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The interference between final states of s and d symmetry arising from anisotropic L2 3-edge ab-
sorption is explicitly considered. Previous arguments by others that such an interference can signifi-
cantly affect the amplitude and phase of the L~ 3-edge surface extended x-ray-absorption fine struc-
ture {SEXAFS) had been based on calculated phase shifts and analysis of simulated data. Here,
empirical methods are developed to isolate the effects of the interference. For the case of L2 3-edge
absorption from iodine it is shown that the calculated s- and d-state phase-shift differences are
about a factor of 2 larger than the experimental value. This result accounts for the success of ear-
lier L23-edge SEXAFS amplitude analyses which approximate the interference by simple addition
of the d and coupled s-d absorption terms. The previously argued effect on the SEXAFS phase
correction is also shown to be too large by about a factor of 2 as a result of the analysis procedure
used in that work. The effects of the interference are explored as a function of absorbing adatom,
adsorption site, and accuracy of the calculated s and d-state phase-shift differences. With the as-
sumption that these calculated values are reliable it is shown that only the atop configuration should

0
manifest a measurable phase correction (corresponding to -0.01 A in the bond length) and that the
additive approximation used in the earlier SEXAFS studies of I and Te should be valid for all
atoms. In the absence of data from other elements to test the accuracy of the calculated phase
shifts, a general and theory-independent procedure was developed for analyzing I-23-edge data.
This procedure removes the effects of the interference and allows bond lengths and adsorption sites
to be determined with a reliability comparable to that obtained from E-edge SEXAFS data.

I. INTRODUCTION

Analysis of the frequency and amplitude of the extend-
ed x-ray-absorption fine structure' (EXAFS) from atoms
in even complex bulk systems has been shown to pro-2 —8

vide reliable structural information directly in terms of
bond lengths and coordination numbers around the ab-
sorbing atom. The application of EXAFS to atoms ad-
sorbed on the surface of single crystals " (SEXAFS)
provides. additional information about their spatial orien-
tation with respect to the substrate atoms because the
photoabsorption cross section, usually isotropic in most
materials, ' is anisotropic for the adatoms. Varying the
direction of x-ray polarization with respect to the
adsorbate-substrate bond(s) thus changes the SEXAFS
amplitude, and this information can be used to comple-
ment the determination of adsorption-site geo-
metries. "'

FOI L 2 3 edge absorption, the polarization dependence
of the SEXAFS amplitude is more complicated than that
for E-edge absorption. The reason for this is that the
photoabsorption probability for initial s states (e.g., X or
L

& edges) involves final states of only p symmetry,
whereas that of I.z or L3 edges involves final states of
both s and d symmetry whose coupled strength is nonzero
for anisotropic absorbers. ' ' Neglect of this s-d cross
term for such absorbers can affect not only the determina-
tion of their coordination number (adsorption-site

geometry), but also their bond lengths. Approximate
modifications to the analysis of SEXAFS amplitudes
from L2 3 edges as a result of this cross term have been
mentioned previously, '" ' but only the results of correc-
tions applied to the analysis of SEXAFS bond lengths
were reported in recent abbreviated work. ' ' An account
of these bond-length corrections was not presented be-
cause, as will be shown in this work, for all but one ad-
sorption geometry the corrections are negligible ((0.01
A), and even for this exceptional case the corrections can
be completely eliminated.

Recently, however, Stohr and Jaeger ' (SJ) considered
the effects of the s-d cross term and concluded that
neglect of the cross term or approximate modifications in
the analysis of L2 3-edge SEXAF$ data can lead not only
to significant errors in the derived bond length, but also to
erroneous assignments of the chemisorption site. Such
eonelusions, if correct, would have important implications
on the analysis of SEXAFS data and the ability of that
technique to obtain reliable adsorption geometries.

In this work the differences between K- and I 2 3-edge
SEXAFS data are explicitly considered. A method of.
analysis is presented which allows such differences to be
removed in the determination of bond lengths and coordi-
nation numbers from anisotropic I.z 3-edge absorption
spectra. The conclusions of SJ are examined and correct-
ed. General implications of the effect of the s-d cross
term in L, 23-edge SEXAFS measurements are also dis-
cussed.
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II. BACKGROUND

A. K edges
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where f (1r,k) is the backscattering amplitude, e is a
Debye-Wailer —type term containing a mean-square dis-
placement o., and e ' ' is an inelastic scattering term
containing an effective photoelectron mean free path A, .
These terms (which, along with the R factor, determine
the short-range nature of the overall EXAFS amplitude)

The usual expression for the SEXAFS X(k) from a I(.
or L1 edge of an atom surrounded by N nearest neighbors
at a single distance R is given by

X( k, 8)=A'(k)Ns(8)sin[2kR +(I}»(k)],
I(: or L1 edges. (1)

/

Here k is the photoelectron momentum defined as
[2m (E —Eo)'i /A'], where E is the photon energy and Eo
is the energy threshold of the absorption edge, and p(b(k)
is the total phase shift experienced by the photoelectron.
It is given by

P(b(k) =P,='(k}+Pb(k) n,—. (2)

where pb is the backscattering phase shift due to the neu-
tral neighbor and (t, ,=' is twice the l =1 partial phase
shift due to the outgoing and return scattering from the
core-ionized absorbing atom. [The factor of ~ is included
to preserve the correct overall sign of X(k, 8).]

