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Fluctuation effects near H, 2 in type-II superconductors
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Abrikosov's mean-field theory of type-II superconductors predicts an unusual continuous freezing
transition to a triangular flux lattice at H, 2. We show that fluctuations, which are negligible above
d =6, drive this transition first order to lowest order in an expansion in @=6—d.

I. INTRODUCTION

In 1958 Abrikosov published' a remarkable mean-field
analysis of type-II superconductors using the Ginzburg-
Landau phenomenological free energy
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%'e have used the standard notation for the Ginzburg-
Landau parameters in this functional of the superconduct-
ing order parameter g(r) and have set A'=c = 1. We shall
be interested here in the behavior near H, 2, where fluctua-
tions in the magnetic field can be neglected. Upon taking
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~z, the free energy' simplifies in this limit to
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where the vector potential is fixed (up to a gauge transfor-
mation) to be

Ao(r) = —,
' H ( —y, x,0) . (1.2b)

Although Abrikosov's main contribution was, of course,
to provide a description of an entirely new class of super-
conducting materials, his analysis is also directly relevant
to several problems in the modern theory of phase transi-
tions.

The free energy (1.2) is in fact the continuum limit of a
class of "uniformly frustrated" XY models, used by
several authors as simplified models of spin glasses. '" It
also describes superAuidity in a sample of He rotated at a

constant frequency 0-II about the z axis. The term
"frustration" is used because it is impossible to make the
gradient term vanish everywhere. One cannot minimize
the gradient energy by imposing the "obvious" phase rela-
tion,

r
tt(r) =g(0)exp ie* —f Ao dl (1.3)

because the resulting order parameter field is multivalued
for nonzero II. The frustration introduces an extra length
scale, ( e* H ) ', which limits the growth of order-
parameter correlations in the plane perpendicular to the
magnetic field. Within mean-field theory, ' this frustra-
tion is eventually accommodated with decreasing tem-
peratures (or decreasing fields, at fixed T) by a second-
order phase transition at H, 2(T) to a triangular Abrikosov
flux lattice of vortices in the order parameter. Uniformly
frustrated models similar to Eq. (1.2) with a non Abelian-
order parameter have been proposed recently to describe
the statistical mechanics of glass.

Abrikosov s calculation is also interesting because it de-
scribes a- very unusual continuous freezing transition.
Crystallization of atoms and molecules is accompanied by
modulations in the particle density which are similar to
the modulations in

~
g(r)

~

in the triangular Abrikosov
flux lattice state. A general argument, due to Landau,
shows that such transitions must be first order within
mean-field theory. We shall argue below that the mean-
field transition to the Abrikosov flux lattice is continuous
only because the density which becomes modulated [i.e.,

~

g(r)
~ ] is itself only appreciable below H, z(T).

In this paper we study the effect of fluctuations on the
continuous freezing transition found by Abrikosov. A1-
though fluctuation effects are difficult to observe experi-
mentally in ordinary type-II superconductors, they may be
more important in the recently discovered "heavy fer-
mion" materials. We shall restrict our attention here to
s-wave pairing, and not consider the more exotic propo-
sals for p-wave superconductivity. - Fluctuations play an
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important role near H, 2(T) below six dimensions. The
leading order fluctuation contribution to the specific heat
above H, 2, for example, is readily shown using the
methods of Sec. II to be given in d dimensions by

of the free energy (1.2) in 6 —edimensions. We show that
fluctuations in the magnetic field do not change our re-
sults in Sec. III. Several technical calculations are
described in the Appendix.

II. LARGE-x LIMIT

—(6—d)/2 (1.4)

where r is a parameter which vanishes on the mean-field
transition line H, q( T). Below d =6, this fluctuation
correction to the specific heat appears to diverge, invali-
dating Abrikosov's results in a way we can study via a
perturbation expansion in @=6—d. To lowest order in e,
we find that the transition is always driven first order by
the fluctuations. This result can be understood by noting
that Eq. (1.4) shows that the "condensate density"

p, (r) =
f
g(r)

f

'
starts to develop long-range correlations when d drops
below 6. The quantity p, (r) is then like the particle densi-
ty in Landau's theory of first-order freezing, which we
expect to be rather reliable in 6—e dimensions. Although
this point of view neglects the phase degrees of freedom,
we do not expect phase modes to be important, since they
are decorrelated by the applied magnetic field. We should
emphasize, however, that our starting point is quite far
from Landau's theory of freezing. The calculations are
nontrivial, requiring that we generalize standard renor-
malization group methods' to allow for an infinite num-
ber of marginal operators near d =6.

