
PHYSICAL REVIEW 8
l

VOLUME 31, NUMBER 11 1 JUNE 1985

Isotropic spin-1 dipolar and quadrupolar systems: A Green's-function approach

Edward B. Brown and Louis F. Uffer
Department of Physics, Manhattan College, Riverdale, New Fork 10471

(Received 22 October 1984)

The isotropic spin-1 dipolar and quadrupolar coupled Hamiltonian is studied by means of
double-time Careen s functions. The equations-of-motion hierarchy is decoupled by using the con-
cepts of cumulant averages and self-consistently identifying the statistically independent operators
of the system. Our results satisfy all relevant spin-1 identities. In contrast to current mean-field
theories, we obtain structure-dependent critical curves separating paramagnetic, dipolar, and
dipolar-quadrupolar phases. We obtain the ground-state ( T=O) order parameters for both the dipo-
lar and quadrupolar phases, and specifically determine the dependence of the latter on the relative
dipolar and quadrupolar coupling strengths.

I. INTRODUCTION «A (t);B(t')»'"'= iB(t —t'—)& [A (t), B(t )]„& (2.1)

Physical systems which include both bilinear (dipolar)
and biquadratic (quadrupolar) exchange interactions are
usually characterized by the presence of unquenched orbi-
tal angular momenta which can couple through some
form of superexchange. Such systems include the rare-
earth intermetallics, ' the rare-earth arsenates and phos-
phates as well as UO2 (Ref. 4) among others. These sys-
tems generally exhibit two ordering parameters.

The simplest Hamiltonian which can include both bilin-
ear and biquadratic exchange is the isotropic spin-1 model
which has been extensively studied using effective field
calculational techniques. Chen and Levy used the mean-
field approximation (MFA), Ferrer and Pintanel used the
MFA with the Oquchi pair approximation and Chakra-
borty used the MFA with a Lagrange multiplier method.

This and related models have also been treated by
double-time Green's-function (DTGF) methods which
have been generally criticized for being based on weakly
defined decoupling schemes and for producing ambiguous
results. Recently, Bloomfield and Brown have developed
a DTGF decoupling scheme based on the concepts of cu-
mulant averages and statistical independence. This
scheme has produced mell-defined, unambiguous results
for the transverse Ising model (TIM) and spin-1 isotropic
quadrupolar coupled systems. ' Their scheme is here ex-
tended to treat a model which includes competing isotro-
pic bilinear and biquadratic exchange interactions for all
temperatures and exchange ratios.

with

(t) eiHtAe iHt—

and
[A,B]„=AB+~BA,

(2.2)

1, t&0
0, t &0. (2.3)

and satisfies the equation of emotion,

Z«A;B »,'~) =
& [A,B]„&+« [A,H];B» iP) . (2.5)

The DTGF equation of motion represents a hierarchical
series which must be decoupled to obtain a closed system
of equations. Note that the Fourier-transformed DTGF,
Eq. (2.4), is sectionally holomorphic with the retarded
DTGF analytic in the upper half of the complex E
plane. ""

It has been shown' that the commutator DTGF cannot
have a pole at E =0, i.e.,

C( —) 0 (2.6)

where

The single angular brackets denote a thermal average. It
follows that « A (t);B(t') »'"' is a function of t t' only. —

The Fourier transform of the DTGF is defined by

«A .B »(q) f dt i(F. +ie)t« A (t)'B » i~), 6 0+

(2.4)

II. DOUBLE-TIME GREEN'S FUNCTIONS

The retarded commutator (g = —1) or anticommutator
(q=+ I) DTGF is defined" as

c'"'= llm E«A;B »'"',
E~0+

and that the correlation &BA (t) & can be calculated as

(2.7)

&BA(t)&=-,'(1—g)C'-&)+ f dZ ', hm («A;B»,'&', ,—«A;B»,'&', ,),+ 'g e~O+
(2.g)

with P= 1/kT. The response of the system to an external field, the generalized susceptibility, is determined by the com-
mutator DTGF and is given by' '
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gs (E)= —lim ((A;8 ))E+;, .
@~0+

The @~0+poles of DTGF represent the excitation energies of the many particle system and must, therefore, be real.