Multiplying the SEXAFS sinusoid is the total ampli-
tude function A'(k)Ns(8). The first part of this function
can be written as

ordinarily do not affect the determination of R or the
coordination number and will not be discussed further.
The second part of the total amplitude function is given

by
N

Ns(8)= X3le"
I

K orL, (edges. (4)

e is the polarization of the x-ray photon and r; is the unit
vector connecting the absorbing atom and the ith neigh-
boring atom in the coordination shell. For isotropically
distributed atoms the quantity Ns(8) averages to N, but
for anisotropic absorbers it can range between 0 and 3N.
For this reason Ns(8) is referred to as an effectiue surface
coordination number.

Comparison between the ratio of Ns(8) measured at
different values of 8 (the angle between e and the surface
normal) and that ratio calculated for adsorbate atoms oc-
cupying one of several possible surface geometries facili-
tates the empirical identification of the adsorption-site
geometry [the ratio Ns(81)/Ns(82) is called a relative am-
plitude ]. Absolute amplitudes can be obtained by nor-
malizing the total amplitude of the unknown surface sys-
tem Ns(8)A'(k) to that of a structurally known model
compound NbtAM(k) containing the same absorbing and
scattering atoms. The model compound is usually a
powder or gas so NM corresponds to a true (i.e., angularly
averaged) coordination number. The bond length can be
obtained by subtracting the argument of the model-
compound EXAFS sinusoid, 2kRM+(t »(k), from that of
the unknown system. Because the phase shifts are in-
dependent of chemical environment they. cancel (phase-
shift transferability ), leading to a very accurate deter-
mination of R. Further details of EXAFS data-analysis
procedures can be found in Ref. 8 and references therein.

L(2 3 edges

The corresponding expression for the SEXAFS frotn the Lq or L3 edge of the same absorbing atom considered in Eq.
(1) is given by' '

N

X(k, 8) =A'(k) g t —,
' (1+3

I
e r; I

)
I M21 I

sln[2kR +gab(k)]+ 2 I M01 I
Sin[2kR+Qob(k)]

+MOIM21( 1 3
I
e +i

I
}s1n[2kR +(tomb(k)] ]( I M21 I
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The three terms in curly brackets correspond to final
states of pure d, pure s, and coupled s and d symmetries,
respectively. The phase shifts are given by

$2b(k)=pa= (k)+yb(k),

40b«) =4''a='«)+4«»
(t(02b(k)= 2 [p

= (k)+p = (k)]+pb(k) ~

c =Mp] /M2I,

Eq. (5) may also be rewritten as
8

b,,(k) is the cross-term correction to the absorbing atom
phase shift for purely d final-state scattering. The radial
dipole matrix elements Mpi and M2~ couple the initial 2p
(1=1) atomic wave function with the 1=2 and 0 final
states. Defining the ratio

For convenience later on, Eq. (8}is rewritten as

402b(k) 4'2 (k)b+~ (ka} &

where

b,,(k)=-,' [(I),
'= (k) —P,

'= (k)] . (10)

X(k,8) =A'('k) [nd(8)»n[2kR+$2b(k)]

+n, sin[2kR+(t(ob(k)]

+n,d (8)sin[2kR+ $2b (k) +ba (k)]J,
(12)
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where

nd(8) =0.5
N

g (1+3
I
e ";

I

'),
2+C i =1

(13)

1. b„(k)=0

The simplest way to account for the total cross term is
to assume that, to first order, the effect of b,,(k) is negli-
gible, i.e., the cross term modifies only the amplitude. ' " '

Equation (16) can then be written as
C2

n, =0.5
2+c

N

nd(8)= y (1—3
I

e.r;
I

) .
2+c

(14)

(15)

X( k, 8)=A '(k)&s(8)sin[2kR +Pzb (k)],
where here

&s(8)=n„(8)+n,d(8)

= g (0 7+0.9
I

e.r; I
~), b,,(k) =0 .

(19)

The quantities nd(8), n„and n,d(8) can be thought of as
effective partial coordination numbers, although a com-
pletely physical analogy is absent since n,d(8) can take on
negative values. The ratio c has been calculated for a
variety of elements and is found to be approximately 0.2
for Z & 20 and relatively independent of k. Substituting
c =0.2 into Eqs. (13)—(15) and assuming —,'c =0 gives
the essentially exact and more simple expression

X(k,8)=A'(k)Ind(8)sin[2kR +P b(k)]

+n,d(8)sin[2kR +Pzq(k)+b, ,(k)]I,
(16)

N
«(8)=0 5 2 (1+3

I
& &

I

'» (17)

N

n,d(8)=0.2 g (1—3
I

e r;
I

2) .

For isotropic absorbers the total s- d cross term, i.e., the
term multiplied by n,d(8) in Eq. (16), vanishes by angular
averaging. For anisotropic absorbers this term will clearly
affect both the determination of bond lengths and effec-
tive coordination numbers, but it is not at all clear by in-
spection how large the effects of that term will be.