Because of the physical arguments given above, our
qualitative prediction of a first-order transition at H, 2 in
the presence of fluctuations is probably correct even in
d =3. In two dimensions, however, fluctuations drive the
superconducting transition quite far below its mean-field
value, and it may be appropriate to think of the normal
phase as a disordered liquid of point vortices. As dis-
cussed, e.g., by Fisher, "continuous transformations to an
Abrikosov flux lattice are again possible, mediated by dis-
clination and dislocation pairing transitions.

In Sec. II we present the renormalization-group analysis

A. The Landau-Ginzburg model near H, 2

We first consider the large-~ limit, in which the spatial
extent of the fluctuations of the microscopic magnetic
field is large compared to the correlation length of the su-
perconducting order parameter. In such materials, in the
normal phase (H larger than H, z) we can ignore the fluc-
tuations of the magnetic field. In this simplified limit the
magnetic field may be regarded as uniform and, up to an
additive constant, one may write the Landau-Ginzburg
free energy (1.2), generalized to d dimensions. We choose
the "symmetric" gauge in which

A= —( —y,z;0) .
H

(2.1)

ho —— (iV+e*A) (2.2)

The eigenstates of ho, the Landau levels, are simple har-
monic oscillator wave functions

e*H
hoU„(x,y)=(n+ —,

'
) U„~(xy), n, m &0.

m
(2.3)

The index n labels the energy eigenvalues of the Landau
levels and m labels their degeneracy, which is proportion-
al to the area of the system in the (x,y) plane.

If we expand the order parameter in this basis,

g(x,y;r ~) = g y„(r~) U„(x,y),
n, m

(2.4)

we diagonalize the quadratic part of the free energy A o.

This d-dimensional generalization of a constant field, per-
pendicular to the x-y plane, corresponds to an electromag-
netic tensor Fz, whose only nonzero components are
F~2 ———Fz& ——H. The order parameter P is a function of
x,y and of (d —2) transverse coordinates r~. It is con-
venient to use the complete basis of functions of (x,y)
which are the eigenfunctions of the two-dimensional
Hamiltonian

~,= f d'x f(iV+e*A)y
f

+a fqf2 = g f d" 2r+. , f
V,~„ f

+ a+ n+ — „ fq„2m

(2.5)

Below the zero-field normal-to-superconducting transi-
tion, the parameter a (T) is negative, but for large enough
magnetic field the coefficients of all the

f q&„
f

in (2.5)
remain positive. When the field is decreased and reaches
the value H, 2( T) defined by

e'H, 2 = —a(T),
2m

(2.6)

the coefficients of the
f yo f

modes vanish, whereas
those of the nonzero Landau modes, i.e., y„with n & 1,
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remain positive. Therefore in the critical region of the
normal —to—type-II superconducting transition (if indeed
a second-order transition persists when fluctuations are
included), one can ignore completely all the nonzero Lan-
dau levels and replace the order parameter g by

(r )U (x,y) . (2.7)

In the gauge that we have chosen, the n =0 Landau levels
are spanned by the normalized eigenfunctions

U =(arm ~)
' (p /2)' +" (x+ly)

t

&&exp[ ——,'p, '(x +y')], m ~0 (2.8)

(2.9)

fo(x,y;rq) =y(z, r ~) exp( ——,p z'z), (2.10)

in which y is an holomorphic function of z (i.e.,
By/Bz =0). This representation of the n =0 subspace is
more convenient, especially for the quartic terms of the
free energy, than the explicit decomposition (2.7). The
Landau-Ginzburg free energy now reads (after a rescaling
of y)

