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Image potential for stepped and corrugated surfaces
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The classical image potential is derived for a nonplanar conducting surface. A general formula-
tion is given for first-order deformations of an arbitrary shape. Detailed formulas are presented for
a variety of rectangular step and terrace configurations including corrugations. It is shown that ions
and electrons are always attracted to the elevated part of the surface. Potential-energy minima and
hence bound states parallel to the surface can exist on a track or terrace. Classical trajectories are
calculated in some special cases and compared to the plane conductor. The effects produced by
these nonplanar surfaces on ion angular distributions are also discussed.

I. INTRODUCTION

The classical image potential plays a significant role in
many areas of surface physics. In any experiment or
model calculation involving ions or electrons in the vicini-
ty of a plane conductor there is a contribution to the po-
tential of the classical image form: Vt (z) = —q /4z,
where q is the charge and z is the distance to the image
plane expressed in atomic units. More generally, in the
case of a material with dielectric constant e,

e—1 q
2

Vt(z) =-
a+1 4z

'

as for an electron near a liquid-He surface.
Qur purpose in this paper is to point out that Vt(z)

takes a more complicated form in the vicinity of nonpla-
nar surfaces such as one might find for realistic materials.
We refer to steps, terraces, facets, corrugations, adsorbate
overlayers, and other modifications or defects in the per-
fectly planar surface. Specifically, we will derive a first-
order expression for the change in the image potential for
general surface deformations. In addition, we will give
detailed results for' certain well-defined surface modifica-
tions such as an infinite rectangular step, an infinite rec-
tangular track and/or trough, and certain periodic arrays
of tracks and troughs which could represent surface cor-
rugations (see Fig. 2 for details). Before presenting these
details we give a brief overview of the specific subfields
where the classical image potential for plane conductors
has proven to be a fruitful concept.

In low-energy ion-surface interactions such as those
that occur in ion desorption arising from electrons, pho-
tons, or sputtering, the ions detected are in a sufficiently
low energy range (0—40 eV) that image-potential correc-
tions can be significant. For example, recent work by
Miskovic, Vukanic, and Madey shows how ions are dis-
torted in unbound desorption trajectories resulting in pos-
sible large uncertainties in the interpretation of ion angu-
lar distributions. In addition, Madey has discussed the
possible interesting effects that may result in the bound
trajectories of the image potential.

In the area of sputtering, Gibbs et a/. have shown that
the inclusion of an image potential in the classical trajec-
tory calculations of sputtering yields leads to improved

agreement with the experimental yield data. In addition,
theoretical work by Norskov and Lundqvist uses the im-
age potential to help explain sputtering data of Yu.5

In the various techniques involving electron scattering
from metal surfaces, the image-potential concept has gen-
erated myriad effects, some of which are as yet unob-
served. For example, in low-energy electron diffraction
(LEED) the image potential is responsible for a wealth of
low-energy fine structure attributed to surface resonances
above the vacuum level. These resonances have been stud-
ied in detail by Mclae. In related work, Dietz et al.
have interpreted high-resolution LEED fine structure for
Cu(001) in terms of a two-parameter potential with an im-
age term. Fitting the experimental line shapes using this
potential leads to the conclusion that the image potential
saturates to about one-half the value of the crystal inner
potential.

Inelastic electron scattering also may be affected by the
image potential. Thus Hall et al. show how the surface
resonances manifest themselves in inelastic electron
scattering from adsorbate molecules using electron
energy-loss spectroscopy. Although there are certain ef-
fects predicted by these authors, such as molecular vibra-
tional selection-rule breakdown, they await experimental
verification.

In photoelectron spectroscopy Gadzuk discusses the
role of the image potential in interpreting the adsorbate
core-hole screening energies. In particular, he shows that
the screening energy is just the quantum-mechanical ana-
log of the classical image-potential level shift.

As already mentioned, the image potential has also been
invoked to explain some of the phenomena involved when
electrons are in the vicinity of a liquid-helium surface.
Cole' derived the surface states in detail and also dis-
cussed the interaction of the electrons and the ripplon ex-
citation on the helium surface. Effects of the electron
states bound to the He surface have also apparently been
observed from the Stark splitting of the microwave ab-
sorption spectra.

In all of these observations it is evident that deforma-
tions of the plane surface of the conductor or dielectric
will cause a modification of the image potential and a
concomitant change in the experimental manifestations.
It is our purpose here to point out that a number of poten-
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tially very exciting effects such as the attraction and
repulsion of charged particles by steps, tracks, and other
deformations may be observable in many of the previously
mentioned experiments.