This expression is of the same form as Eq. (1) for K edges
and thus allows for the same analytical treatment of
L2 3-edge data. "' ' The effect of including the approx-
imate total cross term with b,,(k)=0 also makes Ns(8)
for L 2 3 absorption even more isotropic, i.e.,
g,.(0.7+0.9

I

e.r;
I

) in Eq. (20) versus g,.(0.5
+1.5

I
e r;

I
) in Eq. (17). This is particularly so for the

case of onefold atop adsorption because the relative frac-
tion of the numerical constant (0.7 or 0.5) to the 8-
dependent term is largest when N = 1.

The fact that L2 3-edge SEXAFS is always more isotro-
pic than Kedge SEXAFS, even for atoms in high-
symmetry adsorption sites, makes it clear why relative
amplitudes from L2 3-edge SEXAFS data alone are usual-
ly insufficient for a reliable determination of adsorption
sites. Additional measurement of absolute amplitudes us-
ing model systems (or comparison with simulated data,
discussed later on) and/or measurement of higher
nearest-neighbor substrate distances are essential for
unambiguous adsorption-site assignments. This point
has been emphasized previously ""' and will be seen to
be important in the Discussion section below.

2. 6, (k)~0

The assumption in Eq. (19) that b,, (k) =0 is only a sim-
plifying approximation. Rewriting Eq. (16) for any value
of b,~(k) gives the general expression

[&'(k)) X(k,8)=Im{nd(8)expIi[2kR+$2q(k)]I+n, d(8)expIi[2kR+$2b(k)+b„(k)]J)

=Im{nd(8)exp I i [2kR +Pzb(k)] I [a(k, 8)e'"' ' ']), (21)

where

and

a(k, 8)=( t 1+[n,d(8)/nd(8)]cosh, , (k) I

+[n,d(8)/nd(8)] sin h, (k))'~

a(k, 8)e'+"' ', to be seen in a straightforward way.
Rewriting Eq. (16) for L2 3 edges in the same form as Eq.
(1) for X ed es ivesg g

(22)
X( k, 8)=& '(k)Ns(8)sin[2kR +$2$(k)+ y(k, 8)],

P( k, 8)=tan
[n,d(8)/nd(8)]sink, (k)

1 +[n,d(8)/nd(8)]cosh, ,(k)
(23) where now in general

Lq 3 edges (24)

Equations (21)—(23) allow the effect of the total cross
term in Eq. (16), now incorporated into the term

Ns(8) =nd(8)a(k, 8) . {25)

+2 3 edge absorption, the total SEXAFS amplitude is
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TABLE I. Expressions of [A'(k)] 'X(k} for L2 3-edge absorption.

Isotropic
absorption

Exact'

nd (8}Slll[2kR +$2g(k }]

Approximate

nq(8}sin[2kR +$2I,(k}]

Anisotropic
absorption

nd(8)sin[2kR +$2g(k}]
+ n,d(8}sin[2kR+$2q(k}+b, ,(k}]

[nq(8}+ n,d(8)]sin[2kR +$2I,(k}]

'For c=0.2 (see text) the normalization, factor 2/(2+c ) that multiplies nq is =1 and the term
[c /(2+c )]sin[2kR +$01,(k}]is =D.

modified from A'(k)nq(8) (in the absence of the cross
term) to A'(k)nd(8)a(k, 8), and the total SEXAFS phase
is modified from [2kR +$2~(k)] to [2kR +$2&(k)
+g(k, 8)]. If b,,(k) =0, then g(k, 8)=0 and Ns(8)
= nd(8)+n, d(8), i.e., the approximations of Eqs. (19) and
(20) are obtained. The various conditions for Lz 3-edge
absorption are summarized in Table I.

C. The problem

When b,,(k) is finite, there are variety of possible ef-
fects on the SEXAFS amplitude and phase which are, it
will be seen, strongly dependent upon the sign and magni-
tude of b.,(k). One way to illustrate this dependence is to
plot the real and imaginary parts of a(k, 8)e'~' ' ' for
several different conditions of h, (k), see Fig. 1. As stated
above, the geometry most sensitive to these effects is the
case of atop adsorption. It has been previously shown'
that at saturation coverages I occupies the atop site on
Si(111), so this particular system will be considered here
as exemplary. For the atop geometry N =1, and from
Eqs. (17) and (18), n~(8) =0.5+ 1.5 cos 8 and
n,d(8)=0.2—0.6cos 8. The largest difference in the sign
and magnitude of the individual n,d(8) and nd(8) terms
and of their ratio is obtained when the polarization e is
parallel versus perpendicular to the adsorbate-substrate
bond lying along the surface normal, i.e., when 8=90'
versus 8=0', respectively. Explicitly, n,d (90') /
n~(90') =0.2/0. 5=0.4, . and n,d(0')/nd(0') = —0.4/2. 0
= —0.2. These ratios, extending from the point labeled 1

along the Re axis, are indicated by light dashed (0') and
dotted-dashed (90') lines in Fig. 1(a) for the special case of
hr(k) =0. Bold vertical fiducial marks along the Re axis
are also indicated for this special condition, with the
8=90 mark being larger. The quantity a(k, 8) is shown
by bold dashed or dotted-dashed lines for the two dif-
ferent values of 8. These lines, extending from the origin
to the respective fiducial mark, lie along the Re axis but
are shown displaced from that axis for clarity. From Eq.
(25) the absolute effective coordination numbers Ns(8) for
bq(k) =0 are a(90')nd(90') =(1.4)(0.5)=0.7 and
a(0')n~(0') =(0.8)(2.0)=1.6. The relative SEXAFS am-
plitude Ns(0 )/Ns(90 ) =2.3.

