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Although the time correlation function of the impurity spins in spin glasses around the ordering
temperature Ty has been well determined by various experiments, microscopic insight into the
development of spatial correlations during freezing is still lacking. In order to obtain direct infor-
mation on this aspect we undertook a high-precision study of the muon-spin-relaxation function for
the CuMn system just above Ty by means of the zero-field muon-spin-relaxation (uSR) technique.
The data were analyzed on the basis of either a spatially homogeneous or inhomogeneous spin-
freezing model. While the former failed to fit the data the latter provided an excellent description.

This is a

strong indication for the coexistence of regions of fast spin fluctuations with regions of

more strongly correlated spins at about 1.57T,. The zero-field uSR technique is shown to be advan-
tageous as a method for investigating spatial inhomogeneity in detail.

I. INTRODUCTION

Since the discovery of the susceptibility cusp in spin
glasses at the freezing temperature 7, by Cannella and
Mydosh,! there has been much theoretical and experimen-
tal work done trying to understand the main features of
the freezing process. Despite great progress made in
understanding details, a generally accepted view is still
missing.

There is agreement that the frozen state of a spin glass
(SG) with competing interactions is characterized by a
majority of spins which are kept more or less fixed in ran-
dom orientations while the rest, called “frustrated” spins,
remain nearly free. The central question concerning the
transition then is: How does this state develop during
cooling down through T, or, more precisely, what are the
correlations of the impurity spins in time and space in the
temperature region around 7,?

After sketching some of the answers currently given by
theory and experiment we shall present new results on the
SG system CuMn provided by the muon-spin-relaxation
(uSR) method. They show that the muon essentially
probes two different environments which we assign to
areas of correlated and uncorrelated spins.

II. THEORY

The theory of spin glasses has recently been comprehen-
sively reviewed by Fischer.? After the strong start by Ed-
wards and Anderson® who introduced the order parameter
gea describing local long-time correlations, theoretical
progress became entangled in mathematical difficulties
even in the case of static mean-field theories applied to
infinite-range models.* Morgenstern and Binder>® argue
against a phase transition at Ty, showing that in the
short-range case for two and three dimensions, gg as
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well as any other order parameter’ vanishes for 7> 0.
Consequently they explain the transition at T, as a
dynamic process.

A spin glass can qualitatively be interpreted in terms of
a generalized Edwards-Anderson model of magnetic clus-
ters with random interactions,® the cluster approach ex-
plaining the sharp cusp in X(7) as well as the broad max-
imum in the magnetic part of the specific heat.” Recently
Hertz'° justified cluster models by introducing the con-
cept of condensing, locahzed modes which may be viewed
as spin clusters.

Because of the simpler mathematical treatment, spin
glasses are usually treated as a problem of random bonds®
between the magnetic atoms, rather than one of random
sites. There are, however, a few approaches of the latter
kind''~13 which have in common the basic idea intro-
duced by Smith'# that the spin-glass transition can be ex-
plained as percolation of clusters which increase with de-
creasing temperature. At present, none of the theories
permits a satisfactory description of the correlations be-
tween the spins in time and space across the spin-glass
transition.

IIIl. NEUTRON SPIN ECHO, SUSCEPTIBILITY
AND MOSSBAUER EFFECT EXPERIMENTS

From the experimental point of view,!> spin glasses do
not exhibit “simple” magnetic behavior even far above
Ty. The static susceptibility X4, measured in hlgher
external fields for systems such as CuMn and AuMn,!®
begins to deviate from a Curie-Weiss law even at T =5T.
Taking into account the atomic short-range order found
by neutron scattering,!”'® the authors explain their results
by short-range ferromagnetic correlations of Mn spins
preceding the freezing at T.

Another interesting aspect emerging from magnetiza-
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tion measurements concerns the first nonlinear terms in
the field dependence of the magnetization.'®=2! The
anomaly of the corresponding terms in the susceptibility
at Ty and their scaling behavior were taken as an argu-
ment in favor of phase-transition behavior. In the follow-
ing, however, we shall restrict ourselves to the results of
zero-field methods which do not suffer from any distur-
bance of the system by an applied external field (as ap-
parent for instance in the field dependence of the X
cusp??). The most powerful methods have proved to be
neutron spin echo (NSE), complex ac susceptibility (X,.),
Mossbauer effect (ME) and muon-spin-relaxation.