(2.9)

III. MODEL —ISOTROPIC BILINEAR AND BIQUADRATIC INTERACTIONS

We use the S = 1 operator basis consisting of the three dipole operators S;, u E (x,y, z I and the five quadrupole opera-
tors gf, pE I0, 1,xy, xz,yzI where

Q =v 3[(S )'——'] Q'=(S")'—(S')' Q"'=[S;"S,"] Q"'=[S"S;] Q"=Is'S')
In this basis the isotropic nearest-neighbor coupling of the dipolar and quadrupo1ar operators is described by

H, = ——g J,,S, S, +g—J,,QPg,',
L,J, CX J&P

and uniform field couplings to Q; and S are described by

H) ———0) g Q;, and H2 ———Q2+S

(3.1)

(3.2)

(3.3)

We consider two cases:
(A) the possibility of an ordered phase with (Q; )&0 by studying the full Hamiltonian H =Ho+H& in the limit of

Q) ~0.
(B) the possibility of an ordered phase where (S; )&0 by studying the full Hamiltonian H =Ho+H2 in the limit of

Q2~0.
We consider case (A) first, and write the equations of motion for the eight basis operators,

[S;",H] =i v 3A)Q»' i i+J—g(s.,'Sf S,"SI')—
I

+ in g Jv[g,"«3gi' —Qi') —Q;"'QP' —Q 'QP' —(v 3Q'+ Q')Qf'],
I

[S,",H] = —iv 3II)g,"'+iA, g J;((S S(" S;"Sf)—
l

—iV g Ji[g"'«3gi' Qi') —Q"QP—'+Q,"'Qf' (v 3Q——Q")QI"']

(3.4a)

(3.4b)

[S,H] = i A, g Jd(sfs( S;"—Sf) —i p g Jg—(2Q;" QI' 2Q; QI" +Q—f'Q("' Q; 'Qf'), —
I I

[Q;,H] = iv 3A—QJ&(g, Sp Q,"'Sf—) iv 3p—+J~(s.; QI"' Sgf')—,
I I

[Q,H] = i AQJ;((Q—»'S(". 2Q,"»Sf +Q—,"'Sf) i', g J;1(2—S,'Ql"» —s,'g,-—s, gf'),
1 I

[Q'" H] =&~ g ~~—v(g"'SI" Qf'Sf 2—Q'SI') +—& p g Jr(2S'Qi' S;"QP '+ ~i~g—f')
l I

[Q,"',H] =i v'3Q )S» i AQJg [Q—;"»S(", —( Q v3Q; )Sf—Q»'SI']—
I

+ ~ p g J; [S,'Q"'+S,'( 3vQ Q) S,'Q—f'], —

(3.4c)

(3.4d)

(3.4e)

(3.4f)

(3.4g)

[Q,"',H) = i v 3Q)s,"+iA, —g J I [(g +v 3Q; )SI +Q; »Sf Q;"'SI')—
I

ii g J,, [(g,'—+v 3g,')S, +S»g,"» S,'g,"'] . — (3.4h)

Invoking translational invariance we define (S; )—:cz, a& Ix,y, z I and

( QP) =qz, p~ I0, 1,xy, xz yz I .

