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A general critical-state model including the effects of both flux-line cutting and flux pinning is
used for calculating B-, J-, and E-field distributions during the approach to the quasisteady state of
a type-II superconducting slab subjected to a parallel rotating magnetic field. Three initial magnetic
configurations (diamagnetic, paramagnetic, and nonmagnetic) are considered. It is shown that, de-

pending upon sample parameters and magnetic history, multiple-zone structures develop inside the
superconductor. It is also shown that, regardless of the specimens magnetic history, flux-line-

cutting B consumption leads to a final state in which B has a diamagnetic profile near the surface of
the specimen. The relation of these calculations to the pioneering experiments of LeBlanc and co-
workers is discussed.

I. INTRODUCTION

In a previous paper, ' we stated that in order to explain
the experimental results in type-II superconductors
subjected to parallel magnetic fields that slowly rotate rel-
ative to the specimen, one must include flux-line-cutting
effects in the theory of the static and dynamic magnetic
behavior of these materials. In that paper we presented a
general critical-state model using the theory of flux-line-
cutting losses of Ref. 5 and used it in calculating the
behavior of a type-II superconducting slab subjected to a
rotating or oscillating applied magnetic field parallel to
the fiat surfaces.

Several surprising effects were observed in the experi-
ments performed by LeBlanc and co-workers. At the
beginning of rotation, the magnitude of the magnetic flux
density inside the sample decreased as if vortices were ex-
pelled against the Lorentz force, and diamagnetic profiles
developed near the surfaces of the specimen. With further
rotation, the fronts of these diamagnetic profiles penetrat-
ed deeper into the sample until either they reached the
middle of the sample or B was first brought to zero. In
the latter case, the sample was divided into two types of
regions: an inner, trapped-flux region where the vortices
remained fixed relative to the specimen and no dissipation
occurred, and outer, active regions adjoining the surfaces
where the vortices moved relative to the sample and dissi-
pation occurred. In the former case, the active regions in-
cluded the entire specimen. These experiments were done
beginning with four different initial magnetic configura-
tions, nonmagnetic, diamagnetic, paramagnetic, and hy-
brid, which depended on the previous magnetic history of
the sample.

In this paper we discuss the time evolution of the
currents and the magnetic and electric fields, starting
from three of the four initial magnetic states mentioned
above and developing into the quasisteady state. As as-
serted before, regardless of the initial distribution B(x,0),
the magnitude of the flux density B(x,t) near the surface
(x =0) evolves with time towards a quasisteady-state di-
amagnetic profile, B(x)=Bo(l—xlxo), in a dissipative

region of thickness x~ ——min(xo, x ). Here xo is the dis-
tance from the surface at which B is or would be reduced
from Bo to zero, and x~ is the middle of the sample.
This effect is a consequence of Faraday's law written in
the form

BB ~Jax+
8

= PPIIEIIIB-,Bt Bx

which describes how flux-line cutting consumes B Here.
Z~~=E, =BU, and J~~, J„E~~, and E, are the parallel
and perpendicular components, with respect to the local 8
field, of the current J and the electric field E, respective-
ly.

In this paper we use the same notation as in Ref. 1 for
referring to different zones. In a T zone, only flux trans-
port occurs (Ez&0, E~~ ——0); in a C zone, only flux cutting
occurs (E~~&0, Ez ——0); in a CT zone, both flux cutting
and transport occur (E~~&0, E~&0); and in an 0 zone,

'

neither flux cutting nor flux transport occurs (E~~ ——0,
E~ =0). We also use subscripts + and —to denote the
signs of the corresponding electric fields; i.e., a C T+
zone is a zone in which flux-line cutting occurs with

E~~ & 0 and Aux transport occurs with E& )0.
In Sec. II we write down the basic equations of the gen-

eral critical-state model. In the remainder of the paper we
examine each of the initial configurations: Sec. III, di-
amagnetic initial state; Sec. IV, paramagnetic initial state;
and Sec. V, nonmagnetic initial state. We show that, de-
pending upon several specimen-dependent parameters,
multiple-zone regimes can develop. We also show that,
independent of magnetic history, flux-line-cutting 8 con-
sumption leads to a final state in which either B has a di-
amagnetic profile or there are diamagnetic shoulders close
to the sample surfaces and a frozen-in core of vortices in
the rniddle of the sample. Finally, in Sec. VI we summa-
rize our results, compare them to those of the empirical
model of Refs. 2—4, and discuss possible extensions of the
present theory.
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II. BASIC EQUATIONS

We consider, as in Ref. 1, a high-v irreversible type-II
superconducting infinite slab with surfaces at x =0 and
x =X=2xm, to which we apply an external magnetic in-
duction B,(t)=ppH, (t)=Bpa, (t) of fixed magnitude Bp
but changing direction,

a
X cII '

where xp=BplppX t=const.
=J,~)(Bp)/J, t and p=k, "x

We define X=k

III. DIAMAGNETIC INITIAL STATE

(13)

a, =ysina, +zcosa, . (2)

For simplicity we assume B=poH inside the sample,
andwewrite B=Ba where 8= lBl and

a=ysino;+zcosa . (3)

BBa E Ba
Qx Bt Bx

aB aa
Zx at II ax

(8)

We also assume that the boundary conditions at x =0 and
x =X are 8 =Bp and a=a, . Then from Ampere's and
Faraday's laws we obtain J=Julia+ J.p, where

p=a &&x=y cosa —z sina, (4)

Bo.'

