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We study the momentum-space structure of the elementary excitations in liquid He by calculat-

ing the change 5nk(p) in the momentum distribution of atoms on creating an excitation of momen-

turn k. Jastrow and Jastrow plus triplet wave functions are used for the ground state, and the exci-
tations are created with Feynman and Feynman-Cohen excitation operators. We find that the exci-

tations in the long-wavelength limit are harmonic vibrations with equal amount of change in kinetic
and potential terms. At large k, however, they become "single-particle"-like; and most of the ener-

gy comes from removing one particle from the ground-state momentum distribution and putting it
at states with p-k. The 5nl, (p) is used to calculate the momentum distribution n ( T,p) of the

liquid at low temperatures (&1 K). The temperature dependence of the fraction of atoms in the

p=0 condensate and the 1/p and 1/p singularities of n (T,p) are discussed.

I. INTRODUCTION
N

p~(k)= g e ' 1+i gg(r~1)k rj (1.6)

The aim of this paper is to study the momentum-space
structure of elementary excitations in liquid He. The
momentum distribution np(p) of the atoms in the ground
state of liquid He has been studied by the Green's-
function Monte Carlo' (GFMC) and variational '

methods. The initial variational calculations used the
Jastrow (J) wave function:

4k pF(k)+p, —— (1.3)

for the ground state. Here 0 is the normalization volume
and N is the number of particles. The thermodynamic
limit N~~, A~~ at fixed density p=N/Q is as-
sumed. Recently we calculated the np(p) with a more
realistic wave function, which contains optimized Jastrow
and three-body [Jastrow plus triplet (J + T)] correlations:

0'p ——0 ~'g f(r;, ) + f3(r;, , r,k, rk;) .
i &j&k

The GFMC and variational np(p) are in reasonable agree-
ment with each other and the experimental data. '

In this work we consider the change 5n~(p) in the
momentum distribution of atoms due to an elementary ex-
citation of momentum k. The wave functions and spectra
of elementary excitations in liquid He have been studied
by many authors. The first approximation for the wave
function of an excitation of momentum k is Feynman's:

was proposed by Feynman and Cohen to account for the
backflow current. We have recently carried out detailed
variational calculations of the spectrum of elementary ex-
citations with the pz(k) and the J + T %'p. A brief review
of the earlier work on the wave functions and the spec-
trum of excitations in liquid He is also given in Ref. 8.
The energies obtained with these wave functions are satis-
factory for the phonons, but they are -20% too high for
the maxons and rotons. We developed a perturbation ex-
pansion using correlated basis functions (CBF) generated
by the pz(k) operators. The second-order corrections to
the spectrum improve the agreement with experiment very
significantly.

In the next section we calculate the 5nl, (p) using the
Jastrow %p and the Feynman pF(k). The general struc-
ture of 5nl, (p) is discussed in detail, and the small and
large k limits are calculated analytically. In Secs~ III and
IV we introduce the effects of the three-body and back-
flow correlations, respectively. At very low temperatures
( T( 1 K) the liquid can be described as low-density gas of
excitations. In this limit we can use the 5nk(p) to study
the low-temperature behavior of the momentum distribu-
tion of atoms in the liquid. This calculation is described
in Sec. V.

II. CALCULATIONS WITH FEYNMAN-JASTROW
WAVE FUNCTIONS

The 5nl, (p) is given by

ik.r,-pp(k)= g e

An improved wave function,

+.=p. (k)+p,

(1.4)

(1.5)

5nl, (p) =nk(p) —np(p)

3
—iP.r11r

&
|'[n k(r] 1')—np(r] ]')]e

where n„(r~~ ) is the one-body density matrix in the state
x =O, k:
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& f +*.(1',2, . . . , X)e.(1,2, . . . , X)d'r,
n„(r„)= f ~'p(1, 2, , &) ~'d'r, . . . d'r (2.2)

normalized so that

3 f n„(p)d p=X .
(2m)'

Xo—= eo(r, , . . . , r„)d r, d r„2 3 . . . 3

= 1+[&1+—'[i][J]+ (2.6)

Both nI, (p) and no(p) are of order 1, and the difference
5n„(p) is of order 1/X.

In this section we calculate the 5nk(p) using Jastrow's
approximation for the %0 [Eq. (1.1)], and the Feynman
wave function [Eq. (1.3)] for the %I,. The cluster expan-
sion of 5nk(p) is carried out in See. II A. The small- and
large-k limits are calculated in Sec. II B, and the methods
used for numerical calculations are discussed in See. II C.

A. Cluster expansion

We use the diagrammatic method developed for nuclear
matter to calculate the cluster expansion of 5nk(p).
Fantoni's calculation of no(p) is repeated by using
methods of Ref. 9. The cluster expansion of no(r» ) is
obtained by expanding the numerator of no(r» ) in
powers of the functions:

h(rj)=f (rJ) —1, i j~l, l'

g(r J)=f(r J)—1, m =1,1'.
(2.3)

(2.4)

+0=+ +0 r1' r2 ' rN

X +0(r), r2, . . . , r~)d r2. . . d r~

=pt [I]+[I][i]+—,[I][i][j]+. . }, (2.5)

where [I] denotes a connected diagram having the points
1 and 1', and [i], [j], etc. , denote connected diagrams
having only h-lines. The products [I][I],[i][i][j],etc. ,
represent disconnected diagrams. A sum over all dia-
grams I,i,j, . . . , is implied with the constraint that the
diagrams I, I,,j, in the disconnected diagram
[I][i][j]. have no common particles. Thus the prod-
uct [I]&([i]&[I][i],since the product contains terms in
which I and i have common particles.

