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Equations of state for classical hard-core systems
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A method, based on- the first few virial coefficients, is used to generate the pressure P of a classi-
cal d-dimensional hard-core system at arbitrary density p—the method is exact for d =1. The equa-
tion of state reproduces all the virial coefficients used on expanding P/kqT about p=0. Also,

P/p, k&T~R/(1 —p/p, ) as p~p, and h(P/k&T)/Bp&0 for 0&p &p, . As the order of the approx-
imation increases, the position p, of the simple pole approaches the density po of closest packing and
the residue R increases beyond the value of the spatial dimensionality d of the system. The equa-
tion of state is in rather good agreement with the molecular-dynamics results especially for the case
of hard disks as expected.

I. INTRODUCTION

b=—B2 ——
dl (d/2)

(1.2)

for a d-dimensional system of particles with hard-core
potential —hard lines of length o., hard disks or spheres
with diameter o. [For the hard-sphere fluid, the indepen-

The purely repulsive hard-core potential plays an im-
portant role in equilibrium statistical mechanics. A
hard-core potential is the simplest characterization of the
impenetrability of atoms and molecules in real gases. In
addition, when supplemented by an attractive interaction,
the hard-core potential becomes a useful reference system
with which to treat perturbatively. the weak attractive part
of the potential. Nonetheless, despite the simplicity of
this system there exists no exact result for the equation of
state at moderate or high density. However, at low densi-
ty, recourse is made of the virial expansion for the pres-
sure P with exactly determined first few virial coeffi-
cients.

The interest in the hard-sphere fluid was stimulated
certainly by Kirkwood's conjecture that this system would
show a fluid-solid transition at a density below the max-
imum density attainable at close packing. The Kirkwood
transition was found' in computer experiments. Needless
to say, a theoretical description of the Kirkwood transi-
tion still remains a challenging problem. Attempts at
theoretical studies, via Fade ' and other approximants,
have led to considerable controversies as to the occurrence
and nature of singular points in the virial series.

Some years ago, a method to overcome the conver-
gence difficulties of the quantum-mechanical Born series
was employed to improve the convergence of the virial
expansion. The method leads to a first-order nonlinear
differential equation for the pressure P of the form

d ri„(b) = g C„(b)[q„(b)]'
k=2

with boundary condition g„(0)=p, where ri=P/king T and
b is the second virial coefficient B2 and so

dent variable used in Ref. 7 in the differential Eq. (1.1)

was the soft-sphere variable f= e —1 with b fixed.
The differential equation was integrated to f= —1 to give
the hard-sphere equation of state. The present analysis
with (1.1) deals directly with hard-core systems, viz.
f= —1, and considers a variable cr.] The one-dimensional
system of hard rods is obtained exactly already in the
lowest approximation, viz. Cz ——1 and Ct, (cr ) =0 for
k =3,4, . . . . However, for the hard-sphere gas, the suc-
cessive approximations to the equation of state developed7
a sort of instability, an apparent bifurcation, at a rather
low value of the density which worsened with succeeding
approximations. Nonetheless, the approximation scheme
gives rise to a non-negative pressure which is a monoton-
ic nonincreasing function of the specific volume p
thermodynamic stability condition. In addition, a series
expansion for the pressure P in terms of the density p
reproduces the virial coefficients introduced to generate
the given approximation. These good features of the ap-
proximation scheme, together with the availability of
more virial coefficients, suggest a closer analysis of the
method in order to find a way to stabilize the solution of
the nonlinear differential equation in the higher density
range. The latter can be accomplished, while preserving
the above-mentioned features, by requiring the pressure in
our approximation scheme to possibly develop a simple
(first-order) pole as a function of the density p. Note that
the position of the simple pole as well as the correspond-
ing residue are determined entirely by the first few virial
coefficients. Note also that when searching for poles, one
may be excluding from consideration the possibility of
finding a singularity of the virial series associated with
the amorphous close-packed state —random close packing.
Such singularity may be of the branch-point type rather
than a simple pole. Therefore, we expect the simple pole
to represent the crystalline close-packed state at infinite
pressure or zero temperature —ordered close packing of
hard spheres (disks) at po ——v 2/o. (po ——2/v 3o ). Re-
garding the residue at the simple pole, there is no predic-
tion of its value other than the value d given by the free-
volume approximation result at high density.
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II. MODIFIED IMPROVED SOLUTION

The virial expansion of the pressure for a d-
dimensional system of particles with purely repulsive
hard-core interaction is of the form

9 =P/k~ T =8,p+B,p'+83p'+ . (2.1)