Bx

) 88
Jx = —po Bx

and E=E~~a+Et p, where

We begin a more detailed discussion of the behavior in
a rotating applied field by considering first the simplest
case, the time evolution from a diamagnetic initial state.
At t =0, the flux-density distribution in the superconduc-
tor is given by B(x,O)=zBp(l —x/xp) for x&xp and
B(x,O) =0 for x &xp. Here Bp is the magnitude of the
applied magnetic field and xp ——Bp/pg, z is the distance
from the surface at which 8 is reduced from Bp to zero.

As a, (t) slowly increases from zero, the distribution of
B predicted by Eqs. (1)—(13) initially develops the two-
zone structure shown in Fig. 1: a C T+ zone
[0&x &x,(t)] in which both flux-line cutting and trans-
port occur, and an 0 zone (x, &x &x ) in which neither
flux-line cutting nor flux transport occurs.

In the region C T+, where x, (t) =a, (t)/k, ~), the vor-
tex structure is at both the flux-line-cutting and the depin-
ning thresholds, such that a(x, t) =a, (t)—k, ~~x, J~~(x, t)
= —k, )~B(x,t)/pp, and Jt =J,t. The solutions of Eqs. (7)
and (8), subject to E~~(x„t)=Et(x„t)=0 are

() x&e
Combining Eqs. (5) and (8), we obtain Eq. (1).

Because the same external field is applied to both sur-
faces, 8 has the symmetry B(x,t)=B(X x, t). Henc—e-
forth we shall examine only the half-thickness
0&x&x =X/2.

As stated in Ref. 1, metastable stationary distributions
of 8 (Et ——0) and a (E)) ——0) are such that

l
J,

l
&J„(8)

(10)

respectively, where J,t (J,~~)
is a function describing the

transverse (longitudinal) critical current density at the
threshold for depinning (onset of flux-line cutting) in the
vortex array. Using Eq. (5), we can rewrite Eq. (10) as

(') x&e

Xc Xo

I

I

I

I

I

, ))/8, I

l

I

l

I

"m

where k, ~~(8)=pg, ~~(8)/8 Flux red. istribution occurs
when

l Jt l (l J)~ l) exceeds J,z (J,~~), tn which case
E~&0 (E~~&0).

For simplicity we take J,& and k, II
to be constants in-

dependent of 8 In our ca.lculations, the critical profiles
of Band a then obey Xc

I

I

I

I

Xm

BB
Bx

=+Bp/xp (12)
FICs. 1. Two-zone structure [C T+-0] evolving from the

diamagnetic initial state. (a) X=kgllxo (p kgllxtrty (b) X)p.
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Eii(x, t)=—coBp

coBp
Ei(x, t) =

k,
II

xp
sin[k, ~~(x, —x)]

(14)

xp xp
cos[k, ~~(x, —x)]

1+—[1—cos[k, ~~(x, —x)] I

behavior is given by Eqs. (I.21)—(I.23), which describe re-
gion B of Fig. (I.l).

For values of a, and 7 outside the above ranges, this
theory predicts time-dependent instabilities similar to flux
jumps. The resulting behavior can be described in terms
of moving C and CT zones, which move so fast that eddy
currents and the possibility of thermal runaway must be
taken into account. Space does not permit a discussion of
such behavior in this paper.

1——sin[k, ~~(x, —x)] (15)

As e, increases, the altered-B region grows, and we ob-
tain the sequence of profiles of B(x,t) and a(x, t) sketched
in Fig. 2. The electric fields of Eqs. (14) and (15) satisfy
the conditions E~~(x, t) &0 and Ez(x, t) &0 throughout the
region 0&x &x,(t) only for limited values of a, and X.
The range of validity corresponds to regions 3 and B of
Fig. (I.l), but with p replaced by a, =k, ~~x, in Eq. (I.17).
If a, and X are within these ranges, a quasisteady-state
distribution of B is achieved when either x, =x p

(a, =7=k, ~~xo) for xo &x [Figs. 1(a) and 2(a)] or when

x, =x (a, =p=k, ~~x ) for xo&x [Figs. 1(b) and2(b)].
In the former case, the behavior after reaching the
quasisteady state is given by Eqs. (I.18)—(I.20), which
describe region A of Fig. (I.l); in the latter case, the

IV. PARAMAGNETIC INITIAL STATE

For a paramagnetic initial state we have the following
conditions at t =0: B(x,O) =Bo(1+x/xo), as shown by
the uppermost dashed line in Fig. 3, and a(x, O) =0.

