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Group theory is used to classify p-wave superconducting states in a cubic crystal with spin-orbit
coupling. All possible stable states are obtained based on the most general form of the Ginzburg-
Landau free energy. Within the weak-coupling theory all stable states have real order parameters.
These real states are even under time-reversal symmetry. However, in general, states with complex
order parameters are also possible. In these complex states time-reversal symmetry is broken. This
broken symmetry may show up through the existence of a Josephson current between a complex p-
wave state and a usual s-wave superconductor. The form of the pairing in a magnetic field is also
discussed.

I. INTRODUCTION

Since the discovery of superconductivity in heavy-
electron systems such as CeCu2Si2, ' UBe&3, and UPt3,
there has been strong interest in the nature of their super-
conducting states. In particular an analysis of the specific
heat of UBe&3 below T, led Ott and co-workers to identi-
fy it as the first metal with a p-wave superconducting
state. The analogy to He was stressed by Anderson and
independently in Ref. 4. Stimulated by this analogy, the
present authors and Rice et al. have developed a general-
ization to finite temperatures of the Brinkman-Rice
theory of almost-localized electron systems and obtained a
good description of the entropy (specific heat) in the nor-
mal state of UBet3. By applying the theory of almost-
localized electron systems to the heavy-electron systems,
Valls and Tesanovic have obtained reasonable values for
their transition temperatures. Others ' however have
argued in favor of a conventional s-wave pairing due to
the electron-phonon interaction although these are clearly
different to conventional metals in that the Coulomb in-
teraction is not reduced due to the mismatch .of energy
scales and general considerations favor strong interactions
between the quasiparticles due to spin Auctuations. In
this work we do not however discuss the possible origin of
p-wave pairing but instead concentrate on exploring the
consequence of such pairing.

Although the analogy to He has played a vital role in
the understanding of the anomalous properties of the
heavy-electron superconductors, there are also new aspects
peculiar to the latter. First of all, these superconductors
are crystals not liquids. In this paper we consider only
cubic symmetry with an inversion center ( Ot, group), ap-
propriate to UBe&3. Spin-orbit coupling is another irnpor-
tant difference which has to be included especially because
of the V ions.

The complexity of the order parameter in p-wave super-
conductivity allows various phases as equilibrium

states. ' ' In Ref. 4 an Anderson-Brinkman-Morel state
was proposed for UBe~3. A polar state has been proposed
for UPt3. ' '" Recent measurement' of the relaxation
rate T

&
', of Be nuclei in UBe&3 were interpreted as

favoring a polar state in this material also. But a defini-
tive classification of the p-wave state requires an analysis
of the symmetry classifications in the presence of cubic
symmetry and spin-orbit coupling.

A classification of the most symmetric superconducting
phases has been given by Volovik and Gor'kov' based on
the examination of allowed subgroups of the symmetry
group of the normal phases. A different approach was
taken by Anderson who examined the possible sym-
metries of the pairing order parameter near the transition
temperature. There are some significant differences be-
tween their results as we will discuss below. In this paper
we extend Anderson's approach by considering the form
of the quartic terms in the Ginzburg-Landau (GL) expan-
sion of the free energy. This restricts the forms the order
parameter can take and we discuss these forms in detail.
In agreement with previous authors, we find that a line of
zeros of the order parameter is not allowed.

We also consider the influence of the spin-splitting
terms introduced by a magnetic field. In particular we
show that if the highest value of T, belongs to a three-
dimensional representation, there is a linear splitting.

II. SYMMETRY PROPERTIES

A. One-particle eigenstates

In the presence of spin-orbit coupling, the only symme-
try operations are time reversal ( T= io&K) and pro—per
(R) and improper rotations (PR) which form a point
group of the crystal. A natural basis functions for states
near the Fermi surface can be set up in the following
way. ' First we divide the Brillouin zone into N parts (N
is the number of elements of the point group). By choos-
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ing one of the N parts, the star of the point k& is ex-
pressed by k=gk& where g is an element of the point
group ( g =R or PR ) and k

&
belongs to the first 1/N part

of the -Brillouin zone.
The one-particle eigenstate at k

&
is a spinor state,

yk,.=v '".-' '"[U,
,
(.)

