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Mean-field theory of magnetic transitions in semi-infinite Ising models

F. Aguilera-Granja

Apartado Postal 14-740 07000 Mexico Distrito Federal, Mexico

J. L. Moran-Lopez*
Laboratoire de Magnetisme et de Structure Electronique des Solides, Uniuersite Louis Pasteur, .

4 rue Blalse Pascal, 67070 Strasbourg Cedex, France
(Received 13 November 1984)

The semi-infinite Ising model, for S=
2 and with an arbitrary number of surface Inagnetic cou-

plings J „different from the bulk J, is solved in the mean-field approximation. Exact expressions
for the critical couplings J „c leading to a surface Curie temperature T&& higher than the bulk T~
are obtained. The value for Tzs in the semi-infinite crystal is obtained by means of a continued-
fraction method. The model is applied to explain recent experimental results on the (0001) surface
of gadolinium.

I. INTRODUCTION II. THEORY

It is well established' that surface magnetic proper-
ties may differ from those in the bulk. This is naturally
expected since the surface atoms are embedded in a lower
symmetry environment and consequently the exchange
constants between atoms in the surface region may differ
from the bulk value. However, for simplicity, and in the
absence of experimental data, most of the theoretical
analysis have been performed under the assumption that
only the exchange constant of atoms at the surface plane
Jpo differs for the bulk J, and for the (100) surface of a
simple cubic lattice.

Depending on the value of Joo two different behaviors
at the surface can be obtained: (i) If Jop is smaller than a
critical value Joo c the surface will order at the tempera-
ture where the bulk does (ordinary transition); and (ii) If
Joo ~ Joo c, the surface will disorder at a temperature Tcs
(surface transition) larger than the bulk transition tem-
perature Tc (extraordinary transition). In the last case,
for T«T & Tc~, the magnetization decays exponentially
into the bulk with a characteristic length.

The experimental study of magnetic surfaces is very
difficult and only few experimental results are available.
Nickel and iron seem to correspond to the first kind of
systems ' discussed above and gadolinium is the only sys-
tem reported' '" with a surface Curie temperature larger
than the bulk Tc. To explain the experimental findings
in Gd, it has been proposed" that not only the surface
coupling constant Joo differs from the bulk J but also the
coupling constant between atoms in the first and second
plane Jo&.

Here, within the mean-field approximation, we present
a new method for obtaining exact expressions for the criti-
cal coupling constants in the surface region. Formalism is
valid for any number of J~ differing from J. We present
results for various cases. In Sec. II we outline the theory.
The results, the discussion, and the application of the
method to Gd are contained in Sec. III.

The magnetic properties of the semi-infinite system are
described by the Ising model with spin —,. The crystal is
subdivided into planes parallel to the surface. The coordi-
nation number of the planes parallel to the surface and be-
tween planes are denoted by Zo and Zj, respectively, and

N~~ represents the total number of atoms per plane.
The magnetic couplings are assumed to be location

dependent and we denote by J „ the coupling between
spins in the I and n layers. In the single-site approxima-
tion, there are two different probabilities per plane and
they are denoted by P;, where i =0, 1,2, . . . and o.= ), $.
The magnetic long-range order parameter at the ith plane
is defined by

g;=—P;,—P;, . (2.1)
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Here, J1 & 0 ( & 0) means ferromagnetic (antiferromagnet-
ic) coupling. The minimization of the free energy

The equilibrium values for the order parameters are ob-
tained by minimizing the free energy, which in terms of
the order parameters is given by
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F =0, i =0, 1, . . .
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leads to the coupled set of equations, for i =1,2, . . . ,

(2.3) surface Curie temperature Tcz is equal to or larger than
the bulk Tc. The set of values for the coupling constants
separating these two behaviors are denoted by J~„c.

Near the surface Curie temperature, the logarithmic
functions in Eq. (2.4) can be written as a series in powers
of g;. Keeping only the linear terms we obtain the homo-
geneous set of equations

A g=0, (2.7)

—2(Z) J; )q; )+ZoJ;;g;
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(2.4)

=0,

where the infinite matrix 2 is symmetric and tridiagonal
with elements

Amn (kBTcs —ZoJ )&, —Zi J (& +i, +&

(2.8)

Deep inside the bulk, the temperature dependence of the
bulk q is given by the relation

The critical values for J leading to the special transition,
where Tc~ ——Tc ——ZJ, are obtained from the condition

detA =0 . (2.9)
2ZJg k T 1 =0

1 —Yl

and the Curie temperature is

kgTc ——ZJ .

(2.5)

(2.6)

To calculate the determinant of the infinite matrix we
first calculate the determinant of a matrix n & n and then
take the limit n —+ oo. In principle one can take any num-
ber of J „different from bulk J. Here, we illustrate the
method for

Here, Z =Zo+2Z& is the bulk coordination number.
As was mentioned in the Introduction, depending on

the values of the coupling constants near the surface, the

Jm„&J, m, n =0, 1 .