The critical order parameter $0 is therefore an arbitrary
linear combination of the Uo, or equivalently up to the
Cxaussian factor exp[ ——,'p (x +y )], an arbitrary func-
tion of the variable z =x +iy. Therefore the restriction to
the n =0 Landau level is fully implemented by the condi-
tion

~= f d' 'r.-f « f «*[(&iq
I

'+r
I q I

') exp( —2V'z*z)+ 'g I
q' -I'exp( —V'z'z)] (2.11)

in which ~, defined as

r=2m*a (T)+e*H, (2.12)

a(q„z*,z')= =
Z Q Z

is proportional to H H, 2, and f—dz f dz* means an in-
tegral over the (x,y) plane.

In the following we consider the vicinity of 0,2 in the
normal region, in which w is small and positive. %'e shall
see that fluctuations are important below six dimensions
and take them into account in the vicinity of six dimen-
sions thanks to the renormalization-group formalism.

2

=(ql2+r) 1" exp(-2p2z*z )
2m.

and the (bare) quartic vertex to

(2.16a)

B. Perturbation theory and renormalization —the upper
critical dimension

Following %'ilson' we now regard the Landau-
Ginzburg free energy A as a Boltzmann weight and
imagine expanding in powers of the quartic terms in the
order parameter. This yields a series of generalized P
Feynman diagrams. The propagator is the inverse of the
quadratic form in y contained in A . For the d —2 trans-
verse directions we perform as usual a Fourier decorriposi-
tion, but for the (x,y) (or rather z-z ) plane we note that
for an arbitrary holomorphic- function one has the identity

f dz f dz'e " ~'~ ~ ~ exp( —,'p z'z*) f(z)=f(z'),
2&

(2.13)

easily verified by expanding f in a power series of z.
Defining the inverse of an operator K(z,z) acting on

the space of holornorphic functions by

f dz f dz*IC '(z', z*)IC(z*,z) f(z)=f(z'), (2.14)

2

IC '(z', z*)= exp( —,p z'z*) .2'
Consequently the propagator h(q;z*, z') is equal to

(2.15)

we see that the identity (2.13) proves that the inverse of
the kernel IC (z*,z) =exp( ——,

'
p z*z) is simply equal to

4= ——,g5'" ' g q; exp( —p zz*) .
i=1

(2.16b)

An arbitrary diagram consists therefore of a Gaussian in-
tegral over the variables (z,z*) and of an integral over
(d —2)-dimensional loop momenta q~. Near the transi-
tion, when (the renormalized) r vanishes, long-distance
singularities emerge out of these qz integrations. The
(z,z ) integrations yield simple constants (related to the
number of Euler trails of the diagrams' ) which multiply
the result of the q~ integrations. Therefore critical fluc-
tuations are concentrated in the transverse (d —2)-
dimensional modes, and the standard %'ilson analysis
shows that the upper critical dimension is given by

d, —2=4. (2.17)

In conclusion we have shown that in the fluctuating order
parameter P(z, r~), the variable z is simply an index label-
ing the field, whereas fluctuations take place in the rz
directions.

Above six dimensions the classical picture remains
valid and one recovers Abrikosov's second-order transi-
tion. Below six dimensions fluctuations are essential and
we performed a 6—e expansion in order to explore the na-
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ture of the transition. At first order in e, this requires an
analysis of the one-loop diagrams. There are several types
of such diagrams and their contributions are given in the
Appendix, but it is important to characterize the differ-

I

ences between the bare (tree-level) vertex and some of the
diagrams. Let us compare two different one-loop dia-
grams to the bare four-point function.

From (2.16) we obtain for this function

(4)
Gbare(qi ~zi }

q1,Z*

q2~zz

3&Z3

q4, z4

4= —g g (q;+r) '5 gq;
i=1

4

f dz dz*Iexp —,
'
p [(z~ +zz )z+(z3+z4)z —2zz'] J2m

4 4= ——,'g +(q; +r) '5 g q
1 i=1

p''
exp[ e p (z ~ +zz )(z3+z4)],2' (2.18)

which we compare with the two one-loop diagrams shown
in Fig. 1.