{o)X& F

()x&e

xo

I

I

I

I

I

l

I

I

I

I

I

I

I

I
I.

Xm

By

Bo
I

I

I

I

CT+I
I

I

I

I

Xy

{b)X &e

xo xc

I

I

I

I

I

Xm

(b) Xyp.
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I
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FIG. 2. Time evolution of B(x,t) and n(x, t) starting from
the diamagnetic initial state. (a) g &p, (b) X &p.

F1G. 3. Three-zone structure [C T+IC T —T ] evolving
from the paramagnetic initial state for x, &x . (a) g &p. here,
+=1,p=k, IIx =2, and n, =k, IIx, =1.5; (b) g) p: here, +=1,
p=0. 5, and cx, =0.406.



31 RESPONSE OF TYPE-II SUPERCONDUCTORS SUBJECTED. . . 7051

As a, (t) increases from zero, Eqs. (1)—(13) predict ini-
tially the three-zone structure sketched in Fig. 3: a
C T+ zone ih which flux-line cutting and flux transport
to the right occur, a C T zone in which flux-line cut-
ting and flux transport to the left occur, and a T zone in
which only flux transport to the left occurs. The vortices

I

in the entire specimen are at the depinning threshold, and
they are at the onset of flux-line cutting in the region
0&x &x, . The solutions of Eqs. (7) and (8), subject to the
conditions E~~(x, )=0, E1(x )=0, and E1(x,)=0, are as
follows.

Region C T+ [0&x &x„(t)]:

Eii(x, t) =—COBp

xp

1
»n[k, ~~(xp

—x)]+—[1—(E ~[+1)cos[k,[~(x.—x)]] (16)

678p
E, (x, t) =

cll xp xp
cos[k, ~~(x, —x)]— (E ~~+—1)sin[k, ~~(x, —x)] (17)

xu xc xm
1 —2 + +

xo xp xp

Region C T [x„(t)&x &x,(t)]:

coBo
Eii(x, t) =-

k, ll

x, dO, 1 dO,
x x ]——1 —2 [1—cos[k, (((x, —x)]]

xo dms dGs

(18)

~&o
E1(x,t) =

kcll xpxp

x, x 1 dO„
1 —2 + +—1 —2

dms
sin[ k~

i
i(xq —x ) ]

1 —2 + +2
xp xp

Region T [x,(t) &x &x~]:

Eii(x, t) =0,

xp

xc dOu

xo dms
J

cos[k, ~~(x, —x)] . . (19)

(20)

coBo x~
Ei(x, t) = —2

k
II

x,
In the above,

dO,

xo dA
(21)

(2X—38, +p)(1 —cosa, )+(a, —p)(8, —X)sina,
II

sl nap
—(a~ —p )cosa „

and 8, is the solution of

d8„X—8„+sin(a, —8„)—(X—28„+a,)cos(a, —8, )

da, 2 sin(a, —8, ) —2(a, —p)cos(a, —8„)

(22)

(23)

B =Bp(1—x/xp), 0&x &x„(C T+)

B =Bp ( 1 —2x~ Ix p +x Ix p )

(24a)

x, &x &x (C T and T ) (24b)

0&x&x (C T+ andC T )

a=0, x, &x &x~ (T ) .

(25a)

(25b)

with initial condition 0„=0 at o,, =0. %'e have used the
following for Eqs. (22) and (23): 8
p k llx k llx a k llx, and o.„=a,—0, .

The B and a profiles are given by

ic shoulder of thickness xp at each surface.
On the other hand, if x, reaches x~ before x„=xp for

xp &x [Fig. 3(a)], or when x, =x for xp)x [Fig.
3(b)], the specimen goes from the three-zone behavior just
described to the two-zone structure of Fig. 4. Flux-line
cutting occurs throughout the entire sample; in addition,
transport to the right occurs in the C T+ zone
(0&x &x„), and transport to the left occurs in the C T
zone (x„&x&x ). In this case, the boundary conditions
are E~~( )x=mE ( 1)x=0 and E1(x,)=0, and the solu-
tions of Eqs. (7) and (8) are as follows.

Region C T+ [0&x &x„(t)]: E~~(x, t) and E1(x,t) are
given by Eqs. (16) and (17), with E

~~
given not by Eq. (22)

but by

If xp &x~ [Fig. 3(a)], and x, reaches xp while x, &x
the specimen enters the quasisteady state with a frozer, -

core of thickness 2(x —xp) around x, and a diamagnet-

( 2X—38„+p )[1—cos(p —8„)]Ell=-
sin(p —8„)

where Ou is the solution of

(26)
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dO„

as

X—8, +sin(p —8, ) —(X—28, +p )cos(p —8„)
2 sin(p —8, )

(27)

xp

The initial conditions for Eq. (27) are a, =p and 8, =8„o, where 8,o is obtained from Eq. (23) when a, =p.
Region C T [x„(t)~x &x ]:

Cia p I XU x~ 1 d8U
E~{(x,t) = — 1 —2 + sin[k, ~~(x

—x)]——1 —2 [1—cos[k, ~~(x
—x)] Ik

II
x, ' X da,

(28)