The denominator is expanded in powers of h only, and
we obtain

The integrals of this expansion are represented by dia-
grams which contain external points 1 and 1' and any
number of internal points denoting particle coordinates to
be integrated. The functions h (r;J ) and g(r J ) are
represented by lines joining the points ij and mj. We ob-
tain

+ [Aa'b']+ (2.8)

[i]= [a]+—,
' [ab]+ (2.9)

where A denotes irreducible diagrams which contain both
points 1 and 1', and a', b', . . . , denote irreducible dia-
grams that may contain one or none of the points 1 and
1'. The term [Aa'] represents all the diagrams in [I]
with one articulation point. [Aa'b'] is the sum of dia-
grams that can be broken into three pieces at one articula-

tion point, while [Aa'b'] and [Aa'b'] are sums of dia-
grams with two articulation points etc. The irreducible
diagrams a,b, . . . , that occur in the expansion of [i] are
identical to the diagrams a', b', . . . , when they do not in-
clude the point 1 or 1'. Diagrams a', b', . . . , that include
the point 1 or 1', are formed with g-lines starting from 1

or 1', whereas diagrams a, b, . . . , which include the point
1 can come only from the [i] in denominator, and they
have only h-lines. The a, b, . . . , cannot have point 1'.

On substituting Eqs. (2.8) and (2.9) in Eq. (2.7) we ob-
tain

On performing the division we get

n, (r». )
—p[[I]—[I][il—[I][~'i—. . + [I][i][jl

t 1

+ 2 [I)['][j]+[I][i][j]+ — '
} (2 7)

Here overhead bars denote common partic1es. For exam-
\

pie [I][i]is the sum of the products of all diagrams I and
i that have one common particle. The diagrams I and i
contributing to [I][i]must have two common particles,
while only the diagrams I, i, and j that have one common

particle contribute to [I][i][j],etc. The order of magni-
tude of the contribution of a term in Eq. (2.7) is given by
N to power Ithe number of [ ] —1 —number of lines
—2)&number of .—~ lines —. . }. Thus [I][i] has a
contribution of order X ', and it is neglected while calcu-
lating the no(p).

Compact cluster expansions are obtained by noting that
the connected diagrams [I] and [i] can be expressed as

[I]= [A]+[Aa']+ —,
' [Aa'b']+ , [Aa'b']—

l

—no(rII ) = [A]+ I [Aa') —[A][a]}+ [ , [Aa'b'] —[Aa')[b—]——,[A][ab]+[A][a][b]}

(2.10)

It ean be easily verified that all the terms in the [ } are
zero unless the common points are 1 and/or 1'. Let [a'~ ]
and [aI] be the sums of irreducible a' and a diagrams
with points 1, and [a'~ ] be the sum of irreducible dia- (2.11)[aI ] [a 1']

+ I [A'b'] —[Aa'][b]+ 2 [Al[a][b]}+I [Aa'b'] —[Aa']I bl —[Al[abl+ [A)[a][bl}+.

grams with point 1'. The R and Ad of Ref. 3 are de-
fined as
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Rd =[ail . (2.12)

np(r» ) =p[A] exp(2R —Rd ):—p[A]n, , (2.14)

where n, is the fraction of particles in the p=0 conden-
sate.

The cluster expansion of 5nk(r» ) is calculated in the
same way. We express 5nk(r» ) as

&0
5ng(r() ) =

k 0

o Xk Xo

Xo Xo Xk
(2.15)

mn
Yk ——X e

m, n

The sum [A] can be factored out of the np(r ~~ ) to obtain

np(r» )=p[A][1+2R —Rz+ —,'(2R —Rd) + . ] .

(2.13)

The higher terms simply complete the exponential series,
and we obtain the well-known expression:

In Eq. (2.16), m is summed from 1 to X and n from 1' to
N, while in Eq. (2.17) for Xj, both m and n are summed
from 1 to ¹

There are X terms with m =n in Xk, and their contri-
bution is NXp. The m« terms are calculated by cluster
expansion. As in the theory of elementary excitations, the
exp(ik r~.„) is represented in the cluster diagrams by an
exchange line from m to n. The sum of irreducible dia-
grams containing this line is denoted by [8]. The ratio
Xq/Xp is easily calculated to be

Xg/Xp N+——[8]=VS(k), (2.18)

where S(k) is the familiar static structure function. Since
this ratio is of order X, we have to calculate the Uj, in Eq.
(2.15) to order 1.

The contribution of terms with m =n to Yk is
(N —1)Yp, and to Uk is —np(1&, ). The contribution of
m&n terms has to be calculated with cluster expansion.
The m &n terms of Yk.can be written as

Yk(m&n) =p f [L]+[L][i]+—,
' [L][i][j]+

+[I][J]+[I][J][i]+. . j, (2.19)

Xq'p(r~, . . . , r~~d r2 d r~,
ik-rXt= J pe q'p(ri . rx)d ri ' ' ' d r~ .

m, n

(2.16)

(2.17)

where I. denotes connected diagrams that contain points 1

and 1' and the line mn, while J denotes connected dia-
grams that contain the line mn but not the points 1 and
1'. The ratio is found to be

I

Yk(~«)/Xp =P f [L]—[L][i]+[L][i][J]+2 [Ll[~]ull+ [L][i][J]+.. .