An elementary explicit calculation (see the Appendix)
shows that the z dependence of Fig. 1(a) is proportional to
exp[ —,

'
p (z*, +zz )(z3+z4)] which is the same as in (2.18)

for the bare function, whereas that of Fig. 1(b) is propor-
tional to expI —,'p [z~ (2z3+z4)+z2(z3+2z4)]I. There-
fore the simple Landau-Ginzburg Hamiltonian is not
closed under renormalization; new marginal P interac-
tions are generated by fluctuations and we have to allow
for such operators in the interaction. These new interac-
tions will also in turn generate other vertices; clearly a
more general approach is needed.

C. The renormalized Hamiltonian
and renormalization-group equations

The most general P operator, local in rj, taking into
account holomorphy (n =0) and reality, may be written
as

d"-",f dz, dz*, dz, dz2 F(z„z&, ,zzz)z

Xy*(z ~,r j )y (zz, r ~ }q&(z&,r j )y(z2, r J )

(2.19)
However, we obtain further restrictions from translational
invariance. The gauge that we have chosen in Eq. (2.1)
singles out the origin; therefore a translation
(x,y)~(x+xo,y+yo} must be accompanied by a gauge

I

transformation. It is straightforward to show from the
behavior of g under a gauge transformation and the defi-
nition (2.10) of y that the Hamiltonian is invariant under
the transformation

y(z, r~)~rp(z a, rz) exp[ —,'—p (a z ——,a*a)], (2.20)

where a =xo+iyo.
It is elementary to verify that the quadratic terms

f dz dz'y*(z*)qr(z) exp( ——,
'
p z*z)

are indeed invariant under (20). For the interaction (19)
this invariance, together with reality, implies the restric-
tion

F(z„z&,zq, zz)= I exp[ ——,'p (z~z~+z2z2)]I

z) —z2I ). (2.21)

Before renormalization g is a delta function constraining
z2 and z2 to be equal to z1 and z1, respectively, but we
must generalize the perturbative analysis to allow for an
arbitrary function g of a single variable in the interaction.
There is thus a continuum of marginal operators in d =6,
and the renormalization-group equations in d =6—e will
involve nonlinear integral equations on the function g.
For this renormalization analysis we thus start from

A = f d" r f dzdz e &'~'~ (IV~q)I +rig&l )+ f d" r f dztdz(e " " dzpdz~e

xg(lz, —» I') Iq'(zi ri} I'Iq'(z2 ri) I'. (2.22)

%'e will use standard dimensional regularization and
the minimal subtraction method. ' In this method let us
recall that we have a set of marginal coupling constants
g;, related to the renormalized ones g;, by an expansion

1 3g =g + r Jkg gk+&(g }
E

We then obtain the one-loop P functions as

(2.23) (a) (b)

FICx. 1. Two different one-loop diagrams, which are com-
pared to the bare four-point function.
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~i ~gi + rijkgj gk +O (g (2.24)

In our problem the index i is continuous, since there is a
continuum of coupling constants g(u), and the analog of
(24) is

It is more convenient to parametrize g ( 1z —z'
1

) in
terms of a weight p(x), defined by

P[g(u)]= —eg(u)+ f dudto y[u, v, w]g(v)g(w)+O(g ) .

(2.25)

restricted to the positive axis (i) in order to give an in-
teraction in the Hamiltonian (22) which falls off at large

1

z
~ 1

and
1
zz

1

—this eliminates the range —1 & x & 0; (ii)
in order to give a nondivergent shift of T, (at finite lattice
spacing). The interaction defined by (26) yields a well-
defined perturbation theory provided f dx p(x)/
(1+x)& oo,' this condition is required in order to have a
well-defined bare four-point function at coinciding points
(as shown in the Appendix).

