averaged over five (40X 40=1600)-atom networks.
The elastic moduli are in units where a=1 and p = %(pl +pa).
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FIG. 6. Flow diagram along track 1 (where p;=p,) showing
that C;;/C,4 becomes independent of ¥ /a at the critical point.
The solid lines are from EMT and the points are from the simu-
lations shown in Fig. 5.

to the simulations are impressive. We stress that there are
no adjustable parameters. The agreement between the
EMT and the simulations is as good as in I and perhaps
more impressive because the elastic moduli are not all
linear in p. There is considerable structure in the elastic
moduli shown in Fig. 5, with some curves being concave
upwards and some concave downwards.
- The EMT predicts that the ratio C;,/Cy44 should go to
a fixed value, independent of starting value of the ratio
y/a, as p—p€. This is shown in the flow diagrams of
Figs. 6 and 7. In Fig. 8 we show the value of C;;/Cy, on
the critical line, as a function of p; (with p;+p,=1).
Thus the value of Cy;/Cy is universal in that it does not
depend on the starting material parameters a,y. It does,
however, depend on geometry and varies along the phase
line separating the rigid and floppy regions in Fig. 2. Not
surprisingly when p;=1, p,=0 we find that C;;/Cy
=1+4a,, /Y m— x, while when p; =0, p,=1 we find that
C,1/C4 =1 as shown in Fig. 8.

There is a rather curious symmetry present in the EMT
equations for this lattice which results from Egs.
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FIG. 7. Same as Fig. 6 except along track 2 [where

(1—p;)=2.37(1—p)].
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FIG. 8. EMT result for the value of C;,/C44 on the critical
line shown in Fig. 2. The two circles at C;,/Cs=2,5 are the
values on the critical line crossed by the tracks in Fig. 2.

(19)—(22) being similar if the coordinate axes are rotated
by 45° and y<2a, etc. In particular, it is easy to show that

a1 (A /Y ) =5V /) - (31
This implies that along the critical line
pi(am/ym)=pt2‘('ym/am) s (32)

and hence when p§=p$, we have a,, =y, of C;1/Cy=2
as shown in Fig. 6. The simulations appear to be con-
sistent with this result. The simulation results became
quite noisy near p¢ as two small numbers are being divid-
ed. It becomes increasingly difficult to be sure that the
systems are truly relaxed as p€ is approached. The long-
time behavior of the elastic moduli seemed to follow

C(t)=C+ A exp(—pt)

and we used this to extract the desired asymptotic elastic
modulus C. All the EMT elastic moduli shown in Figs. 4
and 5 come in linearly at p°. In reality we would expect a
critical region with an exponent different from 1, but our
simulations would have to be averaged over many more
configurations to obtain sufficiently reliable data in this
region and to obtain a sufficiently good value of the
C,1 /Cy44 ratio on the critical line.

Track 2 (and subsequently track 3) was chosen so that
the EMT value for C;,/C4 =35 was obtained as the criti-
cal line was crossed. Although the results in Figs. 6 and 7
become quite noisy as p°€ is approached, we conclude that
there are no systematic deviations from EMT within the
noise limitations of the simulations.

VI. CONCLUSIONS

We have shown that EMT gives a quite remarkable
description of networks with nearest-neighbor and next-
nearest-neighbor central forces. The agreement is much
better than in most other problems in which EMT has
been used.” We know that EMT gives the initial slope
correctly when only a few impurities are present, but it



31 EFFECTIVE-MEDIUM THEORY OF PERCOLATIONON ... . IL ...

usually only gives a rough estimate of p°. In the present
class of problems, the constraints argument leads to an ex-
cellent value for p. The EMT gives the same p¢ as the
constraints argument, and hence when the two ends of the
curve are fixed, there is little margin for error. Neverthe-
less the agreement is quite remarkable. We do not know
why the constraints argument is so accurate for random
elastic networks. It is particularly important to under-
stand this because of its potential importance in glassy
networks.>>%?

We caution the reader that there are actually two dis-
tinct classes of problems. In class 1, sufficient forces are
specified so that the lattice is rigid if connected. Nearest-
neighbor central and angular forces are sufficient to en-
sure this in two dimensions. The transition takes place at
p¢=p, where p. is the concentration of bonds present at
ordinary geometrical percolation (denoted by the sub-
script ¢). Examples of such problems have been studied
by various authors.!~!%2 In class 2, geometrical connec-
tion alone is not sufficient to ensure that there is an elastic
restoring force. Examples are the work of S. Feng, M. F.
Thorpe, and E. J. Garboczi' (see also Refs. 12 and 13),
and the work of this paper. As bonds are removed, “free
hinges” are created which are ineffective in transmitting
an elastic force. This is why the transition occurs at
p°=+ in this paper, whereas the percolation concentra-
tion for bonds with first- and second-neighbor connec-
tions in the square lattice'* is close to p, =2/(z; +z,)=+.
For + <p <+ the lattice is geometrically connected but
has no elastic properties. We may characterize class-2
problems by rigidity percolation® to distinguish them from
class-1 problems that involve connectivity percolation.

The EMT predicts a universal value of the ratio of the
longitudinal to the transverse sound velocities v?/v2
=C;/Cy4 that depends only on the geometry (i.e., p;,p,)
and not on the initial value of C,;/C44 when all bonds are
present. A similar conclusion was reached by Berg-
mann,'® who showed that C,;/Cy—>3.510.2 for the
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bond-diluted honeycomb lattice with nearest-neighbor
central and angular forces (this system has a critical point
rather than a line of critical points as in this work).
Thorpe and Sen,!® using EMT showed that if elliptical
holes are cut randomly in an elastic sheet, then at the crit-
ical point the ratio Cy;/C,, is independent of the material
parameters but does depend on the aspect ratio of the el-
liptical holes. It has also been shown that the Born model
has similar properties.®

It seems to us that there is now conclusive evidence that
for both class-1 (see Ref. 10) and class-2 (as shown in this
paper) problems, the ratio C;;/C,4 reaches a universal
value at the fixed point. This value is independent of the
initial value of C;;/Cy4 but dependent upon geometry in
the class-2 problem studied in this paper and probably
quite generally. The work of this paper shows that the
conjecture of Bergmann and Kantor!’ that C,;/Cs—2
for all two-dimensional systems is incorrect (this has also
been shown by Bergmann!®). The detailed local geometry
is important and this number would be expected to be dif-
ferent for different geometries. The dilute honeycomb lat-
tice' is always elastically isotropic (i.e., Cj; —C1y =2Cly).
In the present case the lattice is anisotropic. The system
does not become isotropic on the critical line except at one
isolated point of no particular significance. The
phenomenological “node-link” model of Kantor and Web-
man,'® assumes isotropy. It would be useful to extend this
model to more general situations such as the one discussed
here.
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