
PHYSICAL REVIEW B VOLUME 31, NUMBER 11 1 JUNE 1985

Cellular states in a boundary-layer model of directional solidification
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We use a boundary-layer model to study the cellular states in directional solidification. Away

from threshold a gap develops in the center of the band of allowed states, and the boundaries of the

Eckhaus instability move toward longer wavelength.

The problem of pattern formation during crystal
growth has received a great deal of theoretical interest re-
cently. In particular, the properties of cellular states
formed during the directional solidification of a liquid
mixture have been studied extensively. In directional so-
lidification a thin film of a binary alloy is drawn at con-
stant velocity v through a uniform temperature gradient
parallel to the direction of motion. The temperature gra-
dient is such that the film starts off in the molten phase
and progressively cools as it moves, forming a solidifica-
tion front perpendicular to the direction of motion. ' This
solidification front exhibits different morphologies as the
drawing velocity is increased. We shall use the following
terminology to describe these states in order of increasing
velocity: planar interface, cellular states (smooth spatially
periodic interfaces), cusps (singular spatially periodic in-
terfaces), and dendrites. In the so-called one-sided model,
we assume that latent heat at the interface is negligible,
that the thermal conductivities are equal in the liquid and
solid phases, and that the diffusion of solute in the solid is
negligible.

%'ollkind and Segel investigated the small-amplitude
steady states near the region of neutral stability and
demonstrated the existence of stable periodic cellular
states for very dilute alloys. Langer and Turski and
Langer showed, in the context of the symmetric model of
directional solidification, that these states could, in fact,
be unstable to long-wavelength perturbations (the Eckhaus
instability). Similar results for the one-sided model were
derived by Dee and Mathur. What is needed at this point
is a probe of the existence and stability of cellular states,
away from threshold, outside the region of validity of ain-
plitude equations. This has been done, in part, in the nu-

merical simulations of interface profiles which have been
performed by McFadden and Coriell, Ungar and Brown,
and Kerszberg. However, these calculations did not pro-
vide a complete stability spectrum for the cellular states.
It is the purpose of this paper to study these cellular states
in the context of a boundary-layer model of directional
solidification. The advantages of using loca1 models of
interface dynamics in probing the nonlinear behavior of
pattern forming systems have been demonstrated recent-
ly. ' Here, in the context of directional solidification,
we are able to perform by Floquet theory a complete sta-
bility analysis of the cellular states far from the threshold
of the planar instability. Qur preliminary results indicate
that sufficiently far from threshold the transition from

smooth cellular states to cusp states is associated with the
appearance of a gap in the center of the band of stable cel-
lular states. In addition, a portion of the band on each
side of the gap becomes amplitude unstable. It is worth
pointing out that the model we are studying here can ac-
tually be used to describe experiments in a special limit.
In the study of dendritic growth it has been shown that
for large thermal undercooling the boundary-layer model
is a very good approximation to the full diffusion prob-
lem. The boundary-layer model of directional solidifica-
tion that we study here exhibits the same property at large
drawing velocities and sma11 solute concentrations. This
corresponds physically to a limit where the wavelength of
the cellular pattern is much 1'arger than the solute dif-
fusion length. Quantitatively, it can be shown analytically
that, in this limit, the stability spectrum of the boundary-
layer model, for a planar interface, approaches asymptoti-
cally the spectrum for the one-sided model. Detailed cal-
culations will be presented elsewhere. These results indi-
cate that the model presented in this paper should provide
a good description of the properties of smooth cellular
states in the rapid solidification regime which is, present-

ly, of considerable technological interest.
We turn now to a description of our model; for a review

of the topic, see the review article by Langer. ' Direction-
al solidification is characterized by three lengths. The dif-
fusion length l =D/v determines the range of the solute
diffusion field, D being the coefficient of solute diffusivi-

ty in the liquid (note that our definition differs by a factor
of 2 from other authors). The thermal length

lT Pb, C /G measures ——the length over which the inter-
face must be displaced to change the equilibrium solute
concentration by an amount AC . Here, AC is the con-
centration gap for a flat interface, /3 is the slope of the
liquidus line, and 6 is the temperature gradient. The con-
centration gap is related to the partition coefficient k,
which is the fraction of solute remaining in the solid, and
the solute concentration at infinity, C", by

AC =C ——1p 1

k

Finally, there is the capillary length dp which is propor-
tional to the surface tension and acts as a short-
wavelength cutoff for interfacial deformations. The con-
trol parameters for the one-sided model are then
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v=lT/l,

V=do/l .

(2a)

(2b)

We measure all lengths in units of the diffusion length,
and time is measured in units of 1 /D.