It is with the simplifying assumption of b,&(k)=0 in
Fig. 1(a) that the data of I on Si(111)had been analyzed. '

The appropriateness of that approach can be assessed by
considering the effects of a finite h&(k). An empirical
procedure for determining b,q(k) is given in Sec. IIIB2,
but an alternate method is to use the values of PI= (k)
and P&= (k) as calculated by Teo and Lee. This is the

approach adopted by SJ [these authors used P~z (k) and
Pt&s2(k), and b,zs(k) is almost identical to b.~(k)]. In Fig.
1(b) the ratios n,d(0')/nd(0') and n,d(90')/nd(90 ) are
shown for the value of b,& calculated at k =7 A '. Other
values of b, r as a function of k are indicated. Casual in-
spection of Fig. 1(b) would seem to indicate that the ef-
fects of hq(k) are substantial. This is also the conclusion
reached by SJ. The projection of a(k, O') on the Im axis
shows that the total SEXAFS phase is increased, which in
the next section will be seen to yield a bond length R (0')
that is lengthened relative to the value derived assuming
bq(k)=0. For 8=90' the total phase is decreased by
about twice the amount for 8=0', leading to a shortening
of the bond length. The absolute value of a(k, O ) is larger
than it would have been had b,&(k)=0. The result is an
increased total SEXAFS amplitude Ns(0) from 1.6 to
(1.08)(2.0) =2.16. The amplitude Ns(90 ) is decreased
from 0.7 to (0.95)(0.5)=0.47. The relative amplitude
Ns(0')/Ns(90') is, of course, modified even further. Fi-
nally, because b.

&
is a function of k, both the SEXAFS

distances and relative amplitudes are also k dependent.
The central problem concerning this paper can thus be
succinctly stated: Bond lengths and effective coordinating
numbers determined from L, 23 edge SEXAFS data ap-
pear to be very different depending upon whether b„(k) is
taken to be zero or finite.

III. DISCUSSION

In view of the problem posed above, four questions
must be addressed.

(1) Assuming the calculated b,,(k) values are reliable, to
what degree are the derived L, 23-edge SEXAFS bond
lengths and amplitudes affected for chemisorption sys-
tems with the worse-case atop configuration?

(2) To what degree are the calculated h, (k) values reli-
able and how does their uncertainty affect the Lz 3-edge
SEXAFS distances and amplitudes for systems with the
atop geometry?

(3) To what degree are the effects of the cross term and
uncertainties in b„(k) important for other chemisorption
geometries and polarization directions?

(4) Assuming the effects of the cross term are non-
negligible in 1.2 3-edge SEXAFS data, what general
analysis procedures can be applied to obtain the most reli-
able bond lengths and adsorption sites?

These questions are now answered in the order raised.
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FICx. 1. Phasor diagram illustrating the effect of the total s-d cross term [defined in Eq. {16)and rewritten in Eq. (21)] on the am-
plitude and phase of the 1.2 3-edge SEXAFS for the ease of an adatom in the atop configuration. Shown here is I on Si(111). The
SEXAFS amplitude (and thus the coordination number) is affected by the magnitude of a{k,O) [Eq. (22)]. It is indicated by bold
dashed or dotted-dashed lines for 0=0 or 90, respectively. In (a) there is no k dependence of a(k, O), in (b) and (c) that quantity is
shown at k =7 A (its magnitude as a function of k is also indicated). The SEXAFS phase (and thus the bond length) is affected by
the angle 111k,O) [Eq. (23)]. Both a(k, 8) and g{k,8) depend on the s-d cross-term phase correction 6{k) [Eq. {10)]and on the partial
coordination numbers nd(8) and n,d(8) [Eqs. (17) and {18)].The latter reflect the adsorption geometry, the former reflects the differ-
ence in phase (i.e., the interference) between the s and d final states waves. If 6(k)=0, as in case (a), there is no effect on the
SEXAFS phase and g{k,81=0. The SEXAFS amplitude is still affected, however, because n,d(8) is nonzero. [For isotropic L23-
edge absorption or when 8=54.7, n,d =0 and a(k, O)=1.].The ratios of n,d{8)/nq(81 for the anisotropic atop configuration are indi-
cated by light dashed (0=0 ) and dotted-dashed (0=90 ) lines lying along the Re axis and are terminated by bold short (0 ) and long
(90) vertical fiducial lines. The effect of n,d&0 in case (a) is to reduce a(0) to 0.8 and to increase a(90') to 1.4. These values of a(0)
also lie along the Re axis but are shown displaced from it for clarity. In case (b), the calculated values of A(k) for I from Ref. 25 are
used (e.g., at k =7 A ', 6,——109 ). The finite values of 1fj{k,O) affect the SEXAFS phase in opposite directions for 8=0' and 90'.
The SEXAFS amplitudes are very strongly affected, with a(0 ) increasing and a(90 ) decreasing relative to the values in (a). In case