In this case, we can write Eq. (2.9) in the form

(2.10)

(Zp, Jpp c—ZJ)[(ZpJ]~ c—ZJ)(Z~ J)" Dn 2
—(Z]J)" Dn 3]—(Z]Jo] c) (Z)J)" Dn 2=0, (2.11)

where

—2 1 0

det(B ka Tcs I ) =—0 (2.15)

D = 1 —2 1 (2.12)
Bmn 0Jmm ~mn +Z I mn ( ~m + 1n+ sm, ,n + 1) (2.16)

is a determinant of order m, whose value is

Dm=( —1) (m+1) . (2.13)

By assuming only Joo, Jp~, J~~&J, the determinant (2.15)
can be rewritten in the form

Therefore, for n) 2, the critical coupling constants are
given by the relation

x —a —c
—c x —b

0 4 ~ ~

ZJ —Zo Joo, c ZJ —Zo J& i, c
Z(J Z,J

Joi, c
J

0 —1 x,—1 0
0 0 —1 x —1 0

=0, (2.17)

(2.14) where

This result is valid under the assumption that the magnet-
ization in the n planes near the surface differs from the
bulk value. For n~oo, (n —2)/(n —1)~1.

Equation (2.14) determines the critical surface of the
multicritical transitions in the parameter space of J. A
system with values (Joo Jp~, J&&) lying inside the surface
will disorder at the same temperature as the bulk does.
On the other hand, if the set of J lies outside the surface,
it will disorder at Tc& ~ Tc. In the second case, the sur-
face critical temperature Tcz is obtained from

x = kB Tcs —ZoJ Zp( Jpp —J)
ZiJ ' ZiJ

(2.18)

b= C =
ZiJ ' J

Equation (2.17) can be written in the form

(x —a) (x b) —1 —c — =0, (2 19)
fl —3
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where

x —1 0
—1 x —1 0

m 0 —1 x —1 0 (2.20)
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is a determinant of order rn. Furthermore, the ratio
/&~ &

is given in terms of lower dimensionality
determinants by the relation

1

z
{2.21)

for m~ao the value of the continued fraction (2.21) can
be obtained by defining

Joo(c)
r" ~J

J,=o J J

(Q)
J

Jolr r

(d) g r ~ r

Joo=o

(f)
JOl

J, J

m —1

which, substituted in Eq. (2.21), gives the equation

(2.22)
FIG. 1. Illustration of the various surface systems that can

be obtained with particular values of the coupling exchange con-
stants Joo, Jo&, and J».

y —x@+1=0 . (2.23)

Thus, the surface critical temperature Tcs is given by the
root of the equation

bx (1 c+—2ab+—b )x +[2a(ab —c )(a+2b)]x
—a (ab —c) =—0,

which is obtained by substituting y in Eq. (2.19).

(2.24)

III. RESULTS AND DISCUSSION

The question of surface critical coupling constants has
been addressed by several authors. ' ' ' However,
most of those studies have been done in the (100) surface
of a simple-cubic crystal by assuming that only Jpp&J or
Jpp, Jp& &J. Under those circumstances our theory
reduces to those published in Refs. 1 and 5, respectively.

Here, we treat the most general case with specific re-
sults for the situation where Jpp, Jp~, and J~~&J [see Fig.
1(a)]. The critical surface of multicritical transitions in
the (Jpp, Jp~, J») parameter space is given by Eq. (2.14).
Assuming that the magnetization of an infinite number of
planes differs from the bulk (n ~ oo ) and for the particu-
lar case of the (111) surface of a fcc crystal [similar ef-
fects are expected at the (0001) surface of a hcp crystal],
the critical surface is given by

crystal in which only the uppermost layer, in this case
n =1, is considered to have different magnetic couplings.
This case is shown in Fig. 1(c). Since 2Zp ——Z =12, it is
necessary that Joo ——2J in order to obtain Tcs = Tc
Furthermore, for this situation the critical value for J» is
1.5. Three other special cases can be obtained. They are
illustrated in Figs. 1(d) to l(f). The highest value for the
critical coupling constants ( Jp, =12'~ J) corresponding to
the case 1(f) where the zeroth and first layers interact
magnetically only with neighbors in the adjacent layers.

In Fig. 3, we show the surface critical temperature as a
function of Jpp and Jp~ for the case where J» ——J. The
origin is chosen at (1,1,1). Any system with values
( Jpp/J Jp& /J) inside the boundary at Tcq/Tc = 1 will
show an ordinary transition ( Tcz ——Tc). The critical
boundary depends on the number assumed to have a dif-
ferent magnetization from the bulk. We present in Fig. 4
results for n =2, 4, and ao. One can see that for small
values of JO1, the critical value Joo c is almost indePen-
dent of n. This is because in this case, the surface layer
behaves like a quasi-two-dimensional system. This is not

OO, CJ
J 1—~11,c

3J
JO1, C

J (3.1)

A section of the critical surface is shown in Fig. 2. It is
symmetrical in Jo1 c, i.e., the critical values for Joo and
Jo1 are the same for ferromagnetic or antiferromagnetic
coupling between the substrate ( n = 1) and the uppermost
plane ( n =0) [see Fig. 1(b)].