+LI1[J]—[Il[J][&1—[I][J][&]—[I]LJ][&l+ ' ' '
j

We also obtain

YpX~(@zan)/(Xp) =p f [I][J]+[I][J]—[l][J][i]—[I][J][i]—.2[I][J][i]—[I][J][i]—[I][J][i]—2[I][J][i]+

and thus,

Ug(m&n)=pf [L]—[L][i]+. —[I][J]+[I][J][i]+[I][J][i]+[I][J][i]+2[I][J][i]+. .

Let C denote irreducible diagrams containing points 1 and 1' and the exchange line mn. We then have

[L]=[C]+[Ca']+ ,
' [Ca 'b']+ ,' [Ca—'b']+[C—a'b]+ . +[AB']+[AB'a']+ [AB'a']+ [AB'a ]+[ABa']+

LJ]=LB]+LBal+ .

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

The irreducible B' diagrams are identical to the B diagrams when they do not contain points 1 or 1'. B' diagrams con-
taining 1 or 1' have g-line starting from 1 or 1'. Substituting Eqs. (2.8), (2.9), (2.23), and (2.24) in (2.22) we obtain

—Ut, (m&n) —[C]+ f [Ca'] [C][a]j+ + f [AB'] [A][8]j
P

+ f [AB'a'] —[Aa'][8]—[A][Ba]—[AB'][a]+2[A][8][a]j

+ f [AB'a'] —[Aa'][8]—[AB'][a]+[A][8][a]j + f [AB'a'] —[AB'][a]—[A][Ba]+[A][8][a]j

+ f [ABa'] —[Aa'][8]—[A][Ba]+[A][8][a]j+ . (2.25)

The terms in f j are nonzero only when the common particles are 1 and/or 1'. All the terms with irreducible diagrams

C can be summed up to obtain [C]exp(2R~ —Rd). One of the [A][B][a]cancels [A][Ba],and the f j's starting from
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[AB'a] and [ABa'] give zero contribution because they must have a common particle other than 1 and 1'. The two com-

mon particles in the terms of the [ j starting with [A3'a'] must be 1 and 1', otherwise this I j is zero. We denote by
B&, B& and B] the irreducible diagrams containing particles 1 and 1. Note that there are no B& diagrams. The terms
in Uj, containing 3 diagrams are reordered in the following two series:

—[ A] [B] ]—[Aa '] ][Bj ]—[Aa ]' ][B ] ]+ [A][B] ][a ] ]+

+[AB] ]+[AB', ]+[AB']a]]+[AB]a'] ]+[AB']a'] ']+[AB']a]]—[AB', ][a]]—[AB] ][a]]+
These series are summed to obtain the total Uk and 5nk(r» ) including m =n contribution as

U], =p[C] exp(2R„—Rd ) —no(r]] )(1+[B,]—2[B', ]),
5n], (r]] ) = Uk/[XS(k)] .

(2.26)

(2.27)

The second term of Eq. (2.26) represents particles taken out of the no(p) by the excitation. The structure of 1+ [B]]
is shown in Fig. 1. We use the diagrammatic notation of Ref. 4 in which dashed and wiggly lines represent generalized

gdd —1 and g~ —1 bonds. These bonds, respectively, represent sums of all possible correlations with I]-lines at both ends
and with h-lines at one end and g-lines at the other. The B] diagrams have only gdd —1 bonds. From Fig. 1 we obtain

1+[B,]=S'(k)[1+Ad(k)],

Ad(k)=p f d r]~d r, 3e "[gdd(12) —1][gdd(13)—1][gdd(23) —1]

X(1+Addd(123) [1+[gdd(12) —1] '+ [gdd(13) —1] '+ [gdd(23) —1] '
j ),

where Addd(123) is the contribution of Abe diagrams.
The [B]] is shown in Fig. 2. We obtain

[B'] ]=[B', ]=g~d(k)[1+g„d(k)]+S (k)A„(k),

g d(k)=p f d r[g d(r) 1]e'"',—

A (k)=p f d r]2d r]3e "[g d(12) —1][g„d(13)—1][gdd(23) —11

X(1+A~„d(123)[1+[g~d(12) —11 + [g„d(13)—1] '+ [gdd(23) —1] j ) .

We define t](k) as

t](k) =(2[B'] ]—1 —[B]])/S(k)= g„d(k)[1+gwd(k)] —S(k)[1+Ad(k) —2Am(k)]
2

S(k)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

so that the contribution of this term to 5n], (r» ) is simply t] (k)no(r» )/&.
The contribution of C diagrams [Eq. (2.26)] can be divided into three parts. The diagrams belonging to the first part

are shown in Fig. 3(a), and their contribution is given by

NS k
no(r» )e "[1+g d(k)] = —t2(k)no(r» )eW

The contribution of diagrams included in the second part [Fig. 3(b)] is obtained as

(2.34)

XS(k)
no(r]] )e "[g„d(k)]: t3(k)no(r]] )e

N
(2.35)

The third part includes all other C diagrams, whose contribution depends upon the directions of k and r] &
in a nontrivi-

al fashion. We express it as T(k, r» )no(r]] )/X,

T(k, r» ) =[1+g~d(k)]D(k, r» )+g~d(k)D*(k, r]] )+S(k)D'(k, r» ) . (2.36)

The D (k, r» ) term is from diagrams shown in Fig, 4(a), while the second D (k, r» ) term is from diagrams of Fig. 4(b).
We have

D(k, r» )=p f d r]2(e "+e ")[g„d(12)—1][g„d(1'2)—1]

X(1+.A~~(11'2) I 1+[g„d(12)—1] '+[g~d(1'2) —1] 'j ) .