(c), if 0.6 rad are uniformly added (see text) to the calculated hq{kl (e.g., at k =7 A ', b, &
——75'), the values 1{'{k,81 are similar to

g{k,O) in (b), but the values a'(k, O) approach those in (a). The conditions in (c) more closely approximate the experimental data for I
on Si(11I) [see Fig. 4{b)].
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A. Effect of h, (k) on bond length and amplitude
for atop geometry

I

1. Simulated data
— (0} a,{k)=o

I

n,

I- q'
Sl ~gg~

0
TABLE II. Bond-length errors (in A) due to A, (k)~0 deter-

mined from analysis of simulated L2 3-edge SEXAFS data with
the atop configuration and using phase shifts from Teo and Lee,
Ref. 25 (see text for details}.

This work
I-Si(111) Ag-Si(111)

SJ {Ref. 21)
Ag-Si(111)

I

10
90

0.003
—0.015

0.004
—0.018

O.OOS
—0.04

In Fig. 2(a) are shown simulated SEXAFS data for I on
Si(111) in the atop geometry using R =2.445 A and the
calculated I and Si phase shifts of Teo and Lee (TL). In
order to approximate the actual data more closely, the
simulated data have been multiplied by the function A'(k)
using TL*s backscattering amplitude f(m, k) for Si, a
value of 0.05 A for o., and the relationship A,(k) =k. '
The angles of 0=90' and 10' and the truncation at k -8.5
A ' were chosen as a compromise between the conditions
of the experimental I-Si(111) data' discussed in the next
section (90', 35', 8.2 A '), and those of the hypothetical
Ag-Si(111) data chosen by SJ (90, 10', 9.5 A '). Figure
2(a) shows the simulated data with b,t(k)=0, Fig. 2(b)
shows that with b, &(k) calculated by TL. These conditions
are essentially the same as those shown in Figs. 1(a) and
1(b). Simulated data were also constructed for the hy-
pothetical model compound I-Si using the same phase
shifts, amplitude function, and bond length, but with
0=54.7 in order to angularly average the terms in Eq.
(16) and obtain nd(54 7')=N. =1 and n,d(54 7')=0.. Fol-
lowing standard analysis procedures, ' "" ' the de-
rived bond lengths from the two simulated spectra in Fig.
2(a) with b,q(k) =0 were reproduced to better than 0.001
A. For the two simulated spectra in Fig. 2(b) with finite
A&(k), the determined values are different than those for
A&(k) =0 and are summarized in Table II.— Since SJ used
Ag instead of I in the atop position on Si(111) (and

R~s s;
——2.5 A), the same procedures and distance have

also been applied with Ag phase shifts and a Ag-Si model
compound. The bond lengths obtained for Ag-Si(111)
with finite h&s(k), see Table II, are not very different
than those for I-Si(111) because the TL-calculated phase
shifts for I and Ag are quite similar. For comparison,
the reported results of SJ for Ag-Si(111) are also shown in
Table II. These authors note that for the case of 8=90,
the bond lengt-h discrepancy they obtain of 0.04 A [com-
pared with the value that would have been obtained with
b,&g(k) =0] is larger than typical errors of & 0.02 A found
from analysis of high-quality experimental data, leading
them to conclude that the cross term can significantly
affect the derived bond lengths in I.2 3-edge
SEXAFS data. Note, however, that the magnitude of the
bond-length discrepancy determined here for 8=90' in the
simulated data is substantially smaller than that found by
SJ and is comparable to typical precision limits obtained
from experimental data.

0.2-

-0.2-

0.2—

-0.2—

-; (c) b,z(k) +0.6

0.2—

-e=

-0.2-

86 7
k (A-')

FIG. 2. Simulated L3-edge SEXAFS data using Eq. (24) for I
on Si{111)in the atop configuration. The conditions shown are
essentially the same as those in Fig. 1 (cos 10'=cos 0').
Analysis of the data in (b) gives a difference between the I—Si
bond length at 0=10' and that of 90' of only -0.02 A, but
gives a difference in SEXAFS amplitude ratios of -2 relative to
that determined in (a). Analysis of the data in (c) gives a some-
what smaller I—Si bond-length difference but a very much
smaller difference in SEXAFS amplitude ratio.

5

The origin of the larger discrepancy for R~s s;(90) in
the simulated data is traceable to the method used by SJ
for determining bond lengths. The variety of methods
that exist for deriving distances from EXAFS data have
been discussed elsewhere ' ' and are only briefly out-
lined here. All methods use a model system of known
structure from which the EXAFS X(k), and ultimately
the total phase 4M(k) =2kRM +P,b (k), are obtained.
The X(k') of the system with unknown R is analyzed in
an identical manner to give N(k')=2k'R+p, b(k'). The
prime notation indicates a different k scale from the
model compound, i.e., the threshold energies Eo corre-
sponding to k =0 in the model and unknown systems are
different because they depend sensitively on chemical en-
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vironment. Now the concept of phase-shift transferabili-
ty states that- at photoelectron energies above -60 eV
(k-4 A '), where scattering is from core rather than
valence electrons, the phase shift p,b(k) for a given
absorbing-backscattering atom pair is the same regardless
of chemical environment. Removal of p,b(k') with use of
P,q(k) therefore allows R to be accurately determined
provided the k scales in the two systems are matched.
The most common methods for accomplishing this scale
matching involve (a) adjusting the phase difference