~&o xv x
Et (x t) = 1 —2

kc II
x

] dO, xv xm
+—1 —2 sin[k, ~~(x

—x)]— 1 —2 +da xp xp
cos[k, ~{(x —x)] (29)

( )x&e

Bo

For xo &x [Fig. 4(a)], the specimen enters the
quasisteady state when x, =xp, and again it has a frozen
core and a diamagnetic shoulder. For xo &x~ [Fig. 4(b)],
we obtain from Eq. (27) the surprising result that the
quasisteady state, in which x, =x, is not achieved for
finite a, . On the other hand, x, very closely approaches
x for large rr, . As a, —&oo, Eq. (27) yields

xm xv ~as ~ xp=xm~ &=p—1

x —x, ~exp[ —(X—p)rzs/4]~ xo&xm X&p .

(30a)

(30b)

0
I

{

xv xo

(

I

xm

Figure 5 gives several examples of this behavior. Shown
are plots of OU =k~llx~ rs a f p k~llx~ ——1 and
various values of 7=k, ~~xo. For 7=0.5 and 7=0.75, the
sample enters the quasisteady state when 0, =g as in Fig.
4(a). On the other hand, for X= 1 and g =2, 8, ap-
proaches p asymptotically from below, as expected from
Eqs. (30). When xo&x and a, ~~1, the specimen has a
diamagnetic shoulder that extends from the surface to al-
most the center of the specimen.

V. NONMAGNETIC INITIAL STATE
(b)X &+

&s -~ o.{x,tj

I

I I

I I

I I

El {X,O}/B
I

I 1
I

I.O

I I I I I I I I
I

1 I I I
I

We assume that at t =0 the flux density in the super-
conductor is uniform [B(x,0)=Boz] and equal to the ap-
plied field. %'e first consider the case for which the speci-
men is sufficiently thick that, during the approach to the
quasisteady state, the regions of altered B, J, and E do
not penetrate as far as the center of the slab.

C T+

I

I
I

I

I

I

Q T I

I
I

I

I

0 xv xm

FICx. 4. Two-zone structure [ C T+ /C T ] evolving from
the paramagnetic initial state for x, ~x . The sample parame-
ters are the same as in Fig. 3, except that a, =2.5. (a) J&p, (b)
X&p.

0.5

l5

FIG. 5. 9, =k,
l

lx„versus o., for p =k,
l
lx

+=k, llxo ——0.5, 0.75, 1.0, and 2.0, as computed from Eq. (27).
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A. Initial three-zone structure [ C T+ /C -0]

coBo
E(((x,t) —— sm[k, ()(x, —x)],

k,
ii

8(x, t)=Bpcos[k ii(xq —x)]
where tp=da, /dt. Thus, Eq. (6) yields

Jz(x, t)= —J,&Xsin[k, ~~(x, —x)] .

Continuity of 8(x, t) at x =x„(t) yields

8„(t)=k, ~~x„(t)=X(1—cosa, ),
where

a„=a(x„,t) =a, (t) 0, (t) . —

(31)

(33)

(34)

By

Bp

T
I

I

I

I

I

I

1

As a, (t) slowly increases from zero, the distribution
predicted by Eqs. (1)—(13) initially develops the three-
zone structure sketched in Fig. 6. A V-shaped minimum
in 8(x, t) versus x occurs at x =x„(t), where B(x„t)
=8„(t)=Bp[1—x„(t)/xp]. To the left of the minimum is
a zone C T+ [0&x &x,(t)] in which both flux-line cut-
ting and transport occur. To the right of the minimum
are a zone C [x„(t)&x &x,(t)] in which only flux-line
cutting occurs and a zone 0 [x,(t) &x &x~] in which
8(x,t)=Bp, a(x, t)=0, and neither flux-line cutting nor
flux transport occurs.

The vortex structure is at the flux-line-cutting threshold
throughout the region 0&x &x, (t), where x, (t)=a, (t)/
k, ~~, such that a(x, t)=a, (t) —k, ~~x and J~~(x, t)= —k,

~~

&B(x,t)/pp. The vortex structure in region C
[x„(t)&x &x,(t)] is below the depinning threshold, such
that

I Jz I
&J,~ and E~ =0. In this region the solutions

of Eqs. (7) and (8), subject. to 8 (x„t)=Bp and
Ej (x„t)=0, are

are

o)BO
E(((x,t) = — sin[k, (((x, —x)]

kcI

1+—
I I —cos[k,

~

~(x„—x] I (35)

coBo
Ej (x, t)=

k,
ii

—cos[k, ii(x, —x)]

(36)

These quantities obey E~~(x, t) &0 and E~(x, t) &0
throughout the region 0 &x &x„(t).