~

1 )+V, ,
(.)

~

t)].
The inversion and time reversal generate two states

Thy, y (k)=
&pp( —k), —b,p ( —k)

—b.*p( —k), 6* ( —k)

Finally a rotation R is represented by

Rby y (k) g [D (R)]
Xf Y2

)& [D" '(R)], b. . . (Rk)
32Y2 XJ Y2

(10)

'(t' —k&a Pfk&a ~

0—k)P T4'k)a ~

(2)

(3)

which belong to point —k& and are mutually orthogonal.
Successive operation of P and T generates a state,

4'k) p PT'(t'k)a ~ (4)

B. Symmetry properties of the gap function

In terms of the pseudospin (a,P), the gap function is
defined by

b, ~(k), h~p(k)

hp (k), App(k)

X Vr2r&, r3r4(k k ( k r3 ky4'~—
k', y'3y4

where Vy y.y,y (k, k') is a matrix element of the pairing

interaction

~a~~~= X Vr~r~r3r4(k, k')a, +ky, akr ak r a k r, .
k, k'

~1~2~3~4

There are several symmetry relations. First, from the an-
ticommutation of fermions we have

b,y y (k) = —b,y„,( —k) .

The inversion symmetry is expressed by

Phy y (k)=b,y, y, ( —k),

and the time reversal symmetry by

(9)

which is orthogonal to the original one. Thus we obtain
doubly degenerate states at k& and —k&. The Cooper
pairing takes place among these four states. To avoid am-
biguity we define pk as a state which is generated from a

&a

pure spin-up state by adiabatically switching on the spin-
orbit coupling.

At a point k belonging to the star of k
&

in a different
segment of the Brillouin zone, there is a rotation R which
connects k with either a point k ~ through k =Rk

&
or a

point —k& through k = —Rk&. Then we can define pk
and Pkp by

ORCk, y=y [D""'«)]yy0ky ()' )"=«r &»
y'

where Oz is the total rotation operator and D" '(R) is
the rotation matrix for spin —,'. In the case of k = —Rk ~,

Pk y should be replaced by P

From Eqs. (8) and (9), the gap function is symmetric
[br y (k)=hr y (k)] for the odd-parity state and con-

veniently expressed by the vector notation

Ay y (k)=id(k) (rye)y, y, , (12)

where ~, ~~, ~, are the Pauli matrices in the pseudospin
space (a,P). Now the rotation property of Eq. (11) is
rewritten as

Rdi(k) =g [D"'(R )]m~d~ (Rk) (l, m =x,y,z), (13)

where D"'(R) is the rotation matrix for spin l.

III. GL FREE ENERGY AND STABLE STATES

A. Irreducible representations and T,

The transition temperature to superconductivity is
determined by the largest eigenvalue of the homogeneous
integral equation,

—g N(0)( Vy y
.y y (k, k')hy y (k'))k =coby y (k),

3 3/4

(14)

where N(0) is the density of states at the Fermi energy
and the symbol ( )k denotes the average over the Fermi
surface. Without spin-orbit coupling, the eigenvalue
problem is independent of the spin indices and the spatial
( k) part of the gap function is classified according to the
irreducible representations of the cubic group. Our basic
assumptions in this paper are: (1) The biggest eigenvalue
belongs to the T] representation with eigenfunctions
[g„(k),gz(k), g, (k) I which transform like a vector and (2)
the biggest positive eigenvalue is well separated from the
others. The first assumption means that the supercon-
ducting state we are considering is nothing but the p-wave
one. We use the normalization g&(p~(k)g~(k))k =1 and
in the simplest case of a spherical Fermi surface,
QI(k) =k( =k(/kF.