The D (k, r]] ) term represents the contribution of four-point and higher-order diagrams shown in Fig. 5.
In all, we have

(2.37)

5nk(r]]') no(r]]')[t](k)+t2(k)e "+t3(k)e + T(k r]1')]
N

(2.38)
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=)+ I +
e

+ 2 1 + X / +

= (l+ i ) ()+

S (k) [l + Ad(k)]

FIG. 1. Diagrammatic calculation of 1+ [8&]. The dashed
lines represent gdd —1 bonds, the dots, internal points, and the
little circles, the external point 1. The directed line represents
the exp(ik r ).

from which we obtain

(b)
FIG. 3. Diagrams that contribute to t2 and t3. The two

small circles denote points 1 and 1'. Equations (2.34) and (2.35)
are obtained by factorizing the diagrams as illustrated in (b).

&nk(P) = [t)(k)no(P)+tz(k)no(
I
&—P I

) Pic 1f(r~ac )=1-
27T T

(2.43)

where

+t3(k)no(
I k+p

I
)+t4(k p)] (2 39 In the limit k —+0, t&, t2, and t3 have terms of order 1/k,

while T is of order 1, and hence negligible. We find by
using the limits (2.41) and (2.42) in Eqs. (2.33)—(2.35)

3t.(l,p)= d r» no(r„)T(i, r, ) )e (2.40) t i (k ~0)= —1/[2S (k)],
t2(k~0) =1/[4S(k)],

(2.44)

(2.45)

B. Limiting cases

The 5nk(p) takes a rather simple form in the limits
k~0 and k —+ ac. At small values of k we have the rela-
tions

S(k~0)= k,
2plc

g~(k~O)= ——,'+ .

(2.41)

(2.42)

where the ellipsis represents a term of 0 (k). Here c is the
velocity of sound, and the above relations follow from the
asymptotic behavior of the pair correlation

+ Abe

FIG. 2. Diagrams contributing to [8I ]. The wiggly lines
represent g~ —1 bonds, and the small circle denotes point 1.
Note that in B~ diagrams, the exchange lines can start from
point 1 but not end in point 1.

+ Abe

(b)

FICx. 4. Diagrams that give D(k, rl~ ) and D (k, r~~ ) contri-
butions.
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I.O

FIG. 5. Some of the diagrams that contribute to D'(k, r~ ~ ).

0.5

t3(k~0) =1/[4S(k)] . (2.46) 0.0
Thus a long-wavelength phonon removes 1/[2S(k)] parti-
cles from the ground state no(p) and divides them equally
into two distributions no(

~ p —k
~

) and no(
~
p+k ~. ) cen-

tered at p=k and p= —k. The no(p) has the singular
term Nn, 5& o, and hence a phonon state has n, /[4S(k)]
particles each in the states with p=+k. The change in
the kinetic energy (KE) of the liquid on exciting a phonon
is given by

/
/

/
/

/
/

/i~g (k)-0.5-

I » i a I i t t & I

I.O 2.0 5.0
f2

5(KE)= f d'p5nk(p)p
(2m)3 2m

(2.47) FIG. 6. S(k) and g~(k).

and in the long-wavelength limit it is

Ak 1
5(KE)(k ~0)= = —,

'
Ace(k) .

2m 2S(k)
(2.48)

t, (kazoo ) = —1,
t2(k ~ co ) = 1,
t3(k~ co ) = t4(k~ oo, p) =0,

(2.49)

(2.50)

(2.51)

The phonon in Bose liquids is, indeed, a pure harmonic
vibration with half of its energy from kinetic and the oth-
er half from potential terms.

The k~ ao limit is only of mathematical interest, since
we do not expect the Feynman wave function of the exci-
tation to be realistic in this limit. In this limit the excita-
tion has a single-particle character. The S(k~ac )=1,
and g~(k~ co ), A(k ~ oo ), and T(k~ cc,r) are all zero.
Thus, we have

a single particle is removed from the ground state, and
put in a distribution no(

~ p —k ) centered at p=k. In
this limit the energy of the Feynman excitation is
A'~k 2/2m, and it equals the change in the kinetic energy.

C. HNC/S calculations

The pair functions g„z, xy =dd, and wd, and the Abe
functions 2 ~„xyz =ddd, ddw, and wwd have been cal-
culated in Ref. 4 with the hypernetted-chain-scaling
(HNC/S) method in which the contribution of elementary
diagrams is approximated by scaling that of the four-
point diagrams. We use these functions to calculate the
5nk(p). The S(k) and g~d(k) are shown in Fig. 6 for easy
reference. The gdd(r) and g d(r) are shown in Fig. 2 of
Ref. 4. The quantities t], t2, and t3 are relatively simple
integrals of the g and 3 functions. We find that the
Ad —2A term contributes less than 5% of the t&, and

TABLE I. Calculated values of the t s.

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

ti(k)

—8.66
—4.68
—3.37
—2.61
—2.12
—1.77
—1.53
—1.39
—1.31
—1.18
—1.00
—0.87

t2(k)

3.54
1.63
1.08
0.80
0.67
0.59
0.56
0.60
0.73
0.92
1.09
1.16

t3(k)

5.21
3.17
2.35
1.75
1.25
0.81
0.44
0.17
0.02
0.00
0.03
0.03

t4„(k)

—0.12
—0.18
—0.13
—0.02

0.14
0.31
0.46
0.53
0.44
0.31

—0.22
—0.40

t4 (k)

2.15
2.04
1.86
1.63
1.37
1.08
0.78
0.51
0.27
0.16

—0.06
—0.13
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hence the Abe corrections to the A's [Eqs. (2.29) and
(2.32)] are neglected. The calculated values of the t s are
tabulated in Table I.