We obtain therefore functional renormalization-group
equations of the form

(2.26) dp, (x)
=P[p~(x)] (2.27)

The function g (u) reduces to the (unrenormalized)
Landau-Ginzburg model when p(x) has a vanishingly
small support around x =0. The x interval in Eq. (26) is

for a dilatation e ' of the length scale (r is negative). At
the one-loop level we obtain

P[p(x)] = —(6—d)p(x)+ f dx, dx2 y(x;xi, x2)p(x&)p(x2)+O(p')

with (after lengthy calculations summarized in the Appendix) the explicit expression

y(x '&xi, x2) =6(x (1+x1+x2)—x]x2)+6(2x (x) + —, )(x2+ —, )+xtx2 —
4 )+5(x (1+x&+xz)—xix2+ 4 )

+ ~(x xl x2 2 )+~(x( 1+ p ) (xlx2+Tx2+ g ))+~(x(x2+ 2 ) (xlxp+ 2 xi+

(2.28)

(2.29)

D. Numerical study of the renormalization-group
equations

Fixed "points" p*(x), which here are fixed functions of
one variable, are solutions of the nonlinear integral equa-
tion on the positive real line

(6—d)p*(x)= f dx& f dx2)'(xyxl&x2)

transform takes nonpositive values) the free energy be-
comes unbounded and negative for some field configura-
tions. Higher order terms must be taken into account for
stabilization and we conclude that, as usual, this implies a
first-order transition. For explicit calculations of first-
order transitions in similar cases in d =4—e, see Rud-
nick' and Chen et al. '

Xp*(x
~ )p*(x2) (2.30)

III. THE GENERAL MODEL
with p* of order e ( =6—d), and y given Eq. (2.29).

Stability requires that the eigenvalues of the operator

aP[p( )]
Bp(x')

= —e6(x —x')+2 f dy p*(y)y(x;x', y) (2.31)

(2.32)

should have positive real parts; this eliminates as usual the
fixed point p =0 below six dimensions.

We have solved numerically the renorrnalization-group
flow equations (2.28)—(2.29), in short-hand notation

In real type-II superconductors order-parameter fluc-
tuations are coupled to fluctuations in the magnetic field
about its average value, as in the usual Landau-Ginzburg
free energy. We shall show that near H, 2, assuming again
a possible second-order transition in order to eliminate ir-
relevant variables, this model is identical to that of the
preceding section. The argument consists of tracing out
the fluctuating part of the electromagnetic field and of ex-
amining the resulting effective free energy for the order
parameter.

Let us first recall that the total Gibbs free-energy densi-
ty consists of several pieces:

by discrete "time" increments, letting t, which is the op-
posite of the logarithm of the rescaling factor, go to —~.
We have tried several different initial conditions, includ-
ing of course the bare interaction. In all cases, after a
time which depends upon the initial conditions, the itera-
tion leads to a negative p, (x). If fluctuations are such
that p, (x) becomes negative (in fact, if its Laplace

(Vy A„,—H,„,)2,
2po

(3.1)

where p= —iV. The vector potential A„, consists of a
nonfluctuating part A, „associated with H„, and an ad-
ditional piece A. We can then split 6„,into three pieces:
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2'

(3.2a)

(3.2b)

eralized vertices considered in the previous
nonfluctuating-field model. We have, for instance,

Indeed this diagram converges when the external lines
have zero perpendicular momenta since

e—*A [/*( —iV —e*A,„,)P+c.c.] I . (3.2c)

We will trace out the fluctuating part A and calculate
G,~~

——Gp+5G as

exp —f d"x 56 = f DAexp —f d"x(61+6')

(3.3)

(with a gauge-fixing prescription). The generalization to
d dimension of a fluctuating magnetic field may be de-
fined in several ways. We can decide that (i) again the
only nonzero components of the vector potential are in the
(x-y) plane or (ii) take an arbitrary d-dimensional vector
potential. We will choose some gauge-fixing condition;
for example, in the Feynman gauge we replace 61 by

61~61+ (divA)
1

2pp

A. First d-dimensional generalization

The results will be identical for these two cases. Let us
begin with the first case,

2@061———, g (F; J ) +(divA)

with I"; =83 —BA;; i=1, . . . , d 3 =. - =2 =0.
Thus

9061 (i)1~2 ~2~1) +(Vl~ 1 )