Taking the thermal average of both sides of Eqs. (3.4a) and (3.4b) we have
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From Eqs. (3.4d) and (3.4e) we obtain the correlation identities

O=(J{—P) g J; ((Q S")—(Q;"Sf)),
l

O=(~—p. ) g J;,(& Q,"Si")+ & Q-Sf &
—2& Q,"'Si'&),

l

O=(z p—) g J;i((Q,"Si") (—Q,"'Sf) 2—,(Q; Si') ),
l

O=M3Qiy —(A —p) g Jii[(Q,"Si")—((Q.' —~3Q )Sf) —(Qf'Si')],
l

O=v 3II,x —(A, —{M)g J;i[((Q +v 3Q; )S i)+(Q;"Sf)—(Q,"'Sf)] .
l

(3.5b)

(3.5c)

(3.5d)

(3.5e)

(3.5f)

In addition we note that due to the rotational symmetry of the full H, all single site correlations vanish with the excep-
tion of qo.

We define

G, "~'=((S,'RJ ))'~' K "&'=([S, ,
—R,]„),

(3.6)
Gfj' '"'=((QP;Rj))' i', K;,' '"':—([Q;,RJ]„),

for Rj any member of the basis set of operators and R—:(Rj ). Using the equations of motion of the basis operators, Eq.
(3.4), the eight DTGF equations of motion are

EGx, R{q) Kx,R{g)+ ~~II Gyz, R{P) 'P g J ( ((SZSf,R )){P) ((SySZ, R )){P))
l

+ i{M g J i [((Q (v 3Qi +Qi');R, ))~
' (( Q. ,"'Qi—yRJ ))g"'+ (( Q;"yQi"';RJ ))~ ' (( (~3Q—+Q )Qf', Rj ))~ '],

l

(3.7a)

EGy""=Ky' '"' i V 30 6—"" '"' i A, g J;—,(((S'S, ;R ))'~' —((S"S'R ))'~')
l

—i{u g Ji[((Q;"'(v 3Qi —Qi')R, ))g"'—((Q Qi yR, ))g"'+ ((Q;"yQf', R, »g"' —(((v 3Q; —Q; )Qi"';Rj ))g"'],

EG,""'"'=K" '"' i A, Q Ji(((SySi"'R—))'"'—((S,"Sf R ))'"')
l

—iP g J i(2(&Q;"'Q,';R, »~ ' —2«Q Qi"',Rj »g'+ «Q,"Qi-,RJ )&,'"'- « Q;"'Qf', R, )),'"'),
l

(3.7b)

(3.7c)

EG '"'=K'"'"' iv 3A, Q J;,(—((Q S,";R ))'"'—((Q;"'Sf;R ))'"') i~3@—g J;,(((S;Q, ',R. ))'"'—((S"Qf'R ))'"')
l l

(3.7d)

EG 'i =K, +'.'.i jg y Ji(((Q—y'Si'RJ ))y —2((Q. ySi'RJ ))y'+ ((Q,". 'Sf RJ ))gi )
l

—Ji y J i(2« S'Qi"",R, »'"' —«S,'Qi",RJ &)'"'—(&S,"Qf';R ))'"'),
l

EGxy g) Kx R {g) +i/ g J ( (( QxzSx. R )){Ii) (( Q zSf R)) li) 2 (( Q
. SZ.R )) (P)

)
l

+ {M y J; (2« S Q ',RJ )) '"' —« S,"Q;RJ »'"'+ «S,'Qf';R J »'"'),

(3.7e)

(3.7f)

EGxz, R {g) Kxz R{q)+ .~3Q Gy R{g) g y J [«QxySx. R )){g) «QyzSz R )){q) «(Q 1 ~3QO)Sf.R )){g)]
l

+iI g J,,[«S;"Qi"',R, »~' ((S Qf', R, ))~~—' &&S;(~~Q,' Q—i');R, &&,'"'],—
l

EGyzR{vy) KyzR{g) .+3g Gx,R{g)+ g y J [(((Q {++3Q~O)Sx.R ))(q)+ «QxySf R)){g) ((Q.xzSz. R )){P)]

—P g Ji[(((Qi'+~3Qi')S;";Rj )&'"'+ &&S,'Qi"';Rj &&'"' —&&S,'Qi;Rj &&'"']

(3.7g)

(3.7h)
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IV. DECOUPLING SCHEME—CASE A

In order to obtain a closed soluble set of equations, the
equations of motion for the DTGF's must be approxi-
mately decoupled. A decoupling scheme based on the
concepts of cumulants and statistical independence has
been used by Brown and Bloomfield ' for the TIM and
quadrupolar coupled systems and we follow their scheme
here.