The NSE - method?® directly measures the time-
dependent spin-correlation function £(q,?) for a time scale
10~12-10—% 5. The results of Mezei and Murani**% for
CuMn show a distinct change of £(q,?) from a simple ex-
ponential shape (with a correlation time 7, around 10~ !!
s) to a logarithmic time dependence (covering 7, values
between 107! and 10~8 s) within the temperature interval
1.3Ty>T >0.7T;. This corresponds to the appearance of
a broad distribution of correlation times. £(q,?) turns out
to be independent of the wave number q in the range used
(0.045 A~ < |q| <0.36 A -h je, spatial correlations in
the corresponding range (about 9—70 A) are not detected
by the technique.?®

Precise measurements of the complex ac susceptibility
X (Refs. 22, 27, and 28) yield a logarithmic frequency
dependence of the real part below T;. From the mutual
relation of the real and imaginary parts the authors con-
clude the existence of a wide spectral distribution of relax-
ation times below T;. The cusp is tentatively interpreted
to arise from the evolution of viscous, possibly percolating
clusters at T;.*’

Recent ME studies on AuFe spin glasses? show a rath-
er smeared out transition over the temperature range of
about 1.2T¢>T>0.9T;. The authors found an unsplit
paramagnetic component present still below T,;. They
claim that their results cannot be interpreted in terms of
critical fluctuations and use instead a distribution of tran-
sition temperatures to fit their data.

Interpreting the latter as a consequence of thermally ac-
tivated relaxation processes governed by a distribution of
energy barriers, the ME results are compatible with the
existence of distributed correlation times for the local hy-
perfine field probed by the 3'Fe nucleus. Because of its
inherently narrow time window, ME is less appropriate
for studying the detailed shape of the correlation function.

The importance of dynamical effects for the spin-glass
transition is apparent. The methods cited above either
directly measure a very fast change of the impurity spin-
correlation function near T, or the assumption of this
change in £(¢) at least permits an interpretation of the re-
sults.

The next section will show how, using the uSR method,
one can investigate dynamical aspects of the transition
and provide additional information on the development of
spatial correlations during freezing.

IV. uSR EXPERIMENTS

The muon-spin-relaxation (uSR) technique measures
the relaxation function G(¢) of the muon spin which
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probes the local magnetic field at interstitial lattice sites in
crystalline samples.’**=3% In random systems such as spin
glasses, G (t) depends on the probability distribution p (H)
of the local fields and, very sensitively, on their dynamics
characterized by the correlation function £(¢). Once p (H)
and £(¢) have been specified within a given model, G (¢)
can be calculated, at least numerically.“'35

Muon-spin relaxation in zero external field (ZF-uSR) is
particularly appropriate to distinguish between static and
dynamic effects in spin glasses.’® Assuming a single
correlation time 7, [i.e., §(¢)=exp(—t/7.)], the first ZF-
uSR measurements on AuFe, CuMn, and AgMn spin
glasses’”3® reveal a rapid slowing down of spin fluctua-
tions from 7,=10"1°s to 7,=107 s within the tempera-
ture interval 1.4T;> T>0.7Tf. More elaborate uSR .
studies on the systems CuMn, AuFe, and AgMn either
support the existence of nonexponential correlation func-
tions*>* or directly derive them under certain assump-
tions. 4142

Following Edwards and Anderson, Uemura*’ developed
a model where below T the impurity moments fluctuate
rapidly around a local preferred direction. These direc-
tions are randomly distributed but the expectation value
of the spin component along this direction is uniform. In
short, this model is denoted by “homogeneous static po-
larization.” The local field originating from the impurity
spins is simulated by a static random part (mean ampli-
tude a,) and a superimposed dynamic random part (mean
amplitude a,). The correlation function for the local
fields then exhibits a time-independent part g «<a?, i.e., an
Edwards-Anderson-type order parameter.

Uemura et al.*° measured a, as a function of tempera-
ture for the systems AuFe and CuMn and found nonzero
values only below T,. If the temperature is increased the
static amplitude @, abruptly drops to zero near T.
Above Ty all local fields completely reorient with a fairly
fast reorientation frequency of the order of 10'° Hz. In
this limit, the relaxation function Ggg(t), caused by the
SG impurity spins, obeys an “exponential root”-law*>44

. Gsg(t)=exp(—V'At) (homogeneous model) . (1)

In contrast to these results, we were led to interpret our
previous data for the system CuMn,* assuming that dif-
ferent regions of the sample show quite different dynam-
ics of the local field. In other words the distribution of
correlation times is assumed to be inhomogeneous in
space.