The t4(k, p) is generally a function of k, p, and the an-
gle between k and p. It is difficult to calculate it, but it

may be reasonably approximated as follows. We define

r
D~(k, p)= f d r» no(r» )D(k, r» )e (2.52)

This integral appears in the contribution of the D(k, r» )

term to t4(k, p). We can rewrite it as

D~(k, p)=p f d r~~ no(r~~ )e
' "f d r&2(e "'+e ' "')[g„d(12)—l][g~d(i'2) —I](i+~),

where M represents Abe terms, and

r, =
2 (r&+r, ) .1

(2.53)

(2.54)

It is now clear that D~(k, p) is invariant under the transformation p~k —p, and hence it is convenient to consider D~
as a function of k, p —k/2

l
and the polar angle 8 of p —k/2

l
using k to define the Z axis. This function is invari-

ant under the transformation 8—+sr —8. We neglected the Abe terms in D, and calculated D&(k, p —k/2 l, B) for
chosen values of k,

l p —k/2, and 8. The D&(k, p —k/2 l, B) is peaked at
l p —k/2

l

=0. At small values of
l p —k/2

l

it has negligible dependence on 8. For k= 1 A ' and
l p —k/2 =1 A ', the dependence on 8 is —15%.

The D& at k=1 A ' has decreased to —half its peak value at
l p —k/2

l

=1 A '. Thus it appears that in the first ap-
proximation we may neglect the 6 dependence of D &.

The angle average value,

D&(k, p —k/2
l

)= —,
' f d cosB D&(k,

l p —k/2 l,B), (2.55)

is much simpler to calculate. It is given by

Di(k
l P —k/2

l
)=2P f d'rii no(rii )jo( P —"/2

I rii ) f d r&2jo(«e2)[gud(12) —1][gud(1'2) 1](1+~)
(2.56)

0

and should be a good approximation to Dt(k,
l p —k/2 l, B). The results for k=0.6, 1.0, and 2.0 A ' are shown in

Fig. 7. This function does not have any singularities. The singularities in no(p) come from the long-range (r» ~op)
part of no(r» ), which is cut out in the D by the product of short-range functions g~d(12) —1 and g~d(1'2) —1.

The second integral in the t4(k, p) involving D (k, r» ) is calculated in a similar way. It is easy to show that
0

d r~~ no(r~~ )D*(k,r~~ )e "=D~(k, —p)=D~(k,
l
p+k/2

l
) .

The contribution of D'(k, r&~ ) contains the integral
.r

Dz(k, p)= f d r&~ no(r~~ )D'(k, r&~ )e

(2.57)

(2.58)

It depends upon the polar angle 6p of p; however, it is invariant under the transformation 6p —+~—6p. We neglect the
dependence on 6p and approximate D2 by its angle average

Dz(k,p)= —,
' f d cosB Dz(k, p, B ) . (2.59)

The Abe corrections to D' are neglected; we then have (from Fig. 5):

Dz(k,p)=p f d r» no(rii )Jo(prii ) f d'r&2d'ri3&o(«z3)

X (2[g„d(12)—1][g„d(1'3)—1]I 1+[g~d(1'2) —1]+[g~(13)—1]I [gdd(23) —1]

+ [g~(12)—l][g~d(1'2) —1][g~(13)—1][g„d(1'3)—1]gdd(23)) . (2.60)

The calculated values are shown in Fig. 8. The T4(k, p) is
thus approximated with

t4(k, p) = [1+g~d(k)]D, (k, p —k/2
l

)

+g~d(k)D~(k,
l
p+k/2

l
)+S(k)D2(k,p) .

(2.61)

f d p5nq(p)p=k .
(2m )'

This implies that

t)(k)+t2(k)+t3(k)+t4„(k) =0,
t, (k) —t, (k)+ t4„(k)=1,

(2.64)

(2.65)

(2.66)

3 f d p5nk(p) =0,
(2m )

(2.63)

0
The T4(k= 1 A ', p, 8& ——0) is shown in Fig. 9.

The conservation of particles and momentum requires
that

where

tg„(k)=

t4 (k)=

', f d, t, (k, B,), (2.67)
p(2'�)

f d pt (k,p, B )pcosB . (2.68)
p(2~)' k
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FIG. 8. D2(k,p).

The calculated values of the t's are listed in Table I. The
identities 2.65 and 2.66 are satisfied with an accuracy of
—15% of the largest t.

A~~( 11'2)=Af ~d(11'2) +Ad(11'2),

A~d(123) =f3(123)[1+A~d(123)+A~d(123)]—1,
(3.1)

(3.2)

III. THREE-BODY CORRELATIONS Agdd(123) =[f3(123)] [I+ALd(123)+Addd(123)] —1,
In this section we calculate the 5nk(p) with the wave

function (1.2) for the ground state and the Feynman exci-
tation operator (1.4), using the three-body correlation
determined in Ref. 11. The cluster expansion for the
5nq(p) has the form given in Sec. II A; however, we must
now consider three-body bonds of the type [f3(ijk)] —1

and f3(1jk) —1. The effect of these bonds on the two-
point functions g„~ —1 is taken into account as discussed
in Refs. 4 and 11. Their effect on the Abe functions is
generally given by

(3.3)

where A yz are four- or more-body Abe corrections from
two-body bonds g~„—1, and Azyz are four- or more-body
Abe corrections that include three-body bonds.