On the right-hand side of the equations of motion there
are thermal averages of three operator products all of
which contain the operator RJ and are of the form

( Q; (t)Sp (t)RJ ), (RJ Q; (t)Sp(t) ), (S; (t)Sp (t)RJ ),
(R,S, (t)SP (t) ), (QP(t)g((t)R, ), (R,QP(t)QP (t) ),
which appear in

((g;S;R, ))'".', «S; S;R,&)'"', &(g,'QP;R, )&'"' .

The cumulant averages' of the first two three-operator
products are

( QP(t)SP (t)R, ),= (QP(t)SP(t)R, ) q(SP(t)R—, )
—a(g;(t)R~) —R((g;Sl ) —2aqp),

(4.1)

Egx, R(rl) ~x,R(vl)+ ~3~ GyzR(vl)
k k i 1 k

+ '+3(MqOJOkgk '

Eg», R(z() ~», R(z)) .~3(fl + J )Gxz, R(g)

EGz, R(q) I z, R(q)
k k

EGO, R (q) ~O, R (q)
k k

EG 1,R (rI) ~1,R ( I)
k k

EGxy, R (g) ~xy, R (g)
k k

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

(4.7f)

Egx R('9) ~xzR('9)+$'~3[/ + ( J ~ )]Gy»('n)

(4.7g)

EgyzR(9) ~yzR(n) .~3[/ + ( J ~ ]Gx,R(n)

(4.7h)

as qo orders.
Using the decoupling approximations in the DTGF

equations of motion and imposing the correlation identi-
ties [Eqs. (3.5)] together with the fact that the only non-
vanishing single site correlation is qo, we obtain, after per-
forming a spatial Fourier transform, the approximately
decoupled equations,

( R, Q, (t)SP (t) ),= (R,g, (t)SP(t) ) qp(R, SP(t) )—

a(RJ Q; (—t) ) —R ((Q(sp) —2aqp),

R=(R, ) .

where, e.g. ,

1 ~ &k rjiGx, R('g)

i,j
The decoupling is based on the assumption that one can

choose Rj such that at least one of the operators in every
three operator products to be decoupled is statistically in-
dependent of the others. This allows us to set' and

~x,R(q) 1 ~ ik'r Jkx R(q)

E~J

(4.8)

( Qp(t)sp (t)R, ), = (Rjgp(t)sp (t) ), =0,
and obtain the approximation

(4.2) J„=—pe' "J",
ij

(4.9)

QpSa; R )) (g) = Ga, R (g) + gp, R (g)
E —9'p IJ

R ((QPst ) —2aqp) . (4 4)

Proceeding in a similar fashion we obtain the decou-
pling approximations

«g'Qr R »E"'=q GI"'"'+q G'""'
P /J

+ " (&QPQP & 2q, q, )—(4.5)

((Sasa R. ))'"'=aGa 'R'n'+a'G
i I ~ j E Ij ij

+ "+&) ((S-S-'& 2a. )

The statistically independent operators will be self-
consistently identified as those with diagonal susceptibili-
ties [in the approximation of Eqs. (4.4)—(4.6)] that diverge

(4.6)

& [g,'(t)st (t),R, ],& =q, & [Sl (t),R, ]„&+a&[Q,'(t),R, )„&
+ (1+l1 )R ( ( Q; Sp &