This can cause distinct changes in the shape of Ggg(?),
because the dynamical effect depends on the characteristic
correlation time 7, compared to the time window of the
1SR method (about 107°—107%s). In regions where the
local field fluctuates very rapidly with correlation times
7, <1071 5, the average local field experienced by the
muon within its lifetime is zero and the ‘spin is not re-
laxed, i.e., Gsg(?)=1 within the observation time of about
7 us.

In regions with slower fluctuations Ggg(¢) is not con-
stant, but shows an observable decay [for example accord-
ing to Eq. (1)]. Consequently the relaxation function con-
sists of two parts:

G§i=A+(1—A4)Gsg(t) (inhomogeneous model) ,  (2)
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FIG. 1. Measured zero-field muon-spin relaxation in the spin
glass CuMn (0.87 at. %) (Ty=9.5 K) at T =39 K=3.6T.
G(t) follows the Kubo-Toyabe function [Eq. (3)] with a
linewidth A=0.38 us~! found in pure Cu (see text). The factor
a denotes the experimentally observed asymmetry of the muon
decay.

where A corresponds to the volume fraction of the
“paramagnetic” regions in the sample. Ggg(#) accounts
for the relaxation in all other parts, the “spin-glass-like”
regions, where 7, > 10~° s. Here we emphasize that the
terms paramagnetic and spin-glass-like are defined by the
time window of the method. Usually it is difficult to ob-
serve a time-independent part of the relaxation function,
i.e., the first term in Eq. (2). Here the system CuMn has
an advantage compared to others like AgMn and AuFe.
At temperatures far above T where the rapidly fluctuat-
ing Mn moments have negligible effect, the muon spin is
still relaxed by the Cu nuclear dipoles according to the
Kubo-Toyabe formula:*’

Gxr(t)=7 + 3(1—A%?)exp(—A%2/2) . 3)

Figure 1 shows an example for CuMn (0.87 at.%) at
T=3.6Tf. Ggr(t) passes a minimum at V3/A
=4.4+0.1 ps and recovers toward + for longer times.
The Gaussian linewidth A agrees well with the measured
value of A=0.38+0.01 us~! for pure Cu.***’ To account
for this additional mechanism we multiply every SG re-
laxation function Gsg(?), which describes the Mn mo-
ments in the limit of fast fluctuations (T'> T), by Ggr(?)
for pure Cu to obtain the complete relaxation function
G (t) for CuMn:*®

G (t)=exp(—V'At )Ggr(?) (homogeneous model) , (la)
G(t)=[A4 +(1—A)exp(—V'At )]Gx1(?)
(inhomogeneous model) .  (2a)

In the present paper we report on new measurements
which were designed to test unambiguously the validity of
either the homogeneous model [Eq. (1a)] or the inhomo-
geneous model [Eq. (2a)].

In order to distinguish the different long-time behavior
of Egs. (1a) and (2a) the uSR spectrum must be extended
to longer times which requires at the same time much
higher counting statistics. Consequently, the time range
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was extended to 7.5 us and the statistics were increased
from our previous (4—6)X10° counts per spectrum to
5% 107 counts per spectrum.

Spatial inhomogeneity, if existent, should be most pro-
nounced in the vicinity of T,. Here we expect both con-
tributions to G (¢) in Eq. (2a) to be comparable and the
paramagnetic. regions should leave their unambiguous
fingerprints via the Cu signal.

The experiments were performed with a conventional
USR spectrometer at the Swiss Institute for Nuclear
Research (SIN) in Villigen, Switzerland. The samples
used were CuMn single crystals slowly cooled from the
melting point with Mn concentrations 0.54 and 0.87 at. %
(orientation: [100] axis parallel to the initial muon spin).
A careful x-ray microanalysis showed that no concentra-
tion inhomogeneity was present in the samples down to a
scale of about 1 um. In fact, no differences were found
between slowly cooled and quenched samples in contrast
to results in a former work by Uemura et al.*’ where fluc-
tuations of the Mn concentration up to 30% and extend-
ing over 40—50 um were reported for slowly cooled sam-
ples.