In what follows we derive the electrostatic potential en-
ergy (image potential) for the system consisting of a point
charge +q located outside a nonplanar conducting sur-
face, valid to first order in the surface deformation. In a
more extensive report an alternative derivation, based on
Hadamard's theorem, ' as well as a method that generates
the electrostatic potential to all orders, will be presented.

z&

II. DISCUSSION

We begin with a point charge + q located a distance z
above the conducting plane surface coincident with the
x-y plane as depicted in Fig. 1. The electrostatic energy
of the system is the usual image potential —q /4z, in
Gaussian units, excluding all self-energies. If the plane
conducting surface is now deformed as shown in Fig. 1,
the electrostatic energy changes by the amount of work
58' needed to produce the deformation. The work re-
quired to displace the surface element da', located at the
point (x',y'), by 5h (x',y') in the z direction is
5w=F, (x',y') 5h(x', y'). Here F,(x',y') is the minimum
force in the z direction necessary to produce the displace-
ment 5h (x',y'). To first order in 5h,

5w = ——,
' 5h (x',y')o p(x', y')da'Ep, (x',y'),

where op(x', y') and Ep, (x',y') are, respectively, the sur-
face charge density and the z component of the electric
field at the point (x',y') on the plane conducting surface.
But ap(x', y') =Ep, (x',y')/4mso that.

(c)

FIG. 2. Configurations for which the image potential can be
determined in a simple form. (a) Infinite step, (b) infinite track,
(c) rectangular corrugation.

5w = — Ep, (x',y')da' .
Sm

The final result is obtained after 'an integration over the
plane surface with respect to da',

5 W= — I Ep, (x',y')5h (x',y')da' .
8m

where

[(x ' —x)'+ (y' —y)'+ (z' —z)'] '~'

Ep,(x',y') =—,P( r ')
az' z'=0

(2)

The explicit expression for Ep, can be obtained from
the electrostatic potential P(r, r ') due to the charge + q
and its image —q. Thus

[(x'—x) +(y' —y) +(z'+z) ]'

We next consider some specific surface deformations,
some of which are displayed in Fig. 2.

A. Uniformly elevated surface

z J(

(x,'y, z)

As a first example, and a consistency check, we consid-
er the trivial case of the conducting surface uniformly
elevated in the z direction. Here, of course, we know the
exact answer. Thus

W(z) = —q /4(z —5h)

= —q /4z 1+2 5h
z

FICx. 1. Coordinate system for a general deformation of the
plane surface.

. and the first-order correction is 5W(z)= —(q /4z )5h.
On the other hand, our first-order correction using Eq. (1)
is given by
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+, +, , 2 5hz +, +, q5W(z)= dy' dx'~ Vp(r, r') ~, 05h= — dy'
g~ —~ —~ ' ' =

2n — —~ [(x'—x) +(y' —y) +z ]
which by elementary quadrature yields

5W(z)= —(q /4z )5h,

in agreement with the exact result.

(4)

B. Surface elevated for y & 0 [infinite step, Fig. 2(a)]

Here we see that the geometry dictates the following expression:

5hz ", +", q5 W(x,y,z)= — dy' dx'
0 —~ [(x'—x) +(y' —y) +z ]

And; again by elementary methods, Eq. (5) becomes

5h
5W(y, z)= —

2 l+ 2 2 3/z(2y +3z ),
g 2 2( 2+ 2)3/2

The first term is analogous to the correction 5W given in Sec. IIA above. The second term includes the y dependence
and therefore is particularly characteristic of the step. This interesting result suggests that the ion is attracted to the
elevated side of a step. Thus, for example, left and right steps will attract ions or electrons in opposite directions. The
graphs of the potential in the y direction given in Fig. 3(a) clearly show this. ' Some trajectories of a charged particle in
the field of the step are shown in Fig. 3(b).' As expected, the unbound states starting from the "down side" of the step
are pulled further from their original starting angle than in the case of the flat plate. Thus, for example, in electron- or
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FIG. 3. (a) Image potential plotted as a function of y for
various z values above a stepped surface. (b) Comparison of
some bound and unbound trajectories for 0+ desorbing a dis-
tance of 1.0 a.u. to be left of a step and having a total energy of
0.5925 a.u. (2), (4), and (6), trajectory for flat surface; (1), (3),
and (5) trajectory over step of 0.5 a.u. The initial desorption an-
gle is also shown.
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FIG. 4. (a) Image potential for an infinite track of width 8
A and height 1 A as a function of y for various z values above
the surface ranging from 1.0 to 2.0 A in intervals of 0.2 A. (b)
Trajectories for an ion above an infinite track can be bound both
in the y and z directions. Particles are dropped from a height of
2 and 3 a.u. above the left edge of the track. The end point of
the trajectory near the right edge marks a reversal of the veloci-
ty in the y direction and hence the bound nature of the orbit.
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photon-stimulated desorbed ion angular distributions (ESDIAD and PSDIAD), as discussed by Madey and co-workers, '
the conclusions about detection angle and initial-state bond angle are further complicated by step and surface structures.
On the other hand, a detailed analysis of the ion angular distribution data could well lead to useful structural informa-
tion not only about chemisorption bond angles, but also about steps on surfaces. '