—2aq ) (4.3)

to obtain the decoupling approximation

Jok =Jo —Jk

Equations (4.7c)—(4.7f) determine

gz R(g) ~zR(g) /E gO, R(g) ~O, R (zl) /Ek k k k

g(R(~) ~ R(~)/E g »R(~) ~ y (~)/Ek k k k

(4.10)

xR (q) k + (+)+qOP JOk )+k
E —cok

E~»,R(q) t~3(~ + J )~xz, R(z))
y, R(g)
k E —cok

(4.12)

EJ:"„'"'"'+)v 3[n, +q (~J W„))rC»—
2 2E —cok

(4.13)

while Eqs. (4.7a), (4.7b), (4.7g), and (4.7h) may be solved
to obtain
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»g~&) E+k lV3[A&+qo(pJO ~k)]I~ k

2 2E —COk

with

teak = +3[&i +qop Jo(1—)'k) ]

(4.14)

R,y i+3 (&i+PqoJok}
60k

PCOkXX„'R(-)cot (4.26)

X [II1+qop~o(1 —~l'k/p}]'

where

}'k=Jk/Jo .

In the limit Q& —+0,

Cok ~~qop JO( 1 }k} ( ~1'k/p }

(4.15)

(4.16)

(4.17)

R,xz
Qk

R,yza k'y ——

~xz, R ( —)

~yz, R ( —)

~3 [II i+qo(PJo —~k)]+
2 COk

XKy' ' ' cothk 2

i~3 [&i+qo(P~o —~k) l

2 COk

(4.27)

y = —G""' '(Z =0) .p 0

Defining

Xo=qo/—ni

(4.18)

(4.19)

and using Eqs. (4.10)—(4.14), we obtain as the only non-
vanishing diagonal susceptibilities

(4.20)

Since (4.17) represents the excitation energy of the system
and is real only for A, /p (1, this solution is restricted to
the region k (p.

Using (2.9), the diagonal susceptibilities are given by

)&r„R(-)coth (4.28)

=a„'y'=ay' '=ay'y =0, (4.29}

which are exactly true due to the symmetry of H, and

Using Eq. (4.10) in Eq. (2.8) yields a series of identities. It
is important to note that the correlation Eqs. (4.25)—(4.28)
are obtained from both the g =+1 and q = —1 versions
of Eq. (2.8).

Using Ri =Q&~, Qi"', and QJ"' in Eqs. (4.25)—(4.28) gives

O, x O,y O, xz O,yz xz, xQk' =Qk' =Qk' =Qk' =Qk '

XO
Xx Xy 1+Xgo(p —&)

For qo ordering,

(4.21) ak' = —iv 3qo/2

ak' =iv 3qo/2,
xz, xz yz, yz

(4.30)

(4.31)

(4.22)

and

(R,S& }, vE jx,y, zI

(R,Q ), vH [0,1,xy, xz,yz]
(4.23)

lim qo&0,
Ql~o

and from Eqs. (4.20)—(4.21) Xo, p „andX~, are the only
diagonal susceptibilities which diverge as qo orders. We
identify Q;, Q,"', and Q,

"' as the members of the set of
basis operators [Eq. (3.1)], which are statistically indepen-
dent of every other member of the set.

For self-consistency, we require that at least one of
these statistically independent operators appear in each of
the "higher-order" DTGF's on the right-hand side of the
equations of motion, Eqs. (3.7). To meet this requirement
we must' choose RJ to be one of the statistically indepen
dent operators.

Defining

[&i+qo(p~o —~k)]= ~qo coth
COk 2

(4.32)

Performing the sum over all k for Eqs. (4.30) and (4.31)
and using the S =1 identities,

Qxzg( ~ (~3Q0 Q 1)/2

Qf ~l = '(~~Qt +Qt }/2
(4.33)

we find (Qi') =q& ——0. Summing Eq. (4.32) over all k
and using the S =1 identities,