The initial three-zone structure of Fig. 6 and the corre-
sponding Eqs. (31)—(36) apply only in limited regions of
values of a, and X. Consider first the behavior when
X & l. As a, increases, x„ the front of the altered-B re-
gion, penetrates more deeply into the superconductor, and
the sequence of profiles of B(x,t) and a(x, t) sketched in
Fig. 7 occurs. Equations (31)—(36) remain valid, provided
a, =k, ~~x, & q~(X), where

g)(X)=X+~/2 (37)

The value of 8, is reduced to zero and a quasisteady-state
distribution of 8 is achieved when a, =k, ~~x, =g~(X)
[Figs. 7(a) and 7(b), curves d]. For a, & g&(X) (Fig. 8), no
further changes in 8 occur, but a(x, t)=a, (t) k,~~x-
within a distance xp of the surface [Fig. 7(b), curve e].
The behavior then is given by Eqs. (I.21)—(I.23), which
describe region 3 of Fig. (I.l).

However, when X & 1, Eqs. (31)—(36) apply only as long
as

I
Jj(x, t)

I
&J,z in the region x„(t)&x &x, (t). From

Eq. (33) we see that, for X&1, this condition is first
violated when sin[a, (t)]=1/X or a, =k, ~~x, =g2(X),
where

g2(X) =»n '(1/X)+X —(X' —1)'~' . (38)

This function, plotted in Fig. 8, has the limiting values
g2(1)=m/2+1=2. 57 and gz(X)—=3/2X for X»1. For
a, & g2(X), the following structure occurs.

In the region C T+ [0&x &x,(t)] the vortices are at
the depinning threshold, such that

I
Jq

I

=J,q and
8(x)=Bp(1—x/xp). The solutions of Eqs. (7) and (8),
subject to Ez (x„,t) =0 and

E~((x„,t) = —(a)Bp/k, ~~)sina, ,

c T. l

Xy Xp

l I

L
1

o

I

xc

B. Four-zone structure [ C T+ /C T C-07-
For X & 1 and a, =k, ~~x, & g2(X), the distribution of B

predicted by Eqs. (1)—(13) changes from that of Fig. 6
into that of Fig. 9. The minimum value of B(x,t) occurs
at x =x„(t),where

8 (x„ t) =BU (t) =Bp[ 1 —x„(t)/xp]

FIG. 6. Initial three-zone structure [ C T+ /C -0] evolving
from the nonmagnetic initial state for +&1. For this plot,
+=0.5 and a, =1.297.

To the left of the Ininimum is a zone C T+
[0& x & x„(t)] in which both flux-line cutting and trans-
port occur. To the right of the minimum are three zones:
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C)
CQ

~V

Bp
as

0 XV Xc

(b)

2

—&s-

0 Xv XP Xc

Qv
a(x, t)

8„
Bo

C T+
I

I

I

Xy

C T

xo

I

Xi

I

I

I

I

I

I

I

I

I

xc

FIG. 7. Time evolution of (a) B(x,t) and (b) e(x, t) from the
nonmagnetic initial state in the initial three-zone structure.
Sample parameters are as in Fig. 6. Here g](g) =2,071 and, for
curves a, b, c, and d, respectively, a, =0.848, 1.297, 1.693, and
2.071 =g&(P), where the quasisteady state is achieved (Sec. V A).
For o., &2.071 no further changes in B occur, but a varies '

within xo from the surface as shown in curve e. Values of
B„/Bo, x„x„and a, are labeled for curves b. The dashed
curve shows a(x„,t).

FIG. 8. Evolving multiple-zone structures predicted by Eqs.
(28)—(47) for increasing a„starting from the nonmagnetic ini-
tial state. For +&1 the specimen first develops a [C T+/
C -0] structure and then achieves the quasisteady state when
o,', =g~(g). For 1 &g & 1.7, the sample starts with a
[ C T+ /C -0] structure for a, & rI2(g), develops a
[C T+/C T -C -0] structure for grig) &a, &q3(g), and
reaches the quasisteady state when o.,=g3(P). For
1.7&X&2.16, the sample has a [C T+/C -0] structure for
n, & r)z(Y), a [ C T+ /C T C 0) str-uctu-re for grig)
&a, &rIq(X), and a [C T+IC T T 0] stru-ctur-e for r)4(g)
&a, &q5(P). It achieves the quasisteady state when e, =g&(P).
For g & 2. 16, the specimen passes through the same zone struc-
tures as in the latter case, but instead of reaching the
quasisteady state, the behavior becomes unstable when
o., =g6(g). The details of this behavior are not treated here.

a zone C T [x„(t)&x &x&(t)] in which both flux-line
cutting and flux transport occur, a zone C
[x~ &x &x,(t)] in which only flux-line cutting occurs,
and a zone 0 [x,(t) &x &x ] in which B (x, t) =Bp,
a(x, t) =0, and neither flux-line cutting nor flux transport
occurs.

Throughout the region 0&x &x, (t), the vortex struc-
ture is at the flux-line-cutting threshold, such that
a(x, t)=a, (t) —k, ~~x and J~~(x t)= —k&[~B(x t)/pp. The
vortex structure in region C [x&(t) &x &x,(t)] is below
the depinning threshold, such that

I Jz
I

& J,z, Et ——0,
and E~

~

(x, t), B (x, t), and J~ (x, t) are given by Eqs.
(31)—(33).