(k) —@(k) such that a linear least-squares fit to it ex-
trapolates through k =0 (Ref. 8), (b) adjusting the phase
difference divided by k, i.e., [@™(k)—@(k)]/k, such that
it has zero slope, or (c) adjusting the phase difference
such that it is linear as determined by amplitude and
phase matching in the individually Fourier-transformed
data. SJ use method (b), while method (a) is used here.
The independent parameters that can be adjusted, k and
Eo, are the same for all three methods but the uncertain-
ties and derived values of R are not. These depend on the
length of the data, their signal-to-noise ratio, any differ-
ences between p,q(k) and p,b(k), and the manner in
which the phase differences are weighted by k. It is these
latter two factors that are important in this discussion.
For the case of Lq3-edge absorption from an isotropic
model compound and from an anisotropic unknown sys-
tem, the phase difference between p,b(k) and p,b(k) is
just the cross-term correction h, (k). Assuming matched
k scales and thus AEo ——0, this gives

(k) —@(k)=2k (RM —R)+P,g(k) P, (kb)—
=2k(R~ —R) —A, (k) .

This is a formal statement of the condition that phase-
shift transferability is no longer obeyed. To compensate
for this condition, i.e., to make it appear that transferabil-
ity is still operational, both analysis methods (a) and (b)
adjust Eo and R, leading to errors in the bond-length
determination. However, because method (b) first divides
the phase differences by k and then adjusts R and Eo to
obtain a zero slope, the lower-k data are given greater
weight than the higher-k data. If method (b) used k-
dependent error bars to balance out this effect, it would
clearly be equivalent to method (a), but as that method is
conventionally used this k-dependent correction procedure
is not performed. Therefore, because method (b) places
too much weight on the data at low k, it ultimately
overestimates the effect of a finite b,,(k) and thus the
magnitude of the error on the derived bond length. This
conclusion has been verified by using method (a) on simu-
lated data that had been truncated. Furthermore, even if
the total bond-length anisotropy of SJ had been deter-
mined using k-dependent error bars, i.e., giving 0.02 A
rather than 0.04—0.05 A, these values for the worse-case
example of atop adsorption still represent upper limits be-
cause the value of

~
h, (k)

~

calculated by TL averages
around

~

n/2
~

for both I and Ag, the maximum amount
by which P(k) can be affected.

The second consequence of a finite b,,(k) on Lq 3-edge
SEXAFS data is a modification of the amplitude, and it
appears to be much more important than the modification
of the bond length. As discussed in Sec. II C, Fig. 1(b) de-

0
picts the situation at k =7 A ' when Ns(0')=2. 16 and
Ns(90') =0.47. The relative amplitude at this value of k
is therefore Ns(0 )/Ns (90 )=4.6, twice the value of
1.6/0. 7=2.3 obtained with 5, (k)=0 in Fig. 1(a). SJ
correctly note that such a discrepancy is comparable to
the differences in the calculated relative amplitudes for
Lp 3 edges which are used to distinguish between chem-
isorption sites, "' ' ' and is certainly outside typical er-
ror limits of 10% for relative amplitudes obtained from
actual high-quality data. ' ' However, because these au-
thors do not have such data from a system in which the
chemisorption geometry is well established, they cannot
reconcile this strong discrepancy between the amplitudes
of simulated and real data. Instead, they propose a data-
analysis procedure which deserves some clarification here
(the actual source of the amplitude discrepancy will be
treated in Sec. III B).

Using simulated data, SJ compared the relative ampli-
tudes Ns(90')/Ns(10 ) for Ag on Si(111)in a hypothetical
atop geometry for the case of b,~s(k) =0 and b,~s(k)&0.
These conditions are essentially identical to those for I on
Si(111) shown in Figs. 1(a) and 1(b) for 8=90' and 0 and

Ag

Al

0

0.5—
ng

I00 p4 lE
0

03—
( )

O ra

3—

nt

I

(c)

c =0.2

2 4 6 8
-VIAYE VECTOR (A ~)