Because of the second assumption, the effect of the
spin-orbit coupling can be studied by using the eigenfunc-
tions g~(k)

d(k)=gdP If (k) .
l, m

(15)

from the definition of the pseudospin, Eq. (5)
In this paper we are interested in an odd-parity state

(the p-wave state is the simplest one),

Pby r (k) = —by y (k) .
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E.

T2:

d(A1) = (xti» +ytt»»+zttj, ),
d(E; u ) = —( 2z1t», —xlij —y1tt» ),

6

d(E;u) = —(xP —ytt» ),v'2

d(T1,x) = (yg, —zg»),Z»
d(Tt, y) = (zP —xg, ),

2

d(T1',z) = (xP» —yttj ),
2

d(T2', g)= (yg, +zp»),

d( T2; g ) = (z1t» +xg, ),V'2

d(T2lg)= (xQ»+yQ ) .
2

(16)

This classification and the eigenfunctions are in complete
agreement with Anderson's results.

In general we can expect that a different irreducible
representation has a different eigenvalue co by which the
transition temperature is determined through

T, = 1.14@,exp( —1/co),

where e, is a cutoff energy. In the nine-dimensional space
of T& X T] the pairing interaction can be rewritten by us-
ing effective spin- and. orbital-momentum operators. Ex-
plicit expressions for the eigenvalues in terms of the effec-
tive pairing interaction are given in the Appendix.

B. GL free energy

With the eigenfunctions shown by Eqs. (16), the gap
function can be expanded as

d(k) =g A(l;y)d(I;y), (17)

where I specifies the irreducible representations and y
specifies its eigenfunctions (e.g. , y=u, u for I =E). The
free energy is a function of A,(I;y). Near T, (GL region)
the free energy is expandable in terms of A,(I;y). Because
a different irreducible representation has a different T„
we may use one relevant irreducible representation which
gives the highest (i.e., the actual) T, .

Although it is straightforward to apply group theory to
the GL free energy, it is more convenient to use the
weak-coupling theory. In the weak-coupling theory, the
GL free energy is given by' '

F= —,'%(0)[—a (Trb, +(k)b(k) &k

+b (Trh+(k)b, (k)h+(k)b, (k) &k], (18)

with a =(T, —T)/T, and B=—
16 (13, /vr) g(3). The

From the rotation property of Eq. (13) it is easily seen
that (x,y, z) are also basis functions of the T1 representa-
tion. Therefore the gap function belongs to a product rep-
resentation Tj X T&. This product representation is
decomposed as

T) X T] =3]+E+Tj + T2 .

Eigenfunctions for each representation are easily obtained
with the aid of Clebsch-Gordan coefficients:

TABLE I. Fourth-order invariants in the GL free energy.
A, =(X,A~, A,, ) for TI and (A,~, A,„,A.g) for T2. In the third
column, coefficients given by the weak-coupling theory are
shown. For an isotropic system ( f„)= ~

and ( P„g» ) = —,
~

.

E (
I
~. I'+ I). I')'

(A.*„A,,—A, *„A,„)
Ti (A. *.

A, )

(A, *-A, )(A, -A, )

X I

) - I

'
I ~» I

'

T2 (A, *.
A, )

(A,
*

A, *)(k A, )

second-order term is trivially given by

(Trh+(k')A(k) &„=—,
' g ~

A,(I:y)
~

' . (19)
r

The fourth-order terms are snown in Table I. Based on
the group theory we can prove that the tabulated fourth-
order terms exhaust all fourth-order invariants. When we
go beyond. the weak-coupling theory the coefficients of
these invariants (g; ) are independent parameters.

