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A finite-size-scaling analysis is applied to two axial next-nearest-neighbor Ising (ANNNI) models.
By using the scaling behavior of both the correlation length and the modulation wave vector we are
able to clearly identify and distinguish between the ordered commensurate phases, the lock-in fluid
phases, and in particular, the two types of incommensurate (floating) phases occurring in the
models. As expected, the brickwork ANNNI model does not have a floating-solid phase, but in-

stead has a q =
4 lock-in fluid phase above its (2) phase. On the basis of our results, we conclude

that, in contrast to a recent suggestion, transfer-matrix methods can be a powerful tool in the study
of two-dimensional models which exhibit incommensurate phases.

The study of two-dimensional spin systems exhibiting
commensurate-incommensurate phase transitions has
made a great deal of progress in recent years. ' One model
which has been used extensively in the study of this
phenomenon is the axial next-nearest-neighbor Ising
(ANNNI) model. Several methods have been
developed to handle the complicated phase structure
occurring in the model. Examples of calculations per-
formed on the two-dimensional ANNNI model include
the free-fermion approximation, interface free-energy cal-
culations, exact solution (on a special line) of an
equivalent Hamiltonian, Monte Carlo simulations, and
finite-size-scaling calculations and series-analysis tech-
niques applied to the model's quantum Hamiltonian ana-
logs. The phase diagram of the model i's widely accepted
to be that shown in Fig. 5.

It is necessary, however, to take considerable care in nu-
merical studies of the model, especially when attempting
to distinguish between the floating-solid (algebraically de-
caying correlations) phase and the floating-fluid (exponen-
tially decaying correlations) phase. Indeed, in a recent pa-
per' Morgenstern suggests that numeri'cal methods (both
Monte Carlo and transfer-matrix scaling) may prove un-
reliable in the study of such problems. To support this
suggestion, numerical studies on an exactly soluble mock
ANNNI (brickwork ANNNI) model, which has no
floating-solid phase, were compared with numerical stud-
ies on the true ANNNI model. -The claim was that on the
basis of numerical studies of these models it is not possi-
ble to distinguish convincingly between the two.

In this article we present a transfer-matrix-scaling"
analysis of the ANNNI and brickwork ANNNI models.
Using an analysis technique recently applied successfully
to the three-state chiral clock model, ' we calculate the
phase diagrams of these two models. Our calculations
show that it is possible to distinguish clearly between all
of the phases occurring in the models, and hence that
transfer-matrix scaling can provide a powerful method in
the study of such systems.

The ANNNI model we study is defined by the Hamil-
tonian,

A = —Ji g[S;1(S;1+t+S;+ti)]+J2+S;JS;+2i, (1)

where i,j label the Cartesian coordinates of a square lat-
tice and S;J.=+1. Both J& and J2 are positive. The ratio
tc=J2/J& measures the degree of competition between the
ferromagnetic nearest-neighbor bonds J& and the antifer-
romagnetic next-nearest-neighbor bonds J2 [see Fig. 1(a)].
The brickwork ANNNI model differs from the ANNNI
model in that every second-nearest-neighbor bond along
the vertical (j) direction is removed and every second-
nearest-neighbor bond along the horizontal (i) direction is
increased in magnitude [see Fig. 1(b)]. The motivation for
studying the brickwork ANNNI model is that it is exactly
soluble by mapping it onto a 20-vertex dimer problem. ' '

The ground states of the two models are the same, the
ground state for ~ & —,

'
being ferromagnetic, which we la-

bel ( oo ). The ground state for tc) —,
' is a periodically ex-

tended (in the i direction) sequence of two up and two
down ferromagnetic lines of spins [lying along the j direc-
tion in (1)], and we label this (2). The point tt= —,, T=0
is the multiphase point (a point of infinite ground-state
degeneracy).

In both models, for tc& —,, the ( oo ) and (2) phases
persist over a range of temperatures before melting into
less ordered phases. In both the ANNNI model and the
brickwork ANNNI model the ( oo ) phase melts directly
into a lock-in Auid, a phase with exponentially and mono-
tonically decaying pair correlations. At a still higher tem-
perature, the lock-in fluid becomes a floating fluid. The
floating-fluid phase also has exponentially decaying corre-
lations, but now these correlations are oscillatory with a
wave vector which varies continuously with temperature
and ~. The line dividing the lock-in fluid and the floating
fluid is called a disorder line. '

For ~) —,
' however, the two models exhibit qualitatively

different behavior. The brickwork ANNNI model
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commensurate-to-incommensurate transition or at a disor-
der line, Zz is asymptotically independent of L as
I ~oo.

The quantities YL and ZL also enable one to determine
whether the phase transition is anisotropic or not. This is
especially relevant to the commensurate-solid to
incommensurate-solid transition where an anisotropic
phase transition' has been predicted. Thus, if one does
not allow for anisotropic scaling in systems with modulat-
ed phases, the floating-solid phase will not be correctly lo-
cated.