=82p2lb +283p3lb + 384p4/b + (2.2)

and eliminating p with the aid of (2.1), one obtains

d'g
=C2g +C3g + -. .

with 8„=A„b" ', where A„are pure numbers with
A ~

——A2 ——1 and the second virial coefficient b is given by
(1.2). The function g is analytic' in some neighborhood
of p=0. [In fact, the radius of convergence of the virial
expansion is at least' Vo/V=0. 039905 for hard disks,
where Vo ¹r—W—3/2 and Vo/V=0. 024437 for hard
spheres, where Vo=¹r /V2. ] On differentiating (2.1)
with respect to b,

'g

kdp by=xo
=0 for k =1,2, . . . ,

we have that g~xolb monotonically as p~ oo. (Actual-
ly the physical region for a hard-core system is 0(p (po,
where po is the maximum density at close packing. ) Note
that g=xo/b is a singular solution of the differential
equations (2.3) and (2.6) since g (xp) =1+xof(xo) =0.
However, if g (z) & 0 for z & 0, then the nth approximation
diverges and so

n=pA(1 pip. )'"—' "' as p p. (2.7)

the differential equation (2.3). For instance, if
1 + xof (xo ) =0, then bg =xo is a singular solution of
both (2.3) and (2.6). Of course, the possibility dg/dp &0
can also arise iff(z) in (2.3) is singular.

For the nth-order improved solution, the function f ( z)
in (2.3) is a polynomial of degree n and, so the possibility
arises that g(zo)=0 for some 0&zo& oo. [Recall that
g(0)=1 since f(0)=C2 ——1.] Let xo&0 be the closest
zero to the origin. Therefore, since

where

rj'f (bn»— (2 3)
where

p, R =[(n —1)bK„]' " (2.8)

for n =2,3, . . . . In obtaining (2.7), use is made of the
scaling form bg=h (bp) and dg/db =g f (bg) =K„q" as
g~oo for the nth approximation as given by (2.3). The
value of p„with 0 &p, & ~, is given by

1 (b )
~ dx ' f(x)dx

( )
x [1+xf(x)] o [1+xf(x)]

C2 82/b =1-—,

C3 =283/Bz —282,

C4 284/82 ———883+582,

(2.4)

dn
dp

=(rj/p»)[1+bnf (bn) l = (n/p)g (bn)— (2.6)

The boundary condition for the differential equation (2.6)
is p =po for p=pa with go/po~ 1 as p0~0.

If g f(bq) is defined and continuous in an open set
D&R, then the solution of (2.3) is defined and is both
continuous and differentiable in the open interval
ICE—with (b, rj)ED for b&I. Also, the initial-value
problem with q=p for b=0 gives rise to a unique solu-
tion in D. Accordingly, dqldp&0 and so by (2.6),
g(z) &0 in the open interval I. The possibility dg/dp=0
is associated with the existence of singular solutions of

and so on. (See Appendix A for the implicit expressions
of the coefficients Cz to C8.) Note that f(z) in (2.3) is
analytic at z=0. However, the radius of convergence of
the series (2.3), which is determined by the radius of con-
vergence of the virial expansion (2.1), is unknown. Note
also that the form of the nonlinear differential equation
(2.3) is a direct consequence of the scaling form for the
equation of state (2.1), viz. by =h (bp), where
h(x)=A&x+A2x +A3x +

The solution of the differential equation (2.3) with
boundary condition g=p for b=0 is

ln(bg) —f =ln(bp) .
b& f(x)dx

(2.5)1+x x)

Note that the integral in (2.5) has singularities at the zeros
of 1+ xf(x) and also at the point of infinity. On dif-
ferentiating (2.5) with respect to p for fixed b one obtains

with the aid of (2.5) for our case when 1 + xf (x) &0. It
so happens that the coefficients C2, C3, . . . , Cs for both
hard disks and hard spheres alternate in sign and so the
even approximations of (2.3) diverge while the odd ap-
proximations of (2.3) approach a finite constant as p~ ao.
(This behavior was already evident in Ref. 7 for both the
two-dimensional lattice gas of hard squares and the sys-
tem of hard spheres. )

Now the divergence of the pressure at the density of
closest packing is that of a simple pole or stronger.
Therefore, result (2.7) suggests summing the series in (2.3)
in such a fashion that f ( gb)~co snt& Oas bg~ ao. [If
f(bq) +oo as by~—oo, then divergences weaker than
simple poles would ensue. However, if f(bg)~(brj) as
by~ oo with —1 & e & 0, then divergences stronger than
simple poles would follow. ] We only consider expressions
for f (bg) which are rational functions of bg Therefore, .
f( gb)~c ostn&0 as bg~ao gives rise to a solution of
(2.3) with a simple pole, in the finite p plane.