A, =(A,„,A», k,, ) . (20)

If we define A, =A, &+ik,2 with real vectors A,
~

and A,2, the
second fourth-order invariant is rewritten as

[(~1 ~1) (~2 ~2)l +4(~1 ~2)

(a) 212~0. A real solution (A,2
——0) minimizes the second

term. The third invariant gives an anisotropy energy for
(a. l) g3&0. A, points along one of crystallographic

axis, e.g. , A, =A(1,0,0). (a.2) F3&0. A, points along one of
threefold axes, e.g. , A, =(1/V3)A(1, 1, 1). (b) 2)2) 0. A

C. Stable states

One remark is in order before discussing equilibrium
states for each representation. For any representation, q&
in Table I should be positive to have a second-order phase
transition. Of course, g] given by the weak-coupling
theory satisfies this condition and q & ~ 0 is assumed in the
following discussions.

In this one-dimensional representation, the stable
state is trivial and given by the eigenfunction of Eq. (16)
itself.

E: (a) g2 &0, (k„,k„) should be real except for a com-
mon phase factor, (A,„,A,, ) =A, (cosg, sing). The continuous
degree of freedom of 0 remains in the fourth order of the
GL free energy. In the sixth order there are two in-
variants for the real solution, (A,„+A,, ) and
(A,„—A,, )[ 4 (A,„+A.„) —4A,„A,, ]. The second invariant
lifts the continuous degeneracy. If its coefficient is posi-
tive, a state of d(E, u) type is stabilized. Equivalent
domains are obtained by putting 0=0, + —,~. For a nega-
tive coefficient, the equilibrium states are of d(E, u) type
(g=, ~, + , vr) (b) g2 &—0.. A complex solution, e.g. ,

(k„,A,„)=X/V2( l, i), gives a stable state.
T&. It is convenient to use a vector notation,
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TABLE II. Stable states of the p-wave superconductor in cubic metals. In the last column the sym-
metry axes whose intersections with the Fermi surface give zeros of the gap are shown. In the case of
gz & 0 for E representation a stable state is determined by the sixth-order term. ( C],C2, C3 )

=[1/v 2+i(1/V6), —1/v 2+i(1/V 6), —i[(2/3)'/~].

Ai {x1(i„+ycoy +z1(i, )
3

none

g2 &0

g2&0
1

'gz & 4 'g3

2

( 2z1(, —x1(i„y—tt/» )
6

(~zy +e (2/—3)ni ~q +e(2/3)ni~q )'
3

[0,0, 1]

none

[+1,+1,+1]

g2 &0

g3 &0

2

[x(4, 4.)+y—(0, 0„)+z—(q„qy )]—
6

[1,0,0]

g2&0
z [x(C21(,—C3$y)+y(C3$„—Cip, )+z(City —Cz1(i„)] [1,1,1]

]
'g2& 4'g3

g3) 0 ,' [x(y—,+ii)/, ) (y+—iz)q„] [1,0,0]

T2

1
'92& 4'g3

~ ) ()
—(y4.+z0y )

7/3 ) [1,0,0,]

q2 &0

F3&0 [x(g, +P, )+y(g, +it/„)+z(1(„+1(,)]
6

none

g2&0

q3 &0
1

'g2& 4'g3

2 [x(Cqg, + C31(iy )+y(C, Q„+Cia/, )+z(City+ Cps/„)] [1,1,1]

g3) 0 2 [x(gy if, )+(y —i—z) P ] [1,0,0]

complex solution which satisfies (A, ~
A, i) =(A.2 A2) and

(1(,
&

A2)=0 minimizes the second term. The third term
gives an anisotropy energy for an angular momentum vec-

tor 1=(A,~ A2)/(1(, &
A, &). (b. l) g3 &0. I points along one of

threefold axes, e.g.,

1 . 1 1 . 1 .(p))/2
v2 v2 v6' v2 v6 '

(b.2) g3&0. 1 points along one of crystallographic axes,
e.g.,

A(0, 1,i) .1

2

For the states (a. l) and (b.2), the g2 term and the g3 term
compete to give a boundary between them at.g2 ——

4 g3.
T2. Now we define

(21)

coupling theory. In some of the stable states the gap van-
ishes at points of intersections of symmetry lines with the
Fermi surface. These symmetry lines are also shown in
Table II. There are no states which have lines of zeros on
the Fermi surface. For E, T&, and T2 representations, the
equilibrium superconducting phases have equivalent
domains. For example, in the case of (b), for the E repre-
sentation there are two domains corresponding to
(A.„,A.„)= (1/v 2)A(1, +i).