The correlation length and wave vector of the finite-
width strips are calculated by finding the leading eigen-
values of the transfer matrix. For the models studied
here, the transfer matrix is a 4 )&4 matrix. We use a
representation of the transfer matrix as a product of L
sparse matrices to reduce the size of the computations. '

If the two largest eigenvalues of the transfer matrix are
denoted by A,

~
and X2, then the correlation length is given

by

1

1n(A, )/~ A,2
~

)

and the modulation. wave vector is given by

=1 Im(A, 2)
arctan

peak as being due to finite-lattice effects, we now focus
discussion on the true scaling point in the function Yz [at
T=1.55 in Fig. 2(a)] and the wave vector (Zz) scaling
point in Fig. 2(b). It is evident that Zz scales (is indepen-
dent of L) at a higher temperature than Yz. This indi-
cates that the wave vector locks in to a commensurate
value at a higher temperature than the thermodynamic
phase boundary indicated by the correlation-length scal-
ing. At ~=0.25 in the ANNNI model we thus find that
there exists a direct transition from the ordered q =0 fer-
romagnetic phase to a q =0 lock-in fluid phase. This
transition occurs at the point where the correlation length
scales. At a higher temperature the q =0 lock-in fluid
phase becomes a q&0 floating-fluid phase. The disorder
point is the point at which the wave vector scales. The lo-
cation of the disorder point indicated by the wave vector
scaling is in good agreement with that indicated by the
peaks in Yz, (see Fig. 2). We have performed the same
analysis for several values of a, and a similar behavior to
that discussed above was found for all ir & —,

' .
The functions YI and ZI for the ANNNI model at

~=0.60 are presented in Fig. 4. It is evident that now Zl
scales at a lower temperature than YI. At the tempera-
ture where YL scales, the system undergoes a thermo-
dynamic phase transition while the wave vector remains
finite. The YL curves then remain approximately parallel
to the T axis over a range of temperature. This behavior

The functions Yz and Zz for the ANNNI model for
x=0.25 are displayed in Fig. 2. The presence of the sharp
peaks in the correlation-length function YI, are a conse-
quence of the cusp in the inverse correlation length that
occurs at a disorder point. This behavior in the correla-
tion length is evident in Fig. 3, where the scaled correla-
tion length is plotted as a function of temperatures at
~=0.25. Returning to Fig. 2, we thus suggest that the
two crossings of the function Yz that occur because of the
sharp peak are spurious and should disappear in the
large-L limit. Indeed, the size of the peaks should scale to
zero with large L. For finite L, the location of the peaks
provides estimates of the position of the disorder point in
the inifinite lat tie.

Having identified the crossings in Yz near the sharp
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FICi. 3. Scaled correlation lengths for the ANNNI model for
~=0.25 and L=4 (solid curve), L=5 (dashed-dotted curve) and
L =6 (dashed curve).

FIG. 4. Scaling functions for the ANNNI model for ~=0.60
and L=4, 5, 6: (a) the correlation length scaling function, YL

[see Eq. (2)]; (b) the wave-vector scaling function, Zz [see Kq.
(3)].
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FIG. 5. Phase diagram of the ANNNI model. The symbols

( co ) and (2) indicate the ordered commensurate phases. The
P(q =0) and P(q &0) phases are fluid phases with and without
modulation, respectively. The phase F is a floating-solid phase
with quasi-long-range order. The error bars indicate estimates
of the transition temperatures from the finite-size scaling
analysis. The solid lines are the melting temperature of the
commensurate phases from interface free-energy calculations
(Ref. 18). The dotted and dashed lines are guides to the eye.
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FIG. 7. The scaling functions for the brickwork ANNNI
model for a =0.70 and I.=4, 5, and 6: (a) the correlation length
scaling function, 1'I. [see Eq. (2)]; (b) the wave-vector scaling
function, Zl. [see Eq. (3)].
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FIG. 6. Scaling functions for the brickwork ANNNI model

for re=0.35 and I.=4, 5, and 6: (a) the correlation length scal-

ing function, 1'L, [see Eq. (2)]; (b) the wave-vector scaling func-

tion, Zl. [see Eq. (3)].

FIG. 8. The phase diagram of the brickwork ANNNI model.
The three fluid phases are denoted P(q =0), P(0 & q & 4 ), and

P(q = 4 ). All lines are guides to the eye.
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signals the presence of a phase with quasi-long-range or-
der. The point at which Zl scales determines the point at
which the wave vector locks in. This and the correspond-
ing sharp increase in YL indicates a transition to a com-
mensurate ordered phase. This type of behavior was
found for all a & —,

' in the ANNNI model.