10

FIG. 3. From Ref. 21. (a) Simulated L3-edge data for Ag in
the atop configuration on Si, similar to the conditions of I on Si
in Figs. 1 and 2. Note different amplitude scales for the dif-
ferent spectra. (b) SEXAFS amplitude ratio of the data in (a)
(solid line) compared with that ratio assuming c =0.2 (dashed
line) and c =0 (dotted line). The approximation labeled c =0.2
corresponds to A(k) =0 used in the present work. (c) Same com-
parison for the case of Ag in a coplanar configuration.
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in Figs. 2(a) and 2(b) for 8=90' and 10'. The comparison
of SJ is reproduced in Fig. 3(a). In addition to the large
magnitude of the relative amplitude discrepancy discussed
above for the cases of a finite and a zero h~s(k), the k
dependence of the relative amplitude for finite EAs(k) has
been made more apparent by normalizing the simulated
data for the different values of 8 (note different scales).
SJ point out that by setting the ratio c =Mo~/Mz~ ——0
rather than to 0.2, a relative amplitude is obtained which
intersects the one for finite h~s(k) at k-6 A, see Fig.
3(b). This agreement has been used elsewhere to justify
the approximation of c =0 in the analysis of relative am-
plitudes of experimental SEXAFS data for Ag on Si(111)
(this analysis will be discussed further in Sec. III C). The
procedure of using c =0 seems counterintuitive, since
there is both theoretical and experimental evidence
that c is indeed -0.2. The origin of the agreement at
k-6 A ', however, lies in the use of the TL-calculated
h, (k) for Ag or I. From Fig. 1(b) this calculated value is
seen to average around n/2 fo—r 4(k (8 A '. Substi-
tution of —m/2 for - b,,(k) in Eq. (25) gives
Nq(8) =[n~(8) +n,~(8) ]j' =n~(8), making it appear
that n,~( 8)=0 Iron. ically, using the TL-calculated value
of b„(k) in the analysis of Ag (or I) L2 3-edge SEXAFS
amplitudes appears to be equivalent to setting the entire
value of the cross term equal to zero, just as in isotropic
I.2 3 edge absorption.

and surface systems shows that the bond lengths are simi-
lar. Quantitatively, a difference in the phases for the
8=35 and 90' data is observed in Fig. 4(b) which resem-
bles that shown in Fig. 2(b). This phase difference corre-
sponds to a total relative bond-length difference of
0.021 A. The absolute I-Si(111) bond lengths are de-
termined using the I-Si distance of 2.46+0.02 A
in SiI(CH3) 3, giving 2.434+0.02' A for 8=90' and
2 45s+0.025 A for 8=35' (this explains the choice
of R =2.445 A in the simulated data). In Sec. IIID a
general method for removing even this small bond-length
anisotropy is described, but for now it is sufficient to note
that the, quoted I-Si(111)bond length' is the same as the

2. Experimental data

The simple procedure above proposed by SJ for analyz-
ing L 2 3 edge SEXAFS amplitudes is based on two (relat-
ed) assumptions: (1) the TL-calculated value of 5~(k) is
accurate, and (2) the analysis of such data using A, (k) =0,
i.e., Eqs. (19) and (20), can lead to significant errors. As
mentioned, these authors ' do not have experimental
SEXAFS data from a system in which the chemisorption
geometry is clearly established and so they cannot test ei-
ther of.these assumptions. The question of the accuracy
of the calculated b,,(k) values will be treated in the next
sation. Here, experimental data from a system with
unambiguous atop geometry are examined to see whether
the large effects predicted by SJ using calculated b.,(k)
values are actually observed.

Figure 4(a) shows the raw background-subtracted
SEXAFS L3-edge data of Si(111)7X7—I for 8=90' and
35 .' The upper limit of k & 8.5 A is established by the I
L2 edge. The Fourier transforms of that data are shown
in Fig. 5 along with the two window functions used to iso-.
late the first-neighbor I-Si bond length from the second-
neighbor I-Si distance and the higher-frequericy noise
components. The filtered back-transformed data using
the first-neighbor window function are' shown as solid
lines superposed on the raw data in Fig. 4(a). The differ-
ences between the raw and filtered data, particularly at
low k, are due to the additional SEXAFS from the
second-neighbor Si atoms. The first-neighbor filtered
data are directly compared in Fig. 4(b). Also shown in
Figs. 4 and 5 are analogous data for the model compound
SiI(CH3) 3.

'

Qualitative comparison between the data for the model

M

Kl
0

0-

8
k (A-')

FIG&. 4. Experimental I 1.3-edge data from Ref. 14. The raw
background-subtracted data correspond to a saturation coverage
( & 1 ML) of I on Si(111)7&&7 and to a bulk concentration of I in
the condensed vapor SiI(CH3)3. The smooth bold curves super-
posed on the raw data represent back-transformed filtered data
from the first-neighbor peaks in the Fourier transforms (see Fig.
5). The discrepancies between the raw and filtered I/Si{111)
data arise from contributions from the second-neighbor Si
atoms. The direct comparison of the filtered data in (b) shows a
small anisotropy in the phases similar to that seen in Fig. 2(b).
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cross term on the bond length is observed, but the much
larger calculated effect of the cross term on the ampli-
tudes is most definitely not.

expt ca lcd
Lp

B. Accuracy of calculated h, (k)

b,', (k) =P',='(k) —$, (k) . (26)

The experimental total phase shifts and the value 51(k)
are shown in the lower half of Fig. 7 and are compared

An important point emphasized in this work, and ap-
parently not recognized by SJ, is that the L2 3-edge SEX-
AFS amplitude is very strongly dependent on the value of
h, (k), see Figs. 1(a) and 1(b). The purpose of this section
is to demonstrate that the source of the discrepancy found
in the previous section between the amplitudes of the
simulated and the experimental data lies in the accuracy
of the calculated A, (k).