The dirnensionless excess solute concentration in the
liquid,

C(x, t) —C
ac' '(3)

obeys the Gibbs-Thomson boundary condition at the in-
terface,

u(interface) =u, =1— —Va.(s),g(~)
V

(4)

where we have introduced g, the displacement of the in-
terface from its planar position, ~, the curvature of the in-
terface, and s, the arclength along the interface. It is con-
venient to consider the quantity

h = f udri=u, lb, (5)

which is the excess solute per unit length of the interface.
The coordinate g measures distance along the normal to
the interface; Ib is the decay length of u along the normal
to the interface. The approximation (5) is the essence of
the boundary-layer model; /b is regarded as the thickness
of a boundary layer of excess solute at the interface, al-
lowing us .to replace the two-dimensional diffusion equa-
tion governing u(x, t) by a simpler phenomenological
equation for h. This approximation is valid whenever the
diffusion length is much smaller than the wavelength of
the cellular states. For states which contain cusps, this
approximation must break down. In this way, a limited
form of nonlocality is retained in the model. The
boundary condition expressing the conservation of solute
is then

2
)interface &s

k+(1 —k)u, h(k+(1 —k)u, )

The dynamical equation for h is a statement of conserva-
tion of solute:

for the BLM an amplitude equation describing the cellu-
lar states near threshold. We find that for a given value
of k, cellular states will exist, at least infinitesimally close
to threshold, for values of V& V, (k), where V, (k)
diverges as k tends toward zero. This result is in good
qualitative agreement with the previous results of
Wollkind and Segel and Dee and Mathur. Quantitative-
ly, V, (k) is larger for the BLM than for the one-sided
model. This is not surprising since for V= V, (k), q„ the
critical wave number, is not small and we do not expect
exact quantitative agreement in this region (e.g. , k =0.1,
q, =0.4, and V, = 1.5).

The results of the amplitude equation are asymptotical-
ly exact as Xv~0. To investigate the cellular states of the
BLM far from threshold, we have found numerically sta-
tionary solutions of the equations of motion (7) and (8)
and have investigated their stability by Floquet theory.
Here, we only give a brief outline of our method. The sta-
tionary solutions of the equations of motion are described
by a set of four coupled ordinary differential equations
with dependent variables (8, g, u, Bu/Os=A, ) and in-
dependent variable s. All spatially periodic solutions can
be identified by finding the set of values g, u which gen-
erate trajectories, in the (O, g, u, A, ) space, which leave 8=0
at g=g, u =u, and A, =O, and intersect 0=0 again at
A, =O. To study the stability of a stationary solution of
wave number q, we write the dynamical field
g(x, t):[h (x, t),g—(x, t)]j as its stationary value f, (q,x) plus
a small perturbation

(x, t) =e'~"

We then linearize the equations of motion about P, (q,x),
expressed in terms of horizontal distance x rather than
curvilinear distance s, and solve numerically the resulting
eigenvalue problem.

There are two branches of the eigenvalue spectrum
co„(q,q') with n =1. The translational branch satisfies

I I

LIQUID

aI a=u„k(l —u, ) —v„ah+
Bt

n

(7)

The notation dh/dt
~

„denotes a derivative following the
motion of a point on the interface. Thus, s becomes a
dynamical variable in this formulation. The exact
kinematic equations of the interface are

5

0—

u= l7

SOL ID

2v+ Un ~

Bs

dt
"' = t''~U„ds'.

(8a)

(8b)

0—

v'= 20

Together with Eqs. (4)—(7), they constitute the boundary-
layer model of directional solidification (BLM).

We now summarize our results. After the planar inter-
face becomes unstable it restabilizes into a periodic cellu-
lar state for restricted values of k and U. We have derived

0 IO 20 30

FIG. 1. Cellular interfaces on a one-to-one scale for k =0.1,
V =5, and v=13, 17, and 20. Lengths are measured in units of
the diffusion length.
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co~(q, q'=0)'=0, and the sign of its curvature at q'=0
gives the boundaries of the Eckhaus instability. The
second branch co&(q, q') determines the stability of the cel-
lular interface against amplitude perturbations.

We have chosen k =0.1 and V=5 and studied the cel-
lular states as v is increased above its threshold value
v, = 11.65. We show in Fig. 1 a series of interface profiles
which exhibit a front-back asymmetry which increases
with v.

To quantify the interface profiles we have found it con-
venient to calculate the root-mean-square amplitude (rms)
up to the fifth harmonic:

1/25

(A(q)) = —,
' g A (q)

m=0

A, /2
(q) =— cos(mqx)g, (q, x)dx .—A. /2

(10a)

(lob)

We found that the higher harmonics were insignificant.
We have plotted in Fig. 2 this rms amplitude versus

wave vector for three different values of v, and we have
also indicated the various regions of stability and instabili-
ty.