The vortex structure in the region C T
[x„(t)&x &x~(t)] is at the depinning threshold, such that
Jg ———J,g and

B(x t)=B [ pI+/xxp —2x (t)/xp] (39)

FIG. 9. Four-zone structure [C T+ /C T -C -0] evolv-
ing from the nonmagnetic initial state for 1&+&1.70. Here,
+=1.3, a, =2.187.

The solutions of Eqs. (7) and (8), subject to Et(x&, t) =0
and E~I(x] t) = —(cpBp/k&~~)sinat, where at(t) =a(x&, t),
are
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CUBO 1 d 0~
x x ]——1 —2 I 1 —cos[k

kg] f
X dCXg

(40)

coB(x, t) rpBp
Ei(x, t) =

c II c II

1 dO„
cos[k, ~~(x, —x)]——1 —2

es
(41)

which obey E~~(x, t) &0 and E~(x, t) &0 in zone C T
Continuity of 8 at x =x

&
yields, from Eqs. (32) and (39),

0„=I 0, +X[1—cos(a, —0, ) ] ] /2, (42)

dO, X[1—cos(a, —0, )]—0,=1+
da, [1—X sin(a, —0~ )]sin(0, —0, )

(43)

(a)

B (x„t)/Bo

O
CQ

Byx
Bp

where 0~ ——k, ~~x& and O, =k, ~~x„. Because Ez(x, t)&0 in
region C T+, we must have Ez(x„t)=0, which in com-
bination with Eqs. (41) and (42) yields

I

Numerical solutions of this equation, subject to the boun-
dary conditions that 0~ ——O„=X—(X —1)'/, d 0~/d a,
= 1.309 017, and d 0, /da, = —,

' at a, = F2(X), give

x„, and 8„/Bp ——(1—0, /X) as func-
tions of a, =k, IIx, .

The four-zone structure [C T+ /C T C 0] -of-
Fig. 9 and the corresponding Eqs. (39)—(43) apply only in
limited regions of values of a, and X. Consider first the
case for which 1 &X & 1.70. As a, increases beyond
g2(X), which causes x, to penetrate more deeply into the
superconductor, the sequence of profiles of 8(x, t) and
a(x, t) sketched in Fig. 10 occurs. Equations (39)—(43)
apply provided g~(X) &a, &g3(X), where g3 is defined as
the value of a, at which the solutions of Eq. (43) yield
O, =X or 8, =0. The quasisteady-state distribution of 8
is thus achieved when a, =k, ~~x, =F13(X) (see Fig. 10,
curves c). Numerically obtained values of g3(X) over the
range 1 &7 & 1.70, shown in Fig. 8, are approximated with
an error of less than 0.3% by

Xy Xp Xi Xc g3(X ) -=2.571+1.186(X—1) . (44)

G.s-

(b) For a, & g3(X), no further changes in 8 occur, but
a(x, t) =a, (t) —k, ~~x within a distance xp of the surface,
as shown in Fig. 10(b), curve d. The behavior then is
given by Eqs. (I.21)—(I.23).

When X & 1.70, however, Eqs. (39)—(43) apply only for
a, & q4(X ), where g4, (X ) is the value of a, at which the
solutions of Eq. (43) yield 0& ——a, and O„=a,/2 &X. Nu-
merically obtained values of g4(X), shown in Fig. 8, can
be approximated over the range 1.70 &g & 7 with an error
of less than 2% by

rI4(X) =g2(X)+ (3.35+0.93/X)sin '(1/X) .

For a, & g4(X) the following structure occurs.

(45)

Xy Xo X Xc

C. Four-zone structure [ C T+ /C T - T -0]
For X & 1.70 and a, =k, ~~x, & g4(X), the distribution of

8 predicted by Eqs. (1)—(13) changes from that of Fig. 9
into that of Fig. 11. The minimum value of B(x,t) occurs
at x =x,(t), where

8 (x„,t) =B,(t) =Bp[1—x„(t)/xp] .
FIG. 10. Four-zone-structure [ C T+ /C T C 0] time--

evolution of (a) B(x,t) and (b) a(x, t) from the nonmagnetic ini-
tial state for 1~+&1.70 and increasing a, . For this plot,
+=1.3, g2(g)=. 1.347, and, for curves a, b, and c, respectively,
a, =k~llx~ = 1.347=F2(X), a, =0.187, and a, =2.931=F3(X),
where the quasisteady state (Sec. V B) is achieved. [For
a, &1.347=F2(X), the 8 and a structure is as in Fig. 6.] For
a, &2.931, no further changes in B occur, but a varies within

xo of the surface as shown by curve d. Values of B„/Bo, x„,
x~, x„and a, are labeled for curves b. The dashed curves show

B(x&,t)/Bo, a(x„,t), and a(x], t).