III. NUMERICAL RESULTS

The nonlinear differential equation (B2) for hard disks
and hard spheres were solved numerically for the succes-
sive approximations with the constants A, B, . . . , F given
by Eq. (B3) to (B5) and (B6) to (B8), respectively. All the
approximations for the pressure P have a simple pole at
some finite density p=p, given by (2.9) and the residue
(2.8) becomes, for n =2,
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TABLE I. Values of critical density p, =X/V, and residue R for hard disks and hard spheres for
different approximations (see Appendix B); P/p, k& T~R (1—V, /V) ' as V~ V, .

B„considered
Bp
B2p ~ ~ ~ p B4
Bp, . . . , B6
B2p ~ ~ ~ p B8

Vp/V,
0.551
0.799
0.894
0.926

Disks

R
1.00
1.56
2.15
2.48

Vp/Vc
0.338
0.589
0.726
0.815

Spheres

R
1.00
1.65
2.45
3.34

R =(Kbp, ) (3.1)

where K= 1, A /B, C /D, or E/F for the different
approximations —which include knowledge of the virial
coefficients up to and including B2, B4, B6, and B8.
Table I contains the position of the simple pole and its
corresponding residue for both hard disks and hard
spheres for the different approximations. Note that for
both cases, the value of the residue increases beyond the
spatial 'dimensionality d of the hard-core system —the
free-volume approximation result. Also, the position p,
of the simple pole seems to be approaching the close-
packed configuration po, viz. po

——2/o v'3 for hard disks
and pc= v 2/cr for hard spheres.

The singularity at the density of closest packing is of
the form P/pok& T~ U(1 p/po) w—ith A, & 1 and U& 0
as popo. Therefore, if the virial expansion gives rise to
this singularity, then the virial coefficients
B„po '~ Un '/I (A, ) as n ~ ac —this quantity ap-
proaches either a constant, when A, =1, or infinity, when
A, & 1. Note, however, that a singularity at the density of
random close packing may be of the form
P/pRcpk&T~ W( 1 —p/pRcp) with p & 1 and W&0 as
p~pRcp(po. Hence, if this singularity follows from the
virial expansion, then the virial coefficients
B„po '~[ Wn" '/I'(p)](polpRcp)" '~ ~ as n ~ ~
since pRcp (po. The values of B„po

' as a function of
1/n for hard disks and hard spheres may be fitted by a
straight line for n (7. However, this in no way warrants
the conclusion that the first singularity of the virial ex-
pansion for the pressure occurs at the density of closest
packing with A, = l. It may be that B„po '~ac as
n~ oo in which case two possibilities arise regarding the
divergence of the virial series: Either (i) a singularity at
closest packing with A, & 1, or (ii) a singularity at random
close packing. The latter case can be distinguished from
the former by considering (pRcp)" 'B„
~Wn" '/I (p, )~0 as n~ao for appropriate values of
pRcp (po and 0 &p & 1 in order to ensure the correct
asymptotic behavior.

It should be remembered that the only known analytic
property of the virial expansion is analyticity at p=0.
Hence, no one knows the nature or location of the first
singularity of the virial series. In the present work, we
have built in the possibility that the first singularity be a
simple pole and up to the approximation worked out the
possibility is realized and the results predict both the posi-
tion and the residue of the simple pole. Clearly, we have
not searched for the random close-packing configuration

since such a search would entail a weaker singularity.
In Figs. 1 and 2, the solutions of the differential equa-

tion (B2) are plotted together with the molecular-
dynamics data. ' One expects the two-dimensional11,.12

hard-core system to be more accurately given than that
for the three-dimensional system since our approximation
scheme is exact to lowest order for d=1. This is borne
out in our numerical results as given in Figs. 1 and 2. The
agreement with molecular-dynamics data may be im-
proved by varying B6, B7, and B8 within the quoted er-
rors. Note, however, that our highest approximation

12—14

requires knowledge of all these three virial . coeffi-
cients and that the approximate value for B8 is estimat-
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A: COEFFICIENT C~APPENDIX A: C

' 'nts C of thethe coefficients
f h ii 1(2.3) in terms o e e

'
1 expansion (2.

licit
b ubsthtuthng

s of p to those of
sti-tl by invertingion follows direc y

f int rmso
but lengthy compu a

'
elementary but en

Bulb =Cp,
283/b =28&C~+ C3,

28, )C, +38,C, +
38 )C3+48 Cg)C (38

68,8, +8,')C, +
687/b =(286+2BpB5 +

+C7,
38 8 )C3

583)Cg+68pC6+

(38 +68h85+2B7 +2BqB6+ 3

+(58, +208,8, +2 48 +128 8 )C+(8,+ 12B B3+6B3+4B5

(Al)
(A2)

(A3)

(A4)

(A5)

(A7)

h follo
The numer

based on t eeter o. aredhsks of dhame
' '

1 coefficients:the viria c
28 =b=(vr/2)o.