0
1 4 Qt(QI"') =
2 3

—
~3

—QI

(4.34}

Qk
k

i~3 (IIi+Pqojok}+
2 Mk

we obtain, by using Eqs. (4.11)—(4.14) in Eq. (2.8),

~x,R( —)

a,xQk'
2

(4.24) we obtain

4 qo 3qo

3 v3
[&i+qo(pJo ~k }] f3~k

coth
@Ok 2

(4.35)

XZ"R( ' cothk 2
(4.25)

with cok given by Eq. (4.15).
For the nonordering region we use qo ——XOQi to write

Eq. (4.35) in the form
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4 qo +3&o&i

3 v3 N

1/21+go(pJp —Mk )

1+LopJpg

TABLE I. Ground state qo vs the ratio A, /p {=I&p/I2o in
Chen and Levy) for bcc lattice at T =0 [from Eq. (4.44)).

A, /p —~3q,
P&3Ai

X coth (1+X(gtJpk)'

X [ I+&o(VJo —~k) l'"

and take O~ and qp~0 to obtain

2 +p 1 1—X3 P N k 1+P&oJok

(4.36)

(4.37)

At the critical temperature Xp diverges and we obtain

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.779 886
1.794 279
1.808 121
1.823 370
1.840 210
1.858 854
1.879 644
1.903 104
1.929 907
1.961 336
2.00

kT,
pJp F( —1)

(4.38)
Ta»ng p~ ~ and anticipating qp negative, we obtain an
expression for qp in the ground state,

where the Watson sum is defined by'

F(n)—:—g (1 —yi, )" .1

N
(4.39)

kT, =0.4396,
pJp

kT,
J =0.4785,

bcc
(4.40)

We find the critical temperature to be structure dependent
with

(4 44)

V. DECOUPLING SCHEME—CASE 8

4~3qo = — in

where v 3qp ——(Op( ) ) in the notation of Chen and Levy.
The ground state qp for a bcc lattice structure is tabulated
as a function of the ratio A, /p in Table I and shown in
Fig. 1.

kT, =0.4956 .
rccJ

In the notation of Chen and Levy, who use the MFA,
we find

In this case we study the Hamiltonian,

H = —02+ 5,'+Hp, (5.1)

C

I2p

0.7434, fcc,
1

F( —1)
0.7178, bcc,
0.6594, sc,

(4.41)

i.o

0.8—
while their structure-independent result is

kT, =0.72.
I2p

(4.42)
0.6—

&3qo

pN

X coth —W3pqo Jo(1—yi, )
'

2

In agreement with mean-field theory, however, we find
that T, is independent of A, . Thus, in the special case of
A, =O our Hamiltonian, Eq. (3.2), reduces to the isotropic
quadrupolar model and our results are identical to those
obtained by applying this scheme to that case. '

For the ordering region ( T & T, ), qp does not vanish as
Q, ~O and in this limit Eq. (4.35) becomes

1/2
4 qo 1 ~y k~8
3 v3 1 —y„

0.4—

Q.2—

0.0
1.8

-g3 cL
2.0 .

X (1 ~yi ~P) . (4.43) l. ~&p =Iio/12o vs —W3qp = —(Op ) at T =0 for bcc
lattice from Eq. {4.44) and Table I.
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in the limit Q2~0 in order to study the possibility of z
ordering. From the symmetry of (5.1}, the only nonvan-
ishing correlations are z and qo. Proceeding in a manner
identical to that followed in Sec. III we obtain the correla-
tion identities

0=02q, —(A, —(M) g J,l[&g,. ysl & &gysl'&

—
& (g, ' —~3Q,')s})'&],

02x =Q2y =0,
0=(k —P) g J;l(&Q,"'Sl &

—&Q;"'Sf&),
I

0=202qxy —(A, —(M ) g J„(& g,"S,"&
—

& Q,-st'
&

l

—2& g,"'S'&),

(5.2a)

(5.2b)

(5.2c)

o=n,q„, (~—p)X J;,[&g,"ys}
& &g—"'s'&

1

+ & (g,'+ ~3Q,')s,"&],

(5.2e)