+(v,~, )'+(a,~, +a,~, )'

and the propagators of the AI and A2 fields are obtained
by inverting this quadratic form. In Fourier space one ob-
tains two modes with propagators equal to
1Mo/(q1+q1+qq). The free energy Gz generates cou-2 2 2

plings between the electromagnetic field and the order pa-
rameter. An expansion in a power series of 62 yields
various diagrams built with the vertices of 62 and the
propagators of A1 and Az. In fact we will see below that
again the only potential massless modes are the n =0
Landau modes. But the vertex g*( iV e*A—,„,)g+—c.c.
involves a coupling between n =0 to nonzero Landau
modes which have no effect on the critical behavior.
Therefore the only remaining vertex in Gz is the A
interaction. At one-loop order this yields a mass renor-
malization, i.e., a simple change of the critical tempera-
ture, new

I @ I
interactions, and irrelevant operators. In

fact these new
I g I

interactions fall into the class of gen-

q'9 +q)'
is infrared convergent when p1 vanishes for any value of
pI and p2 in dimension greater than four, in particular
near six dimensions. The dependence in pI and p2 at pz
equal to zero, after Fourier transformation, yields an in-
teraction of the n =0 Landau mode of the form

exp —~ z —z'dx p(x)

1
with p(x) oo

except in a tiny neighborhood of size p~/&~ of x =(),
where p(x) is cut off by nonuniversal effects.

This interaction is indeed of the class considered earlier
[since the integral dx p(x)/(1+x) converges]. Conse-

0
quently we are led, after integration over the fluctuating
magnetic field, to the previous model with a generalized
interaction. The analysis of the preceding section may
then be repeated and the conclusions are unchanged.

B. Second generalization

For the second d-dimensional generalization of a fluc-
tuating magnetic field, the Hamiltonian is again given by
Eq. (3.1) but A now has d components. These d modes
in the Feynman gauge have a propagator 1/q . The in-
tegration over these modes involve the vertices of G2.
The first vertex leads to the same diagram that we just
considered with an overall factor d/2, counting the in-
crease in the number of modes. For the second factor we
must split A into A i, A2, and Az components. The ver-
tices with 2 I or A2 were present before and we have al-
ready discarded them since they necessarily involve
nonzero Landau levels. The vertex involving Az, namely,
A1[g*( iV ) I(1+—1'.c.], contains perpendicular derivative
couplings and in the zero momentum these vertices van-
ish; in other words this vertex yields an irrelevant (deriva-
tive) coupling of the zero modes. Hence again we are led
to the same conclusion.

We can thus conclude that in all cases for any ~ for
which a type-II phase exists the normal type-II supercon-
ducting transition is first order below six dimensions
(within the e expansion). It is interesting to examine the
same problem with an %-component order parameter.
One remembers that in the problem of the zero-field tran-
sition between a type-I superconductor and a normal met-
al, Halperin et a/. ' have shown that the transition, driven
also to first order by fluctuations, becomes second order if
X is greater than 365. In this problem the same numeri-
cal analysis of the renormalization-group equations in
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6—e dimensions leads for all values of X up to 10 to the
same instability, and the transition seems to remain first
order for any N.

We have attempted to solve the large-X limit at fixed
dimension to see if one could confirm our conclusions.
Unfortunately if translationally invariant solutions of the
large-X limit are simple as usual, we have not yet found
the solutions which would describe an Abrikosov lattice
of vertices, and we cannot conclude what is the order of
the transition at N equals infinity. We are convinced by

the numerical evidence that the transition should be first
order for any X near six dimensions and, unless new
physics takes place at lower dimensions, the three-
dimensional transition should also be first order.

ACKNOWLEDGMENTS

One of us (D.R.N. ) was supported by the National Sci-
ence Foundation (NSF) through Grant No. DMR-82-
07431.