The t2 and t3 [Eqs. (2.34) and (2.35)] contain only two-
body integrals, and they are calculated as described in the
last section. In the Jastrow calculations and here also we
neglect all Abe corrections to the A's [Eqs. (2.29) and
(2.32)]. This corresponds to the following approximations
for the A' s:

Ad(k)=p f d r&2d r, 2d r, 3e "([gdd(12) —1][gdd(23) —1][gdd(31)—1]+I [f3(123)] —1]gdd(12)gdd(23)gdd(31)),

(3.4)
A (k)=p J d rod rI3e 'I[g~(12)—1][g~d(13)—1][gdd(23) —1]+[f3(123)—l]g d(12)g d(13)gdd(23)I .

(3.5)

The three-body correlations do not have a large effect
on the no(p) as discussed in Ref. 4. The calculated values

of the t& 3 with the wave function (1.2) are listed in Table
II. These differ from the t~ 3 for the Jastrow Vo by
& 15%. The effect of the triplet correlation on the

t4(k, p) has not been calculated.

IV. BACKFLOW CORRELATIONS

0.4

0.2

0

k =1.0 A

In this section we calculate the t& 3 with wave func-
tions (1.2) for the ground state and (1.5) and (1.6) for the
excited state. The cluster expansion of Sec. IIA is still
valid; however, we now have many more terms containing
the backflow correlation bonds g(r~)k r~j. There are no
two-body backflow correlations in the ground state, and
so the g„~ do not contain two-body backflow effects. The
triplet correlation, however, can be thought of as a back-
flow effect. '

-0.2

I

2.0
-0.4 -2.0

I

-I.O
I I

0 I.0
p(A )

FIG. 9. t4(k,p, e~ =0). Total contributions of the D and D
terms is shown by the dashed-dotted line, and the dashed line
gives that of the D' term. The full line gives t4(k, p, e =0).
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TABLE II. Calculated t&(k), t&(k), and t3(k) using Jastrow ( J), Jastrow plus triplet (J + T), and Jas-
trow plus triplet plus backflow (J + T + B) wave functions.

ti(k)
J+ T J+T+B J

t, (k)
J+T J+T+B J

t, (k)
J+T J+T+ 8

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

—8.66
—4.68
—3.37
—2.61
—2.12
—1.77
—1.53
—1.39
—1.31
—1.18
—1.00
—0.87

—10.02
—5.43
—3.54
—2.49
—2.00
—1.76
—1.61
—1.48
—1 ~ 36
—1.17
—0.93
—0.80

—9.89
—5.17
—3.23
—2.27
—1.93
—1.82
—1.75
—1.63

1.48
—1.24
—0.96
—0.83

3.54
1.63
1.08
0.80
0.67
0.59
0.56
0.60
0.73
0.92
1.09
1.16

4.23
2.03
1.20
0.77
0.60
0.56
0.56
0.61
0.73
0.93
1.10
1.17

4.13
1.82
0.92
0.49
0.35
0.35
0.41
0.52
0.68
0.91
1.10
1.15

5.21
3.17
2.35
1.75
1.25
0.8 1

0.44
0.17
0.02
0.00
0.03
0.03

5.89
3.55
2.44
1.70
1.18
0.77
0.44
0.18
0.03
0.00
0.03
0.03

5.85
3.44
2.25
1.46
0.96
0.63
0.37
0.16
0.02
0.00
0.03
0.03

We have developed, in Ref. 8, two approximations to
sum backflow terms. These approximations must be used
with the short-range backflow function gs(r) of Ref. 8.
The simpler of these is called the two-body (TB) factoriz-
able approximation in which only those terms whose con-
tributions can be expressed as products of two-body in-

tegrals are retained. The second, called extended TB or
ETB, considers the modification of the backflow correla-
tion g(r) due to Jastrow and triplet correlations in calcu-
lating the TB integrals. For the sake of clarity we first
calculate the t

& 3 in the TB approximation and later give,

expressions for the ETB.
The ratio X~/Xo, given by XS(k) in the Jastrow theory

[Eq. (2.18)],becomes

&q'o
l
pa«)p~(k)

I
+o& :—KXg(k)

Xp 'Pp
i
4p

=%IS(k)[1+ l I9 2(k)] +I)p 2(k) I (4.1)

I92(k)=2p I d re'"'q(r)ik. rgb(r),

I to, 2(k) =p I d r(1 —e'"'
)[ k'rvl (r)]' gdd (r).

(4.2)

(4.3)

We have to replace the S(k) in the denominator of Eq.
(2.27) for 5n"(r» ) by the Xz(k).