0=202q) —(A.—((2) g J;,(&Q"'Sl"—&Q S}"& (5.2f)

—2&g Sl'&}, (5.2d) and the approximate Careen's functions,

z, R(g)
GO, R (g) ~O, R (g)

k k (5.3)

E~1,R (g) +2.g ~Xy, R (g)
k l k k

k E —48k

E~xy, R (q) 2.g ~1,R (q)
Gay'R (~) k k k

E —48
(5.4)

GxR(zl)
t
E3KxR(g) + E2(A KyR(g) +C KyzR(zl)

) E[(B2+C D }KxR(g) (A B )C KxzR(g)]1

—i (A kBk —CkDk )(BkKk' '"' —CkKk' '"'
) I, (5.5)

IE K ' " —'E (A K"' " +C K ' "') E[(B +C D )—K ' '"' —(A
1

k g (E) k k k
k

k k k k k k k+ k k k

+i (AkBk CkDk)(BkK—k' '"' CkKk' '"')]—, (5.6)

, R (p)
I
E3K,R (o) + iE2(D Ky, R (vl) +B Kl', R (vl)

) +E [(A +B )D K,R (zl) (A 2 +C D )KR(o)],1
k =

g (E) k k k k k k k k k k k k k

+ l (AkBk CkDk)(DkKk' —'" AkKk' " )—I, (5.7)

;E2(D„K"„R''l'+B„K"„'''l')+E[(Ak+B )D K' '"' —(A'+C D„)K'„''"']
&k(E)

—i (AkBkCkDk)(DkKk' ' —AkKk (5.g)

where Dk=~~qo(i Jo ~k» (5.9d)

gk =n, +XZJOk,

B„=Q2+z (Llo —pJk),
Ck ——3 3qo PJok

(5.9a)

(5.9b)

(5.9c}
Ak(E) =E'—E'(A'„+B',+2C„D,)+(AkBk —CkDk)' .

(5.10)
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Defining

g, =z/Q2, (5.11)

lim lim p=0,
O,~ z —+0

so that in this limit, Eq. (5.13) becomes

(5.15)

and using Eqs. (5.3)—(5.8)„weobtain as the only nonvan-
ishing diagonal susceptibilities, XZ

1+(&—p)X,Jp
' (5.16)

Xx Xy Xz (5.12)

[1+3X, P (p —A, )Jp], (5.13)1+(A, —p)X,Jp

Z

1+(k—p)X,Jo
' (5.14)

where P—:&3qp/z. We shall see self-consistently that

The critical temperature for z ordering is defined by
P,—+ 00 and we see from Eqs. (5.12), (5.14), and (5.16) that
the only divergent diagonal susceptibilities in the 7,—+ oo
limit are J'x Py and 7z. Reasoning as in Sec. IV we thus
conclude that RJ must be chosen from the set I SJ",Si,sz'I.

Using Eqs. (5.3) and (5.4) in Eq. (2.8) yields a series of
identities while Eqs. (5.5)—(5.18) give [for both the
g = + 1 and g = —1 versions of Eq. (2.8)]

R,xQk' +i(AkIkk' ' '+Ck&k' ' ')Ik'+i(AkBk —CkDk)«k&k'" ' —BA'k' ' ')Ik ", (5.17)

+CkIkk )Ik i(AkBk CkDk)(Ck+k Bk+k )Ik (5.18)

'+i(D Ik~ ' '+B K„' ' ')I„' '+i(A B CkDk)—(Dk&k' (5.19)

R,yz
Qk

yz, R( —)

& (DkIk k +BkIk k )Ik i (A kBk CkDk )(Dk+k A k+k )Ik (5.20)

where

co&k coth(pco|k/2) —copkcoth(pcopk/2)
Ik" =

2 22(~1k a 2k)

and coik and cozk are the roots of b k(E), i.e.,

bk(E) =(E —coik)(E —coPk) .