This simple model allows us to treat a variety of special
subsystems. The case of Jo] ——0 corresponds to an isolat-
ed two-dimensional layer with Tcs ——ZoJoo and a fcc

2~0

Joo
J

FIG. 2. A section of the critical surface in the
( Joo/J Jo&/J, J» /J) parameter space for a (111)surface of a fcc
crystal (Zo ——6, Z~ ——3).
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FIG. 3. The surface critical temperature as a function of
Joo/J and Jo& /J for a system with Jl l

——J, assuming an infinite
number of planes different from the bulk.

1.0 2.0 Jpp 3.0

FIG. 5. The surface critical temperature as a function of
J00/J for (a) J0)=J, J» ——J; (b) J0)=2J/V 3, JII=J; and (c)

JO1=JOO J»=J.

the case for small Joo, where the surface layer orders be-
cause of the adjacent coupling to the substrate. For the
extreme case of Joo ——0

Jo&,c(n) —Joi, c(0o ) =J/n . (3.2)

%'e also analyzed the dependence of T&z/T~ on Joo
and Jp] along three different trajectories: (a) Jo) ——J, i.e.,
only Jpp&J; (b) Jpp ——a J and Jp) ——aJ, where a = —, is

obtained from Eq. (2.14); and (c) Jop ——Jo). The results
are displayed in Fig. 5, which are particular cases of the
general curve

(1—c )x —a(2 —c )x+!a +c )=0.
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FIG. 4. The boundary for Tc& ——Tc (below the curves) and

T~~ & T~ (above the curves) assuming 2, 4, and an infinite num-

ber of layers differing from the bulk. These results correspond
also to the case J» ——J. The trajectories a, b, and c correspond
to the three different models discussed in the text.

FIG. 6. Experimental results (Ref. 11) for the magnetization
in the (0001) direction of gadolinium (upper figure). SPLEED
denotes spin polarized low-energy electron-diffraction measure-
ment. Calculated temperature dependence of the average sur-
face magnetization q*=qo+ql+q2 (solid line) and q =qo+2g
(dashed line). The long-dashed line is the absolute value of the
magnetization above the bulk T~ that would be seen experimen-
tally. The values taken for the magnetic couplings are
Joo ——1.645J and Jo ———1.282J.
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The most simple case, treated by other authors, ' corre-
sponds to c =1. The three trajectories are shown also in
Fig. 4.

Recently, it has been observed" in polarized-low-
energy-electron-diffraction experiments that the Curie
temperature at the (0001) surface of gadolinium is 7.5%
higher than the bulk Tc. Furthermore, it has been ob-
served that the temperature dependence of the surface
magnetization shows a kind of compensation point at a
temperature T„~& Tc (see Fig. 6). A possible explana-
tion of this behavior, given by the authors, " is that the
surface layer couples in an antiferromagnetic way to the
rest of the system.

The most appropriate model for describing the magnet-
ization of Gd is the Heisenberg Hamiltonian. However,
we expect that the general conclusions obtained by apply-
ing this simple Ising theory to Gd hold also for systems
with larger spins.

In contrast to other more sophisticated models, like
Monte Carlo, ' renormalization group, ' ' etc., we can es-
timate in a simple way the values necessary to obtain the
observed behavior. In the three models discussed above
with Jpp and Jp& as parameters, we obtain (a) Jpp=1. 845,
Jp& = —J' (b) Jpp = 1.645J '

Jp& = —1.282; and (c)
Jpp ———Jpi ——1.485.

To calculate the magnetization at the different surface
layers, it is necessary to solve the nonlinear set of equa-
tions (2.4). In principle, one should take an infinite num-
ber of equations. However, in second-order phase transi-
tions, the magnetizations at plane n and in the bulk differ
by a very small amount for n -4,5. Therefore, we calcu-
late the magnetization for values of the parameters corre-
sponding to case (b) assuming only four layers differing

from the bulk. The results for two average magnetiza-
tions,

g*=rjp+q, +gz (solid line) (3.4)

rI* =vjp+ 2g (dashed line), (3.5)
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are shown in the lower part of Fig. 6. The long-dashed
line shows how the magnetization would be measured in
an experiment. We present in the upper part of the figure
the experimental results for comparison. We see that the
results are better reproduced by Eq. (3.5). This could be
an indication that the antiferromagnetic coupling between
the two uppermost layers is very small and therefore the
contribution to the average magnetization of the semi-
infinite solid up to layer one in the range Tc & T & Tcs is
negligible.
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