The terms included in this calculation of X~(k) are il-
lustrated with diagrams in Fig. 10. The dashed-dotted
line in these diagrams represents the backflow correlation
ig(r)k r(in Ref. 8 th.e backflow correlations are shown by
wiggly lines which we have used here for denoting g d —1

bonds). The backflow is around the particle in momen-
tum state k. The exchange line starts and ends on the
vertices representing this particle in %'~ and 4'q. Thus all
backflow correlations in %~ must start from the beginning
of the exchange line, while those in %f, must start from
the end of the exchange line. A mark between the ex-
change and the backflow line is used to differentiate the
backflow correlations from Vz and 'Pz. If the mark is at
the beginning of the exchange line the correlation is from

in the TB approximation. The two-body integrals 19 2(k)
and I,p 2(k) are

S (k) II9 $(k)+ —,
' [I9 2(k)] I, (4.5)

to which we add S (k) from the contribution with no
backflow lines [Eq. (2.28)] to obtain [Sz(k)] . The terms
of Fig. 11.3 give 2I~p 2(k), while those of Fig. 11.4 togeth-
er with the S (k)A~(k) from Eq. (2.28) give
[S~(k)] A~(k). Thus the 1+ [B~] in TB approximation
is given by

1+[B']=Sg(k)I9 2(k)

+Sg(k)[1+Ad(k)]+2I)p 2(k) . (4.6)

+ /

+ I

J

s(a) (i + —- )
2

+

FIG. 10. Diagrammatic illustration of the calculation of
Xg/Xp in the TB approximation.

and if it is at the end then the correlation is from 0'~.
The backflow correlation between two points i and j is
+i g(r;~ )k r,j, where i is the vertex at which the lines are
marked, and the sign is positive (negative) when it is from
0'q (9'f, ). We note that in the numerator 'diagrams with
points 1 and 1', the point 1 can only have backflow corre-
lations from O~, and 1' from +&.

The diagrams of Fig. 11 illustrate the backflow contri-
bution to [8&] in the TB approximation. The terms of
Fig. 11.1 give Sz(k)I9 2(k), where

Sg(k) =S(k)[1+—,I9 2(k)] . (4.4)

The terms of Fig. 1 1.2 give
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S(k) & + I + 0 + s(k)

l2. I

S (k) ] + I +
I

I I.2

I ~~ &

/ y J

I I.3

+
/

TP QT

I

I

+ w--9
/

/

I l.4
12.2

FIG. 11. Backflow diagrams in [B~].
FIG. 12. Backflow diagrams in [B', ].

The backflow contribution to [B'~ ] is illustrated in Fig.
12. The diagrams of Fig. 12.1 give —,Sz(k)I d 2(k), where

I~d z(k)=2p I ik rq(v)g d(r)e' 'd3v . (4.7)

On adding the contribution of diagrams 12.2 to the
g~d(k)[1+g~d(k)] from Eq. (2.30) we obtain

g d(k)[l+ —,I92(k)]

(4.8)

In the TB approximation Id~2 I„d 2 [Eq——. (4.7)]. Dia-
grams of Fig. 11.4, with wiggly instead of the dashed lines
from point 1, also contribute to [8& ]. They convert the
S (k)A (k) of Eq. (2.30) to [Sz(k)] A~(k). In all we ob-
tain

t)(k)= (2g~(k)[1+ ~ I9 2(k)]I1+g~(k)[1+ ~I9 z(k)]+Y~Idur 2(k) I

+Sa(k)[Iud, z(k) —I9 ~(k)] Sg(k)[1+Ad—(k) —2A~(k)] —2I)o z(k)) . (4.9)

The backflow [C] diagrams that contribute to t2 are
shown in Fig. 13. By adding their contribution to that of
diagrams without backflow lines [Eq. (2.34)] we obtain

t2(k) = [ 1+g„d(k)[1+—,I9 2(k)]+ , Idw 2I—
X~(k

(4.10)

Similarly by adding the contribution of [C] diagrams in

Fig. 14 to the t3 of Eq. (2.35), we get

t3(k)= Ig„d(k)[ 1 + —,I9 2(k)] IX (k
(4.11)

I I

I

0 0

In the ETB approximation we add the contribution of
diagrams with elements shown in Fig. 15.1 to all diagrams
that contain the element shown in Fig. 15.2. The contri-
bution of the elements of Fig. 15.1 is denoted by 5qdd(r):

~qdd(vj ) 2 d r kr jr'k9(vk)gdd('tk)'P
riJ

I I

I I

X [gdd (jk ) —1 —~] (4.12) FIG. 13. BackAow diagrams contributing to t2.
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V

15.1 15.2

FIG. 14. Backflow diagrams contributing to t3.

The elements 59)d (r) and 591 d(r) are shown in Figs. 15.3
and 15.5 We obtain

5'lid (r;l)= 2 d r;kr;l rlkvl(rl )gdd(ik)p
I"a

15.4

X[g d(&k) —1+M],

59 d(rl')= 2 d rlkrlk rl'9(rlk)gIIId(rlk)p
li

X [gdd(ik) 1+—W] .

(4.13)

(4.14)

k

I

15.5 15.6

These are added to diagrams that have elements in Figs.
15.4 and 15.6, respectively.

The two-body integrals I9 p(k), I d 2(k), Id„2(k),
I&o 2(k) modified by the 5r) contributions are, respective-
ly, given by

FIG. 15. Elements 15.1, 15.3, and 15.5 represent the 5g's.
They can substitute the g elements 15.2, 15.4, and 15.6 in TB
diagrams. The exchange lines in elements 15.1, 15.2, and 15.3
can have any direction.

I9(k) =2p f d'r lk «'"'I n(r)gdd(r)+5 7dd(r)[gdd(r) 1]I—
I d(k)=2p f d r ik re'"'I rt(r)g„d(r)+5r)~d(r)[g~d(r) 1]I, —

Id (k)=2p f d r ik re'"'Irt(r)g~d(r)+5rtd~(r)[g„d(r) —1]I,
I&o(k)=p f d r gdd(r)(k r) Ip(r)[9)(r)+5gdd(r)] e' '[rt(r)+5r/dd—(r)] I .

(4.15)

(4.16)

(4.17)

(4.18)

The calculated values of t& 3 in the ETB approxima-
tion are listed in Table II. We see that the backflow
correlations have a significant effect on the t2 in the max-
on region (k —1 A ). We have not calculated the effect
to backflow correlations on t4(k, p).