C. Surface elevated for a &y & b [infinite track, Fig. 2(b)]

Here the geometry dictates that

5W(y, z)= — f dy' f dx'
z 3

—q 5h
16z2

[(x x) +(y y) +z ]

z 3 [2(y b) +—3z ]+ z z 3/ [2(y —a) +3z ]
[z2+(y b)2]3/2 . [ 2+( )2]3/2 (7)

for a & 0 and b & 0.
Equation (7) is plotted in the y direction and shown in Fig. 4(a). ' Here we see the interesting result that the track ex-

erts an attractive force on the charged particles in both directions. Thus one sees the possibility of binding the charge in
the y direction, i.e., the top of a.conducting track is a stable channel for charged particle motion. Such a trajectory, for
example, is shown in Fig. 4(b). ' This path would not be stable in the vicinity of a step since the potential energy has no
minimum in the y direction.

D. Surface elevated for a„&y &b„: n =1, . . . [rectangular corrugation, Fig. 2(c)]

As indicated in Fig. 2(c), this is a periodic array of infinite tracks. Using Eq. (7) again, we now find that

—5bz2 b„~ q2
5 W(y, z) =g dy' dx'

z z2n ' — [(x'—x) +(y' —y) +z ]
—q 5h

16z

(b„—y), , (y —a„}
z [2(y b„) +3z —]+ z z 3/z [2(y —a„) +3z ][z2+(yb)2]3/ [z2+(ya)2]3/2

where a„b„=aa—nd a„—a„&——p serves to define the periodic nature of this configuration. If p»5h, then one just
sees a periodic array of terms as in Eq. (7) and the potential is just a periodic replica of the potential in Fig. 4(a}.

III. CONCLUSIONS

In summary, we have solved the problem of a point
charge in the field of a nonplanar conductor deriving the
image potential to first order in the height of the defor-
mation of the surface. For various rectangular modifica-
tions of the plane surface, such as steps, tracks, and corru-
gations, the image potential is expressible in simple form.
Since steps attract particles in the direction of the surface
elevation and tracks provide channels of stable motion
parallel to the surface, these results suggest the possibility
of using such configurations to guide ions or electrons in
near-surface trajectories.

It is also evident that steps, tracks, corrugations, and
other such surface defects or structures will have interest-
ing manifestations in the ion angular distributions of
Madey and co-workers. ' Consider, for example, an atom
bound to a corrugated metal surface; the spot patterns ob-
served in the ESDIAD and PSDIAD work should be nar-
rowed or broadened, for example, depending on whether
the ion is desorbing from a crest or trough position of the
corrugation. Another example is asymmetric distortion of
the spot pattern when an ion desorbs from either side of a
step.

Another potentially interesting aspect of the image po-

tential for nonplanar surfaces is the fact that ions and
electrons will be accelerated by surface protrusions rela-
tive to the plane. It is possible, for example, that struc-
tures can be fabricated that will cause charged particles to
move in various interesting periodic orbits. Thus a
charged particle beam directed parallel to a metal with a
fabricated corrugation will experience periodic accelera-
tions and thus will radiate.

There are some other areas where the present results
may be at least qualitatively useful. For example, in crys-
tal growth and surface diffusion the general nature of the
interaction of an atom with a step or other kind of surface
deformation is obviously very important. Also, since the
work function of an electron at a metal surface is a func-
tion of the surface-electron potential, any deformation
tending to increase the image potential, i.e., an upward
step or terrace, will increase the attraction of the electron
and hence the work function. The change in work func-
tion produced by such deformations can be calculated us-
ing the methods described in this report.

We also note that although we treat only the classical
image potential, the quantum calculations of, for example,
Appelbaum .and Hamann' on the interaction of a static
point charge with a plane surface of jellium can be modi-
fied using our results for deforming the plane jellium sur-
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face and the potential used in a perturbative scheme.
Such methods may have a direct application in recent ex-
perimental data such as, for example, the broadening re-
ported by Kevan' in angle-resolved photoemission on
Cu(111) and, in addition, observations of image-potential-
induced surface states ' ' by inverse photoemission in
which detailed knowledge of the effect of the surface
structure is relevant.

Finally, of current interest is the dynamical image po-
tential such as the contributions of for the plane sur-

face jellium. Rahman and Maradudin have discussed
the effect of surface roughness, and surface corruga-
tions, on the image potential for a dielectric vacuum
boundary. We are in the process of applying our results
to a number of the aforementioned areas.
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