To the left of the minimum is a zone C T+
[0&x &x„(t)] in which 8 =Bp(1—x/xp), and both flux-
line cutting and transport occur. To the right of the
minimum there are three more zones: a zone C T
[x,(t) &x &x,(t)] in which both flux-line cutting and
transport occur, a zone T [x, ( t) & x &x ~ (r) ] in which
only flux transport occurs, and a zone 0 [x&(t) &x &x ]
in which 8(x, t) =Bp, a(x, t) =0, and neither flux-line cut-
ting nor fiux transport occurs.

Throughout the region x„(t)&x &x~(t), the vortex
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O
Q3

8„
Bo

C T+
I

i
i
I

Xy Xo

CT T I 0

Xc X)

By

Bp
0 Xv Xp XcX

FIG. 11. Four-zone structure [C T+/C T T 0]-evol-v-

ing from the nonmagnetic initial state for 1.70 &g & 2. 16. Here,

+=2 and a, =3.25.

structure is at the depinning threshold. such that
Jz ———J,t and B(x, t) is given by Eq. (39) or, since
x&(t) =2x, (t), by

B(x t)=BpI 1+[x— &x(t)]l xIp (46)

Because no flux-line cutting occurs in zone T
[x,(t) &x &x&(t)], the solutions of Eqs. (7) and (8) are
E„(x,t) =0 and

x 2

v, t)

coBo d 6]
Ei (x, t) = — [x &

(t)—x] .
des

(47)

Eq (x„t)= (rpB p IX)(d8—) Id a, )[x t (t) —x, (t)],
are

The vortex structure in the region C T [x„(t)&x
&x,(t)] is at the flux-line-cutting threshold, such that
a(x, t)=a, —k, ~~x. The solutions of Eqs. (7) and (8), sub-
ject to E~~ (x„t)=0 and

Xvxp Xc

FIG. 12. Four-zone-structure [ C T+ IC T T 0] time--
evolution of (a) B(x,t) and (b) a(x, t) from the nonmagnetic ini-
tial state for 1.70 &g & 2. 16. For this plot +=2, and, for curves
a, b, and c, respectively, a, =2.75 =g4(P), a, =3.25, and
a, =3.724=F5(p), where the quasisteady state is achieved (Sec.
V C). [For a, &0.791=qz(X), the B and a structure is as in Fig.
6, and for 0.791 & a, & 2.75=q4( J), the B and a structure is as
in Fig. 9.] For a, & 3.724 no further changes in B occur, but a
varies within xo of the surface as shown in curve d. The dashed
curves show B(x„t)/Bo and a(x„t).

dO] -1 dg]1+— —1 (8,—a, ) sin[k, ~~(x, —x)]+— —1 tl —cos[k, t~(x, —x)]I . ,
dms X d,

coBp
E(((x,t) =-

kg
/ /

Bo d t9i
Et (x, t) = — —1 (8~ —az )cos[kc~~(xc —x)]+ l s[nek~~ c(xx)] B(x t)+Bpcos[kz~~(x& —x)]k

I(
7 da,

(48)

(49)

which obey E~~(x, t) &0 and Ez(x, t) &0 in zone C T
Because E~(x, t) &0 in zone C T+, we must have
Eq(x„,t) =0, such that Eq. (49) yields

d8& X—8, +(8&—a, —X)cos(a, —8„)+sin(a, —8, )

da, (8~ —a, )cos(a, —8„)+sin(a, —8, )

(50)
where 8, =k,

~

~x„=8& /2. Numerical solutions of this
equation, subject to the boundary condition at a, =g4(X)
[see curve rj4(X) in Fig. 8) that a, =28„=8&——g4(X), give

I

8~ ——k, ~~x~, 8„=k,~~x„and B,/Bp ——(1—x„/xp) as func-
tions of a, =k, ~~x, . The time evolution of the multiple-
zone structure is illustrated in Fig. 12.

As in other cases, this four-zone structure only applies
for limited values of a, and X. As a, increases to values
larger than t)4(X), the sample can reach either the
quasisteady state or an unstable state, depending upon the
value of P. For 1.70&/&2. 16, the sequence of profiles
shown in Fig. 12 occurs: For rI4(X) &a, &r15(X), Eqs.
(46)—(50) are valid, and the sample reaches the
quasisteady state when a, =ps(X), which is the value of



31 RESPONSE OF TYPE-II SUPERCONDUCTORS SUBJECTED. . .

a, (t) such that 8„=0. The function g&(X), shown in Fig.
8, must be obtained numerically from Eq. (50). For
P & 2. 16, Eqs. (46)—(50) apply only for g4(X) &a, &g6(X),
where g6(X) is the value of a, for which E~~(x =0)=0.
The function g6(X) shown in Fig. 8, must be obtained nu-
merically from Eq. (50) while monitoring E~I(0, t) using
Eq. (48). For a, & g6(X), dynamical instabilities develop,
and the sample cannot be treated quasistatically with the
present theory.