V. MOMENTUM DISTRIBUTION
AT LOW TEMPERATURES

At low ( & 1 K) temperatures liquid He can be thought
of as a gas of noninteracting elementary excitations. Thus
the momentum distribution of atoms in the liquid at low

temperatures can be expressed as

5n, (T)
n, (0)
J+T J+T+B

1 d k
5nl(T, p)= no(p) f tl(k), (5.4)

(2~)3p exp pe(k) —1

1 d k
5n2(Tp) =

(2~)3p exp[pe(k)] —1

X [t2(k)+t3(k)]no(
~ p —k

~

) . (5.5)

TABLE III. Change in the condensate fraction n, as a func-

tion of temperature. The theoretical value (Refs. 2 and 4) at
T=O n, (0) is 0.092 and the experimental value (Ref. 6) is

0.139+0.023.

n ( Tp) = no(p)+5n (Tp),
Q d k

5n(T,p)= 3 f 5nk(p),
(2~)3 exp e k —1

(5.1)

(5.2)

5n (TP) =5nl (TP)+5n2(TP), (5.3)

where e(k) is the energy of the excitation of momentum

k, and p is the inverse temperature. In this temperature
range only the excitations with k &0.2 A are important,
and the t4 term of the 5nk(p) is unimportant. Neglecting
it we obtain

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

—0.000 16
—0.000 66
—0.0015
—0.0027
—0.0041
—0.0059
—0.0079
—0.0103
—0.0129
—0.0157

—0.000 16
—0.000 64
—0.0014
—0.0025
—0.0039
—0.0055
—0.0074
—0.0095
—0.0118
—0.0144

—0.000 16
—0.0064
—0.0014
—0.0025
—0.0039
—0.0055
—0.0074
—0.0095
—0.0119
—0.0145



7040 E. MANOUSAKIS AND V. R. PANDHARIPANDE 31

TABLE IV. Change in the momentum distribution 5n(p, T) for various temperatures. The last
column is the momentum distribution in the ground state obtained from variational calculation (Ref. 4).

6n(p, T)

0.2 0.4 0.6 0.8 1.0 n(q, o)

0.015
0.035
0.055
0.075
0.095
0.115
0.135
0.155
0.175
0.195
0.215
0.235

2.825
0.195
0.010
0.001
0.000

8.919
1.065
0.177
0.053
0.011
0.003
0.001
0.000

15.413
2.155
0.504
0.190
0.060
0.024
0.008
0.003

22.010
3.312
0.944
0.379
0.146
0.070
0.030
0.014
0.006
0.003
0.001
0.001

28.646
4.497
1.341
0.595
0.256
0.134
0.065
0.034
0.018
0.009
0.005
0.003

5.01
2.36
1.66
1.33
1.14
1.02
0.93
0.86
0.81
0.76
0.73
0.70

We can further approximate the 5n (T,p) at small T by
using the small-k limits discussed in Sec. II B. This gives

n, (0)mc
5n, (Tp)=

Ap exp(Phpc) —1
(5.9)

5n, (T,P) = no(p)
—1 dk mc

(2') p exp(PA'kc) —1 A'k

no(p) T—', —:—no(p)(T/To)',
12pA' c

(5.6)

n, (T)=n, (T=O)[l —(T/To) ], (5.8)

where To is -7.6 K. The above equation has also been
obtained by a phenomenological approach, ' and from the
structure of the perturbation theory at finite tempera-
ture. '" The results for the condensate fraction obtained
with the e(k) and the t&(k) [Eq. (5.4)j are given in Table
III. These are quite close to the asymptotic ( T~O) form
(5.8), and fairly independent of the choice of the wave
functions. They mostly depend upon the experimentally
known S(k) and e(k).

The 5-function term pn, (0)5(p) in no(p) gives rise to
terms in 5n2(T, p) that have singular behavior at p —+0.
We denote by 5n, (T,p) the contribution of this term to
5n2(T p):

5n2(T,p)= 1 dk mc
no(~k —p ).

(2m. )3p exp(PA'kc) —1 A'k

(5.7)

The effect of temperature on the fraction of particles n,
in the p=0 state is given by Eq. (5.6) as

At small p (pic « 1) we can expand the Bose factor in
powers of p:

1 1 1 + 0 ~ ~

exp(Pic�)—1 Pfipc 2
(5.10)

and obtain

5n, (Tp) =n, (0) ——,
'

n, (0) +
Q2pp 2 Qp

(5.11)

Recall that the no(p) has exactly the same 1/p term with
positive sign. Thus at ppA'c «1, the 1/p term in the
no(p) is exactly cancelled by the 1/p term in 5n(T, P).
Thus the total n (T,p) can be expected to exhibit the 1/p
singularity only for Pic&1. This cancellation has re-
cently been noted by Griffin. ' The 1/p term in Eq.
(5.11) has been discussed in Refs. 13 and 14.

The calculated values of the 5n (Tp&0) are shown in
Table IV. The Eqs. (5.3)—(5.5) are used to obtain these re-
sults, but they are not too sensitive to the deviations of
t& 3(k) or e(k) from their low-k limits. The 5n (Tp&0)
is positive in this temperature range. Thus it appears that
at low temperatures, atoms are removed from the p=0
condensate and put in states with e(p) & rrT. The momen-
tum distribution at values of p such that e(p) &rrT is
unaffected by the thermal effects.
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