Now we compare the present results with the phases ob-
tained by Volovik and Gor'kov. ' Their 0&R, S =1 and
0 (D2 ), S = 1 are nothing but our A

&
and case (b) of E.

The phases of (b.2) of T& and T2 correspond to their
D4(E), S = 1, with special choice of f&

—— f2 and-
f, =f2, respectively [see Table of Ref. 20)j. If there is a
splitting between the T~ and Tq representations [see Eq.
(A4)], f~ and f2 cannot be arbitrary cubic functions, but
there is a definite relation between the two.

Then we can repeat exactly the same arguments as for the
T& representation.

All stable states thus obtained are shown in Table II.
Weak-coupling theory gives F2 &0 for any representation.
Therefore a real solution is expected within the weak-

IV. PAIRING IN A MAGNETIC FIELD (REF. 23)

In the problem of pairing in a magnetic field, there are
two aspects. One is a diamagnetic effect due to orbital
motion of electrons and the other is a paramagnetic ef-
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l, m, n

Elmn ~l ~m Hn (22)

where e~ „ is the permutation symbol.
In the presence of the magnetic field, the eigenvalue or

T, further splits into

ip=a, a+
/

h
/

(23)

with a =(T, —T)/T, and h=gH, where g is the coeffi-

feet due to electron spins. In this section we will discuss
the latter effect. Near H, 2, which is mainly determined
by the former effect, spatial variation of the magnetic
field is very slow and can be neglected.

We will concentrate on a linear effect of the magnetic
field H, since a quadratic effect may be very small. To
the leading (second) order of the GL free energy, the selec-

tion rule for existence of the linear effect is very simple.
Let us assume the order parameter near T, belongs to one
of the representations, Eqs. (16), I say. Since the uniform
magnetic field behaves as a T] representation, it is neces-

sary to have a T& representation in the product represen-
tation ( I X I ). From product-decomposition rules for
the cubic group, we conclude that a linear effect exists

only for the T] and T2 representations. Again it is con-
venient to use the vector notation A, , Eq. (20) for T& and

Eq. (21) for T2. The invariant, linear in H and quadratic
ln A, , 1s

cient of the invariant (22) in the GL free energy. We de-

fine a triad of unit vectors (nln2, h) with h=h/
~

h
~

and

n) ~+2——h. Then the eigenvectors are given by

(n& —in2) (ip=a —
i

h
i
),

2
(24)

Ap ——h (co=a) .

The eigenvector for the maximum eigenvalue is complex.
In a magnetic field, time-reversal symmetry is broken. So
it is natural to have a complex state as an equilibrium
state. The linear change of the eigenvalue results in an
enhancement of H, 2 from the value determined by the or-
bital effect. In this context it is worth mentioning that
the H, 2 of UBe&3 is anomalously large

For He, it is well known that in a magnetic field there
is a second continuous phase transition below T„A tran-
sition. In solids, anisotropy plays a crucial role. We ex-
pand the order parameter A, in terms of the eigenfunc-
tions.

A, =++A, ++uoko+a (25)

Below T„a+ has a finite value and we can assume real
a+ without loss of generality. The cubic anisotropy pro-
duces linear coupling for A,o and A. components,

a+ Re(a )[(cos /+sin g)(1 —cos O) —sin O]+Im(a ) —,sin4ll'l sin OcosO

+ Re(ap) sin4til sin O+1m(ap) sin2O(sin g —sin O+cos Osin g ~,
2 2 2 (26)

with h=(sinO sinltl, sinOcosltl, cosO). It is easily seen that
the linear-coupling term vanishes when and only when the
magnetic field is along a high-symmetry line ([1,0,0],
[1,1,1] etc.). Thus, although T, for Tl or T2 representa-
tion splits further due to the magnetic field, the lower
transition is smeared out by the linear coupling except for
the special orientation of the magnetic field. On the other
hand, the A transition in He is always possible, since
there is no anisotropy energy in a liquid.