In the above discussion we have considered only the
behavior when the sample is sufficiently thick that the re-
gions of altered 8 do not penetrate to the center of the
slab. If this condition is not met, we must change from
the boundary conditions used above to those in which the
electric field is zero in the middle of the slab
[E~~(x ) =Ez(x~ ) =0] when a zone of altered 8 reaches
the slab center. The precise behavior depends upon
whether x, first reaches x~ in the three-zone structure
[C T+ IC -0] of Fig. 6 or in the four-zone structure
[C T+/C T C 0] -of F-ig. 9 or whether x& reaches
x~ in the four-zone structure [C T+/C T T 0] of--
Fig. 11. There are too many different cases to discuss in
detail here. The resulting magnetic structures, however,
all can be determined from analytic or numerical solutions
of Eqs. (1)—(13).

VI. SUMMARY AND CONCLUSIONS

In this paper we have used the general critical-state
theory of Ref. 1 to calculate the time dependence of the
magnetic induction 8 (magnitude 8 and angle a) during
the approach to the quasisteady state for a type-II super-
conducting slab subjected to a magnetic field which is
parallel to the slab's flat surfaces and which changes in
direction but not in magnitude. This theory contains two
important material-dependent quantities: J,q, the trans-
verse critical current density, and k,

~~
poJ, ~~~/8, where——

J,II
is the parallel critical current density. Our calcula-

tions were done beginning with three different initial mag-
netic states: diamagnetic (Sec. III), paramagnetic (Sec.
IV), and nonmagnetic (Sec. V). In every case we have
shown that, regardless of magnetic history, flux-line cut-
ting consumes 8, ultimately taking the sample to a final,
quasisteady magnetic state in which B has a diamagnetic
profile either in a region near the surface or in the entire
sample, depending upon sample thickness and flux-line-
pinning strength. In applying this theory we have as-
sumed, for simplicity, that J,z

——const and k,
~~

——const.
The resulting profiles of 8 and a yield results in qualita-
tive agreement with most of the experimental findings of
Refs. 2—4.

Although our theory is similar in several respect to the
empirical model of Refs. 2—4, there are important differ-
ences in both the physical interpretation and the details of
the 8 and a profiles. Both models assume (a) that the
steepest metastable gradients of B are given by

~

M/Bx
~
=p+, j, regardless of whether 8 is changing

direction or not, and (b) that the steepest metastable gra-
dients of a are given by

~

Ba/Bx
~

=k, ~~. According to
the empirical model, on the one hand, "if the initial mag-
netic induction 8; (x) exceeds the value 8 (x) established
in the quasisteady state, then flux lines, somehow, escape

from the disk during the rotation leading to setting up the
quasisteady state. " This model also "implies that flux
can exit from the specimen although the magnetic pres-
sure or Lorentz force in the surface region is directed in-
wards. " Our theory, on the other hand, provides a mech-
anism, flux-line cutting, which reduces 8 in the
specimen's interior and leads to diamagnetic profiles near
the surface. The reduction of 8 is a natural consequence
of Faraday's law, which, when written as Eq. (1), states
that when flux-line cutting occurs, 8 is not conserved but
is irreversibly consumed. According to our theory, flux
lines do not migrate out of the specimen against a flux
density gradient. Instead, as the diamagnetic profiles are
being established at the surface, flux transport into the
specimen occurs, but this only partially replenishes the B
that is consumed via flux-line cutting.

According to our theory, the details of the evolving B
and a profiles (Figs. 1—12) are considerably more com-
plex than those proposed in Refs. 2—4, and this complexi-
ty is required to satisfy both Faraday's law [Eqs. (7) and

'

(8)] and continuity of E as a function of x. The main
difference between our profiles and those of Refs. 2—4 are
as follows.

(a) Relative to the changing 8 profiles, our changing a
profiles penetrate more deeply into the specimen than
those assumed in Refs. 2—4. The differences show up
most clearly in a comparison of Figs. 6 and 7 and 9—12
with Figs. 3(a) and 3(b) of Ref. 4, which exhibits profiles
that we claim are inconsistent with Faraday's law and
continuity of E versus x.

(b) In addition to zones common to both models, in
which (i) both the 8 and a gradients are critical, (ii) only
the 8 gradient is critical, or (iii) both the 8 and a gra-
dients are subcritical, our theory predicts zones in which
only the a gradient is critical. In such C zones no flux
transport occurs, but flux-line-cutting processes reduce B
at a rate given by Eq. (1).

In this paper we have kept the B dependences of J,
~~

and J,z as simple as possible in order to obtain analytical
expressions for the various fields involved and to illustrate
the main features of the 8 and a profiles. For detailed
comparisons of theoretical and experimental results, how-
ever, particularly when the applied field varies over a wide
range, more realistic B dependences of J,

~~
and J,z will

have to be included, which in turn will require numerical
solutions of Eqs. (1)—(11). We have developed a comput-
er program to incorporate these changes, as well as to
compute hysteretic losses. We shall present our method
and results in a subsequent publication. We have found
that this numerical approach helps greatly in understand-
ing the complex behavior that occurs when the field ap-
plied at the surface varies not only in direction but also in
magnitude.
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