APPENDIX

Diagrams up to one loop. For the propagator, we have

P p'zz*'/2( 2 + )
—)

q z 277

For the vertex,

I

) )zz( z
I

2+ Iz' 2)/2 X
(x) —&)z /4x) Iz —z'I

Z* 1* 2 0Z x

When the support of p is vanishingly small, this vertex reduces to

, e " ' 5(z —z')li(z* —z'*) f dx p(x)
p 0

and one recovers the initial Landau-Ginzburg Hamiltonian. For the tree diagram,

pll ~Z &

P31~Z3

Z2 ~P2l

Z4~P4l

p'
'

exp[ 4 p, (z) +z2 )(z3+Z4)]5(p) +p2 —p3 —p4)

dx 1 2 x
X p(x) exp —p (z

&

—z2 )(z3 z4)1+x 4 1+x

One-loop diagrams. An arbitrary one-loop diagram may be written under the form

2

p
2K

exp[ —4p (z) +z2 )(z3+z4)] exp —
)f4 (z) —z2 )(z3 z4)

dx 1 2 x
1+x 4 1+x

oo dd —2 1
&& f y(x;u, u)p(u)p(U)du dU

0 (2')" [(p+q) +r](q2+r)

in which p is an external (d —2)-dimensional momentum.
In the vicinity of six dimensions the integral is propor-

tional to 1/e since

f dd —2

, (q'+r) '[(p+q)'+r] '= ++r,„;„,(2~)" E'

23 —d (2—d) /2
7T

I ((d —2) —,
'

)

where F~„;„represents the finite part of the integral. The
factor Kd 2, which may be included as usual in the cou-
pling constant

PKd 2~P,
has been omitted.

We may thus write the total interaction (i.e., the bare
coupling constant)
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p~ ——p(x)+&p(x)

with

bp(x) =—I y(x, u, v)p(u)p(v)du dv .
1

A diagram with n vertices of the four-point function
involves a Gaussian integral over 2n complex variables, at

one loop n =2, and we have used the result

I d"gd "g*e & (g*;MJJJ —a; g; —g;*b; )
r

n

2 (detM) 'exp[@ (a,*M~~ 'b/)] .
p

One-loop diagrams. We have

Z1=
I

I

Z2

(A)

Z4

2u +1
4u

1

4u

0

0

1

4u

2u +1
4u

0

1

2

0

2v+1
4v

0

1

2

0

2v +1
4v

detM~ —— , a; = —,(zl, z2, 0,0), b; =
2 (0,0,z3 z4) .

(1+u)(1+ v)

16uv

Hence

yz(x, u, v) =(1+u +v) '5(x uv/(1+—u +v)) .

We have

Z3
(B)

Z4
I

I

I'=Z2

2u +1
4u

1

4u

0

0

1

4u

2u+1
4u

0

0

2v +1
4v

1

4v

0

0

1

4v

2v +1
4v

1
detM~ —— (4uv +4u +4v +3),

64uv

a,
*= —,(z I,O, O, zp ),

b; = —,(O,z3,z4, 0),

3'a = 2 6(x —(1—4uv)/2(1+2u)(1+2v)) + 5(x —(4uv —1)/4(u +v+1)) .1

(1+2u)(1+2v) 1+u +v

We have

Z3
(C)

Z2 Mc=

2u +1
4u

1

4u

0

0

1

4u

2u+1
4u

1

2

0

0

2v+1
4v

1

4v

0

.0

1

4v

2v + 1

4v
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detMc = 2u +2v+3 g ] g g ]a; =T(z|;0,0,zz ), b; = —,(zs, O, O,z4),
64uv

yc ——25(x —(u+U+ —, )) .

We have

Z2 )jc )fc

Z] ZQ

2u +1
4u

1

. 4u

2u +1
4u

0

0

0

Z3

(D)

+ MD ——
Z3 Z4

Z4 0 1

2

0

2U+1
4v

1

4U

1

4v

2v+1
4V

4uU +2u +4U +3
detMD —— a*=T(zi, O,zz, O), 5 =-, (zp, O, O,z4),

64uv

yn = 5(x —(2uu+u + —,)/(2U+ 1))+ 5(x —(2uu+U + —, )/(2u +1)) .
1+2U 1+2u

This completes the derivation of Eq. (2.29).
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