Of course differences between the slowly cooled and
quenched state still can exist in our samples on scales
below 1 um. However, “simple” quenching of bulk sam-
ples from temperatures near 7, does not produce
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FIG. 2. Experimental muon-spin relaxation function in zero
field for CuMn (0.54 at. %) (Ty=6.5 K) at T=7.6 K=1.17T.
The curves represent fits of the homogeneous model function
[Eq. (1a); Fig. 2(a)] and the inhomogeneous model function [Eq.
(2a); Fig. 2(b)]. Normalized X? are X2 (1a)=3.26; ¥? (2a)=1.04.
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FIG. 3. Measured muon-spin relaxation in zero field for CuMn (0.54 at. %) at T =6.8 K=1.05T. Solid curves (a)—(d) represent
best fits of the relaxation functions Egs. (1a), (2a), (4), and (5), respectively. Three different inhomogeneous models (2a), (4), and (5)
yield good fits, the homogeneous model Eq. (1a) does not. Normalized ¥? are X¥? (1a)=4.72; ¥*> 2a)=1.11; X* (4)=1.49; x? (5)

=1.28.

“better” spin glasses in the sense of a true random distri-
bution of the impurity atoms for the following reasoning.

(i) For systems known to show short-range ordering or
clustering, quenching from high temperatures does not
lead to the least ordered state,”® not even if the samples
are thin.

(ii) Quenching of thick samples, i.e.; with thickness of
the order of 1 mm, produces appreciable thermal stresses
and gradients in the density of vacancies across the sam-
ple cross section. These inevitable spatial inhomogeneities
might even be accompanied by inhomogeneities in the de-
gree of short-range order or clustering due to the spread in
cooling rates inside the sample during the quench. Thus,
samples quenched in this manner are likely to have no
well defined spatial structure.

The use of slowly cooled single crystals avoids the diffi-
culties sketched under (ii) and in addition excludes any in-
homogeneities possibly arising from grain boundaries.
But in any case, existing differences between slowly cooled
and quenched samples do not affect the general features
of the measured zero-field muon-spin relaxation function
discussed here.’!

Figure 2 shows data points for a CuMn (0.54 at. %)
sample (slowly cooled, T;=6.5 K) at T=7.6 K
=1.17Ty, fitted by the functions (1a) [Fig. 2(a)] and (2a)
[Fig. 2(b)]. All subsequent fits were evaluated under ex-

actly the same conditions: The instrumental dead time
was approximately 30 ns, so the time range was set to
0.05—7.5 us. The Cu linewidth A was held fixed to the
value of A=0.38 us~! cited above. The typical feature of
the relaxation is a quick initial decay for 0.05 <¢ <0.3 us
followed by a much slower one, a minimum around 4.5 us
and a final recovery up to t =7.5 us.

The best least-squares fit of the homogeneous model
function Eq. (1a) distinctly fails: It is unable to reproduce
the observed fast decay in the beginning and the long time
recovery simultaneously [Fig. 2(a)]. The two-component
function Eq. (2a) fits the same data very well [Fig. 2(b)].

To test whether this agreement depends on the particu-
lar choice of Ggg(t)=exp(—V'At) we also tried to fit the
following relaxation functions to the data (valid again for

“the temperature range 7' > T):

G()=[A4 +(1—Aexp(—AD)]Gxr(?), 4)
G(t)=[A4 +(1—A)G%(D)]Gkr(1) . (5)

The simple exponential function in Eq. (4) avoids fit prob-
lems due to the infinite slope in Eq. (1) for r—0. G%5(z)
denotes a model function based on a distribution of corre-
lation times inside the spin-glass-like phase.3®>2

For comparison Fig. 3 shows the best fits of all four
functions (1a), (2a), (4), and (5) to a high statistics run tak-
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FIG. 4. Measured muon-spin relaxation in zero field for
CuMn (0.87 at. %) at T =10 K=1.06T,. Solid lines represent
best fits to Eq. (1a) [homogeneous model, Fig. 4(a)] and Eq. (2a)
[inhomogeneous model, Fig. 4(b)]. x? (1a)=2.65; X? (2a)=1.20.

en at T'=6.8 K=1.05T; on the CuMn (0.54 at. %) sam-
ple. All three functions with the sum structure of Eq. (2a)
yield good fits to the data whereas Eq. (la) again fails.
This indicates that the assumption of spatial inhomo-
geneity is independent of the particular model of the
spin-glass-like phase within the present accuracy.