V. CONCLUSIONS

We have studied p-wave superconductivity in cubic
metals taking also spin-orbit coupling into account. In
the second order of the GL free energy, an important
consequence is the splitting of T, according to A ~, E, T],
and T2 irreducible representations as already pointed out
by Anderson, Volovik, and Gor'kov. By considering
higher-order terms, all possible stable states are enumerat-
ed. Some of the stable states have points where the gap
vanishes but there is never a line of zeros.

In the weak-coupling theory; all stable states have real
order parameters except for a trivial phase factor. But, in
general, states with complex order parameters are possible
for the E, T~, and T2 representations. In these complex

states, time-reversal symmetry is broken. This fact may
be important when we consider Josephson-junction experi-
ments between s- and p-wave superconductors. Since in-

version symmetry is broken in an experimental geometry,
we can expect parity-breaking matrix elements for tunnel-

ing. A usual s-wave superconducting state is odd under
time-reversal symmetry. Since a real p-wave state is even
under time-reversal symmetry, there is no Josephson
current in this ease. On the other hand for a complex p-
wave state there can be a Josephson current. Note that
without spin-orbit coupling the Josephson current van-

ishes simply because of rotational symmetry in spin space;
there is no mixing between a singlet order parameter and a
triplet one.

We can expect a qualitatively different temperature
dependence of H, z according to the symmetry of the su-
perconducting state. If a state belonging to the T& or T2
representation is stable at H =0, then the linear term Eq.
(23) will counteract the usual diamagnetic contribution to
dH, 2(T)/dT and may lead to anomalously large value of
dH, 2/dT. On the other hand, if the stable state at H =0
belongs to the E or A~ representation, there is no linear
effect for a weak field. Only at the field strength at
which the change of the eigenvalue, Eq. (23), is compar-
able with the difference of eigenvalues at H =0, Eq. (A4),
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can we expect a significant paramagnetic effect through
mixing of T~ or Tz components. In such a case H, 2(T)
may have an upward turn. In the case of UBe&3 such an
anomaly has not been reported to our knowledge but the
very large value of dH, 2(T)ldT [=—440 kOe/K (Ref.
25)] favors a T& or T2 representation. A definitive test
would be the observation of the two transitions with H
oriented along a symmetry axis as discussed in the preced-
ing section or the orientational diamagnetic shift predict-
ed by Gor'kov.

Note added in proof We .have recently received a more
detailed-manuscript from the author of Ref. (19), G. E.
Volovik and L. P. Gor'kov (unpublished).
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APPENDIX

Within the subspace of Tj &(T&, where x,y, z, and

g,g~, ttj, are the basis functions for the spin and the orbi-

tal part, respectively, we can introduce spin operators SI
by

Slm E~lmnn ~

and angular momentum operators L~ by

(LI(k, k')p (k'))k =iet,„„g„(k).

(A 1)

(A2)

In the presence of spin-orbit coupling the pairing in-
teraction of Eq. (7) can be parametrized by these operators
as

V= Vo+ V) S.L+ V2(S.L) + V3 g S„l.„.
x,y, z

(A3)

The eigenvalues for the irreducible representations are:

Vp —2V)+4V2+2V3,

E: V, +V, +V, +2V, ,

Vp —V&+ V, + V, ,

T2. Vp+ V) + V2+ V3 .

(A4)

In He, a dipole-dipole interaction is the origin of the cou-
pling between the spin and the orbital degrees of freedom.
In such a case, V~ ——V3 ——0 and T& and Tz representations
are degenerate and the Anderson-Brinkman-Morel state
can remain as a stable state.
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