By performing the analysis discussed in the preceding
three paragraphs for a range of ~ values, we arrive at the
ANNNI model phase diagram given in Fig. 5, which is in
good agreement with previous analytic and numerical cal-
culations. ' ' We now perform this analysis for the
exactly soluble' ' brickwork ANNNI model, which is
known to have no. quasi-long-range-ordered phase, and
which should provide a test of our method. The scaling
functions Yz and Zz for the brickwork ANNNI model at
~=0.35 and sr=0.70 are shown in Figs. 6 and 7, respec-
tively. At both of these values of ~, the correlation-length
scaling function Yz exhibits the sharp peaks indicative of
a disorder point. This behavior is the same as that found
in the ANNNI model for v &0.5 (see Fig. 3). Again there
are two spurious crossings in the scaling function due to
the presence of the peaks. We again concentrate on the
true correlation-length scaling points and the wave-vector
scaling points.

In both cases (Figs. 6 and 7), Zz scales at a higher tem-
perature than FL, the same behavior as found for the
ANNNI model for v& —,'. At no values of a did the
brickwork ANNNI model exhibit the behavior indicative
of a quasi-long-range-ordered phase, and on the basis of
our' analysis, the phase diagram given in Fig. 8 is deduced.
Note that the quasi-long-range-ordered phase which lies
above the (2) phase in the true ANNNI model (see Fig.
4) is replaced by a q = —, lock-in fluid phase in the brick-
work ANNNI model.

The analysis used in this work has combined wave-
vector scaling with the standard correlation-length scaling

to plot out the phase diagram of two ANNNI models.
The combination of the two analyses has been especially
useful in these models, as the correlation-length scaling
along exhibits some puzzling features. First, at a disorder
point, the inverse correlation length has a cusp (see Fig.
3), and this results in a sharp peak in the function Yz (see
Fig. 2), and in the occurrence of two spurious crossings in
this function. Second, at the commensurate-solid to
incommensurate-solid phase boundary in the ANNNI
model, the function Yz does not scale on finite lattices
(see Fig. 4), and it is necessary to locate the phase boun-
dary from the wave-vector scaling alone. These features
emphasize the necessity for care in analyzing the data
from numerical studies on two-dimensional systems with
modulated order.

In conclusion, a finite-size-scaling analysis of the
ANNNI model generates a phase diagram in excellent
agreement with the combined predictions of other
methods. We are able to identify clearly all of the phases
present in the model by using the scaling properties of
both the correlation length and the modulation wave vec-
tor. The commensurate-solid, lock-in fluid and floating-
fluid and floating-solid phases all have distinctive signa-
tures in the scaling behavior of these two quantities. In
the case of the brickwork ANNNI model we find that, in
agreement with previous work, no quasi-long-range-
ordered phase exists in the phase diagram of the model.
These results show that, in disagreement with a recent
suggestion, ' transfer-matrix scaling is a powerful method
in the study of models with modulated phases.

P.D.B. acknowledges the support of the Science and
Engineering Research Council (SERC), and P. M. D.
thanks the SERC and Trinity College, Oxford for sup-
port. We should all like to thank W. Selke for keeping us
informed of his results.

P. Bak, Rep. Prog. Phys. 45, 578 (1982).
2R. J. Elliott, Phys. Rev. 124, 346 (1961).
3M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502 (1980).
4P. Bak and J. von Boehm, Phys. Rev. B 21, 5287 (1980).
5J. Villain and P. Bak, J. Phys. (Paris) 42, 657 (1981).
R. M. Hornreich, R. Leibman, H. G. Schuster, and W. Selke,

Z. Phys. B 35, 91 (1979).
7I. Pechel and V. J. Emery, Z. Phys. B 43, 241 (1981).
8W. Selke and M. E. Fisher, Z. Phys. B 40, 71 (1980); W. Selke,

Z. Phys. B 43, 335 (1981); M. N. Barber and W. Selke, J.
Phys. A 15, L617 (1982).

P. M. Duxbury and M. N. Barber, J. Phys. A 15, 3219 {1982);
M. N. Barber and P. M. Duxbury, ibid. 14, L251 (1981); P.
Rujan, Phys. Rev. B 24, 6620 (1981);G. O. Williams, P. Ru-
jan, and H. L. Frisch, Phys. Rev. B 24, 6632 (1981).

IoI. Morgenstern, Phys. Rev. B 29, 1458 (1984).
P. Nightingale, J. Appl. Phys. 53, 7927 (1982)
P. M. Duxbury, J. Yeomans, and P. D. Beale, J. Phys. A 17,
L179 (1984).
I. Morgenstern, Phys. Rev. B 26, 5296 (1982).
J. Stephenson, J. Math. Phys. 11,413 (1970).

15W. Kinzel and J Yeomans, J. Phys. A 14, L163 (1981);M. N.
Barber, in Phase Transitions and Critical Phenomena, edited
by C. Domb and J. Liebowitz (Academic, New York, 1984),
Vol. 8.

I M. P. M. den Nijs, M. P. Nightingale, and M. Schick, Phys.
Rev. B 26, 2490 (1982).

I7H. J. Schultz, Phys. Rev. B 22, 5274 (1980).
'~J. Kroemer and W. Pesch, J. Phys. A 15, L25 (1982).