Finally, Fig. 4 shows spectra from a CuMn sample
with a somewhat higher Mn concentration of 0.87 at. %
taken at T=10.0 K (7y=9.5 K). The results are very
similar to those for CuMn (0.54 at. %) in Fig. 2. Again

lLor
) T
A ?
oCu0.87at.%%Mn T/g/
slowly cooled g/zE/T
05} ¥
T
i
1
1
-1
00 $/l 1 1 ‘ 1
"~ 0.8 1.0 1.2 14 1.6

T/Te

FIG. 5. Volume fraction A4 (T) of the paramagnetic phase vs
reduced temperature T /Ty for the slowly cooled CuMn (0.84
at. %) sample.
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Eq. (1a) does not give a satisfactory fit, whereas the other
functions do.

As a result of the analysis Fig. 5 shows the volume
fraction A (T) of the paramagnetic phase as a function of
temperature for the slowly cooled CuMn (0.84 at. %) sam-
ple. The formation of regions with correlated spins al-
ready begins at T =1.6Ty as A(T) deviates from unity.
A(T) shows a smooth decrease to zero within the tem-
perature interval 1.67f> T >0.8Ty without any observ-
able discontinuity at 7y. These results disagree with
Monte Carlo calculations by Kinzel®® for a two-
dimensional Ising spin glass, where frozen spins appear in
small clusters only just below T.

V. DISCUSSION AND CONCLUSIONS

Regarding the results of all four zero-field methods,
NSE, X,., ME, and uSR, the importance of dynamical ef-
fects for the spin-glass freezing process is apparent. None
of these methods reveals critical fluctuations, i.e., there is
no usual type of phase transition present in the SG sys-
tems investigated. Rather the common feature of these
systems is a broad spectral distribution of correlation
times for the impurity spins in the temperature region of
the transition.

With regard to spatial correlations our analysis for the
CuMn system clearly shows that the transition in the vi-
cinity of Ty cannot be explained by the onset of a homo-
geneous static polarization of the impurity spins. Instead
we find: The distribution of correlation times for the lo-
cal fields in CuMn probed by the muon is inhomogeneous
in space. This result does not depend on the choice of
particular fitting functions, i.e., the analysis does not de-
pend on a specific model for the spin-glass-like phase.
The idea that this spatial inhomogeneity found in the dis-
tribution of correlation times may arise from separate spin
clusters fluctuating with different relaxation times was al-
ready assumed in the interpretation of other experimental
results (e.g., in Refs. 27 and 28) but there was no direct
experimental evidence.

The development of the correlated regions extends over
a finite temperature interval starting markedly above and
ending slightly below Tf. Partly this is a consequence of
the dynamic nature of the transition. The definition of
the transition region depends on the time window of the
particular experimental method and consequently dif-
ferent methods find different transition intervals (see for
comparison, e.g., Ref. 29). From this point of view the
“freezing temperature” Ty determined from the ac sus-
ceptibility is not of general physical importance. Regard-
ing a spectral distribution of correlation times as a main
feature of the metallic SG systems the ac susceptibility
need not necessarily show a pronounced sharp cusp.?’

From the X, and neutron scattering measurements it is
known that far above T, a few spins form small correlat-
ed areas with diameters in the range of a few lattice con-
stants. Because the uSR method uses a localized probe, it
is in general not possible to deduce from the data the spa-
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tial extension of the correlated areas (i.e., the correlation
length). We believe that the decrease of the paramagnetic
fraction A(T) with temperature reflects a growing of
clusters which fill nearly the whole volume of the sample
below T. Thus our results, in comparison with those of
the other zero-field methods, strongly support the model
of a spatial inhomogeneous percolation-like transition in
the system CuMn. Therefore the development of theories
which more explicitly take account of spatial correlations
between spins and elucidate the formation and interaction
of magnetic clusters deserves high interest. Correspond-
ing trends in present theories were mentioned in Sec. II.
Up to now uSR seems to be the only method known to
give direct experimental evidence for the reported inho-
mogeneity.
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Note added. In a very recent paper, published in Phys.
Rev. B 31, 546 (1985), Uemura et al. used exactly the re-
laxation function Eq. (la) of the homogeneous freezing
model [i.e., Eq. (25) of that paper] for analyzing data on
CuMn and stated that ““. .. the data above Ty ... actually
followed this function,....” In the present publication,
however, clear evidence is given for the failure of this
model in fitting our data.
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