8 = —, — 3/rr =0.7820044,
h/3/2rr+10/~ =0.584/b =2 9h=—0.5

B /b =0.3335561,5

86/b =0. 198 93

8 /b =0 11487

B /b =0.0653 .8

(A8)
C /b = —0.326 124,5

C /b =0.350167,6

C /b = —0.406 639,7

0 5048

(A9)

B are obtained yb Monte

(Al) to (A7),
r

'
tion while t e

On substitutingOn su
' '

(AS) in

Cp ——1,
C3/b = —0.436000,

Cg/b =/b =0.340690,
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Note that
~ CJ /b J

~

increase in value as j increases be-
ginning with j=5.

2. Hard spheres

=q f(bg)

2 1+Abq+C(br))~+E(brj)3
1+Bbg+D(br))2+F(baal)3

B2:b=—(2~/3)cr

B3/b = —, =0.625000,

B4/b3= —,",, +219v 2/2240m

+(4131/2240m )cos '(1/W3)
i

=0.286 950,

Bq/b =0.110252,

B6/b =0.0389,

B7/b =0.0137,

B8/b =0.0045 .

(A10)

The coefficients B5 to B7 are obtained by Monte Carlo in-
tegration whereas Bs is estimated. On substituting (A10)
into (Al) to (A7), one obtains

C2 ——1,

The numerical values of the coefficients C/ for hard
spheres of diameter o are determined with the aid of the
following' virial coefficients:

where the pure numbers A,B, ,I' are determined by the
coefficients C3, . . . , Cs on expanding (82) about by=0
and comparing the coefficients of the series with those of
(81). Note that this modification is such that the solution
of the nonlinear differential equation (82) preserves all the
good features of the improved scheme, viz. all the virial
coefficients used in the approximation are reproduced on
expanding the solution for I' as given by (82) about p=O
and BP/Bp) 0.

The singularities of (82) are poles and/or algebraic
branch points whose location depends on the density p.
Note that by requiring f ( bg)~c onst& Oas by~ oo, we
ensure that the solution of (82) becomes infinite for finite
values of p and that the singularity may be a simple pole.
It is interesting that the sequence of quantities A and B;
A, B, C, and D; and A, B, C, D, E, and I'" associated with
the successive approximations generated by (82) for the
equation of state for both hard disks and hard spheres
are all positive. Consequently, the solution of (82) with
boundary condition g =p for 6=0 diverges with a simple
pole for finite b or equivalently, by (2.6), for finite p.

1. Hard disks

With the aid of (A9) one gets the sequence of approxi-
mations (82) for f(bq) with

C3/b = —0.7500,

C4/b =0.860850,

C5/b = —1.17005,

C6/b =1.75084,

C7/b = —2.78599,

C8/b =4.62114 .

(Al 1)

APPENDIX B: NONLINEAR DIFFERENTIAL
EQUATIONS

Note again the increase of
~

CJ /b~
~

with increasing j
beginning with j=3. The behavior is much more acute
than that for hard disks given by (A9).

A =0.345 399,
B =0.781 399,
A =1.15530,

B =1.59130,

C =0.142333,

D =0.495 451,
A =2.38787,

B =2.823 87,
C =1.38276,
D =2.273 27,
E =0.112033,

I =0.467241 .

(83)

(84)

(85)

Let us obtain the modified improved solution of (2.3)
by replacing the polynomial

2. Hard spheres

f (b~) =1+C,rl+ C4rl'+ . +C„+2g" (81)

for n=0, 2,4,6 associated with the nth-order improved
solution by a rational function of the form

For the present case, the coefficients in (82) for the suc-
cessive approximations are given, with the aid of (All),
by
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g =0.397 800,
B =1.14780

A =1.49137,

B =2.241 37,
C =0.192401,

D =1.012 58

(B6)

(B7) .

A =2.46754,

B =3.217 54,
C =1.39279,

D =2.945 10,
E =0.086 199 1,
F=0.695249 .

(B8)
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