Using Rj =Si",Si",SJ'in Eqs. (5.17)—(5.21) gives

Z, X - Z,y Z, XZ Z,yz 0

(5.21)

(5.22)

(5.23)

which are exactly true due to the symmetry of H, and

(5.28)

(5.29)

Summing Eq. (5.24) over all k gives q„~=0, which is
true from the symmetry of H. Summing Eq. (5.25) over
all k yields identities. Summing Eqs. (5.26) and (5.27)
over all k and using the S = 1 identities

sxgxz i (sz gxj1) (5.30)

and

Xy &~ yxQg' = = —Qg'
2

iv 3qo

2
= —Qk'

(5.24)

(5.25)

s,'g,"=-,' (s, +igp),

we obtain

2 qo =—g (zA k +M3qo Ck )Ik
(&)

2V3 N

(5.31)

a k'" =(zA k+ &3qoCk)I'k '

( —1) yy+( AkBk kDk)(v 'qo k z k) k k

+ 2 (AkBk Ck ki(~~qoCk zBk)Ik
1 ( —])

ak'"'=(zDk+ v 3qoBk)Ik

(5.26)

( —&) yyz+( AkBk —CkDk)(zDk —W3qoAk)Ik ——ak'

(5.27)

—=—g (zDk+ ~3qoBk )Ik
z 1 (1)

2

+ g (A kBk —CkDk )(zDk —U'3qoAk )Ik
1

( —1)
N

(5.32)

(5.33)
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Setting z =X,Qz and letting z, Q2 —+0, we obtain from
Eq. (5.33)

(5.34)

isotropic Heisenberg model and our result for TD, Eq.
(5.36), reduces to that of Tahir-Kheli. ' These results for
TD in the p=0 case are within 1.5% (bcc), 0.6% (sc), and
0.8% (fcc) of the Pade approximant results. '

thus confirming self-consistently Eq. (5.15). In the
z, Qz~O limit, Eq. (5.32) gives, using Eq. (5.34),

1 1~ &z

p X k 1+AX,Jpk
(5.35)

thus determining 7, above the dipolar ordering tempera-
ture, T~. As T~TD, +,~oo and we obtain

2
kTg)

AJp F( —1)
(5.36)

Proceeding as in Sec. IV we also obtain from Eqs. (5.32)
and (5.33) the ground-state solutions z = 1 and qp ——I/V 3.
From Eqs. (4.38) and (5.36) we see that TD & T, for A, &p.
Thus, for A, &p, qp orders with z =0 and z cannot order
as described in this section since inequality (5.15) cannot
be met. The results of this section are therefore restricted
to A, &p.

We find the transition temperature TD depends on the
lattice structure and (as in mean-field theory) is indepen-
dent of the coupling parameter (M. In the special case of
p=O, the Hamiltonian, Eq. (3.2), reduces to that of the

VI. CONCLUSIONS

We have self-consistently identified the operators whose
susceptibilities diverge in the ordered phase as the statisti-
cally independent operators in the spin one basis set. Us-
ing this approximation to decouple the Green's function
hierarchy, we have obtained results which contain no am-
biguities and obey all relevant spin-1 identities.

In this particular application to isotropic competing bi-
linear and biquadratic exchange, our scheme produces re-
sults which are valid for a/l values of temperature and
couplings. We find the phase space of the system parti-
tions itself into two regions which we label case (A) and
case (8). In terms of the ratio of the couplings 1,/p, case
(A) is restricted to A, &p with qp&0, z =0 in the ordered
region while case (8) is restricted to A. & p with both z and
qp&0 in the ordered region. The topography of the phase
space is therefore the same as in the MFA but with phase
boundaries that are lattice structure dependent. In addi-
tion we have found the ground-state ( T =0) order param-
eters for both cases as a function of the ratio of the cou-
plings.
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