At v= 13 the results are qualitatively similar to
amplitude-equation results and we find a family of cellu-
lar states, dominated by their fundamental harmonic,
which covers the entire range of unstable wave vectors.
Only a small portion of this family of cellular states is
Eckhaus stable. We have found that the boundaries of the
Eckhaus instability calculated numerically occurred at
smaller wave numbers than the boundaries as calculated
from the amplitude equation. This trend persists at
higher values of v.

As v increases beyond a nonzero critical value, the
second harmonic becomes more important and unstable

0
(a)

states with q & q, terminate for sufficiently small rms am-
plitude. The disappearance of these states is associated
with the emergence of an unstable branch of long-
wavelength cellular states. This is shown in Fig. 2 for
v=20 and 21. A feature of greater importance is shown
in Fig. 2 for v=21. In this situation an additional gap ap-
pears in the center of the band where stationary states no
longer exist. Associated with this gap opening, we find an
extreme sensitivity of the cellular states towards ampli-
tude fluctuations. We have plotted in Fig. 3(a)
co~(q, q'=0) versus wave numbers in the center of the band
for v=20. The states which correspond to the largest in-
terface deformation are weakly stable to amplitude fluc-
tuations at v=20. At v=21 the cellular states become
unstable against amplitude fluctuations, on either side of
the central band gap, as the cells become deeper. This
feature is shown in Fig. 3(b), where we have plotted
cot(q, q'=0) versus the coordinate of the bottom of the cell
as one moves along the (A,B) trajectory indicated in Fig.
2.

The appearance of a central band gap and the simul-
taneous appearance of amplitude unstable cellular states
are connected. This connection follows from straightfor-
ward considerations of bifurcation theory. Consider the
two special points which define the edge of the central
band gap, where t)(A(q))/t)q= oo. For v=21, they
occur at q;„=0.85 and q „=1.07. As q approaches
q;„ from the left (q~q;„), there exist two stationary
states with the same wave number, such that their differ-
ence tends toward zero. Consequently, one can construct
from the difference of these two states an eigenvector of
the linearized operator [obtained by linearizing the equa-
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FIG. 2. rms amplitude vs q/q, for k =0.1, V=5, and
v=13, 20, and 21. q, is the wave number at which the planar
interface first becomes unstable. The bifurcation points are in-
dicated by +, and the terminations of the band of cellular states
at v=20 and 21 are indicated by Q. The stable states and the
unstable states are indicated by a solid line and a dotted line,
respectively.
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FIG. 3. (a) w&(q, q'=0) vs q/q, for v=20; (b) coj(q, q'=0) vs
the depth of the cells measured from the planar interface, along
the ( A, B) trajectory indicated in Fig. 2.
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tions of motion about f,(q;„,x)], with zero eigenvalue
and which corresponds to an amplitude perturbation of
g, (q;„,x). The same argument holds as q~q+ „and,
consequently, the two edges of the central band gap are
points of marginal stability with respect to amplitude per-
turbations.

It is customary to enclose by a line in the (v, q) plane
the region where stable cellular states exist (e.g., Busse
balloon in hydrodynamics). We have not been able to
scan all values of v, but our results indicate that the re-
gion of stability lies within a balloon with two horns on
either side of the center of the band of allowed states.

Now we address the question of how the interface can
evolve from different initial conditions into a grooved
state. When the planar interface is perturbed from ran-
dom initial conditions, it will grow at a wave number very
close to the fastest growing mode. At v=21 this wave
number is inside the central gap where no stationary states
exist, and the interface evolves directly into a more
grooved structure. The band of stationary states on either
side of the gap in Fig. 2 for v=21 is inaccessible starting
from a perturbed planar interface. Nevertheless, it can be
reached by preparing the interface at the desired wave-
length at higher or lower velocity (higher or lower values
of V and v), and then suddenly quenching the system to

V=5 and v=21. In this situation, the interface will ei-
ther remain stable or evolve toward a more grooved struc-
ture via an amplitude instability. This evolution, howev-
er, may be very slow on the timescale of the experiment
since the unstable states are only weakly unstable
[co~(q,q'=0) is slightly greater than zero; see Fig. 3(b)].

In conclusion, we have shown within the context of a
local model of directional solidification that the cellular-
to-cusp transition can be associated either with the ap-
pearance of a gap in the center of the band of allowed
states or an amplitude instability of a subset of these
states. We have also shown that the boundaries of the
Eckhaus instability differ from amplitude-equation results
away from threshold and move toward longer wave-
lengths.
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