There is no direct empirical method for determining the
individual absorbing atom phase shifts P,

= (k) and P,=,
but there are' two methods for determining the uncertain-
ties of b,,(k) which are suggested from the following con-
siderations. Calculated total phase shifts p,b (k) and

p,b (k) are routinely used in the analysis of EXAFS
data when model compounds are not available, and the
accuracies of such calculated phase shifts have been re-
cently tested by comparing determined bond lengths in a
variety of model systems with the known values. The
bond-length errors so obtained in this latter study, typical-
ly 0,02—0.05 A, were stated to correspond to errors of
-5—15% in the total phase shift, but these percentages
can be misleading since the relative errors strongly depend
on the system in question. For example, in bulk CuBr the
total phase-shift contribution to the Br K-edge EXAFS in
the range 4& k &9 A ' is -0.3 A, so an error of 0.03 A
in the distance does correspond to a 10% error in
Ps=,c'„(k). For the case of bulk Pd, on the other hand, the
total phase-shift contribution to the Pd X-edge EXAFS in
the same k range is only -0.05 A, so the same 0.03 A er-
ror represents a substantially larger relative error. The
reason for the different total phase-shift contributions in
these two examples is that the backscattering phase shifts
pb(k) have k-dependent slopes of opposite sign. This sug-
gests that to estimate the errors in b.,(k), which depends
only on the phase shifts of the absorbing atom, the effect
of pb(k) should be removed. One of the two methods by
which this can be accomplished is to compare calculated
and experimental total phase shift differences from dif-
ferent absorption edges in the same system.

An example of this procedure is given for bulk CuI.
Filtered experimental EXAFS data from the I L& and L3
edges of CuI are shown by bold lines in the upper half of
Fig. 7. Superposed on these data with light lines are
simulated CuI data using the calculated phase shifts of
TL and an amplitude function as described for the I-
Si(111) system. By subtracting 2kRtc„ from the total
phase of the real data, the total phase shifts PIC„'(k) and
PIC„(k) are obtained. The backscattering phase shift
Pc„(k) cancels in their difference to give

P, ='(k) —PI= (k). Analogous to Eq. (10), this difference
is defined as

I I
I I

$cu (ca

lcd�)

&&„(expt)
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u
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j ~~ rmseas

(ex t)P
Q~ (calcd)

I

7
I

4 5 6 8 9
k (~-')

FIG. 7. Determination of experimental 6& (k) value [Eq. (26)]
and comparison with theory. In the upper half, I L&- and I.3-

edge filtered EXAFS data from bulk CuI (bold dotted-dashed
and solid lines) are compared with corresponding simulated data
(light dotted-dashed and solid lines), showing qualitatively good
agreement. The calculated total (central and backscattered
atom) phase shifts from Ref. 2S used in generating the simulat-
ed data are shown in the lower half. These, in turn, are com-

pared with the experimental total phase shifts, showing very
good agreement for PI~„'lk) and poorer agreement for PI&„(k).
The calculated central-atom phase shift differences h&(k) are
also compared with the experimental value, obtained by taking
the difference between the total phases for the L&-edge and 1.3-

edge data [i.e., the backscattering phase shift Pc„lk) cancels].
The lack of quantitative agreement is apparent. The inability to
obtain data containing only PI= (k) precludes empirical deter-
mination of h&(k) [Eq. (10)] from bulk measurements using
these procedures; only the calculated quantities are shown.

with those quantities as calculated by TI.. Also shown are
the calculated values of PIC„(k) and b,&(k). Note that the
actual ordering of the phase shifts shown in Fig. 7 is arbi-
trary, since all are modular 2m. . Comparison between the
real and simulated EXAFS data shows qualitatively good
agreement. Quantitatively, however, the experimental and
theoretical values for Pt= (k) and for 51(k) are quite dif-
ferent. Looking at h*, (k), the functions are about equal at
k-7 A ', at k =6 or 8 A ' they differ by -0.4 rad,
and at k =5 or 9 A ' they differ by -0.9 rad. Three
questions emerge: (i) Are the differences between the cal-
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culated and exp™~~~1~l& ( k) values shown in Fig. 7
real? (ii) Are these differences unique to I? (iii) Are these
differences significant to the effect of the s-d cross term?

In answering question (i), there are two ways to test the
reliability of the exp™~~~1~'~t(k) value. Since EXAFS
from two different edges are being compared, even if from
the same system, the choice of Eo for each edge will af-
fect the value of hq,' this is a test of precision. Variations
of Eo as large as + 10 eV were chosen for the different
edges, with the largest change on the exp™~~~1~~& (k)
being the essential removal of its k dependence and an
overall displacement to less negative values. The net ef-
fect actually worsens the agreement between the experi-
mental and calculated values and therefore changing Eo
does not remove the discrepancy. The absolute accuracy
of the individual experimental phase shifts PI='(k) and

(k) can only be tested by comparing calculated bond
lengths with known values, and this means adding to each
central-atom phase shift the additionally uncertain calcu-
lated value of Pq(k). By deriving bond lengths from dif-
ferent edges in the same systems, i.e., with the same P~(k),
this problem is at least partially minimized. From the
L ~ -edge EXAFS data and the appropriately calculated to-
tal phase shift, the I-Cu distance was determined to be
within 0.01 A of the experimental value. However, for
the L3-edge data the error was 0.09 A (the calculated
values are all too small). The good agreement obtained
for the L ~ edge and poor ag™~~~O~ ~h~ L 3 edge
does not establish that the source of error lies solely in
Pt= (k), since either a cancellation or an accumulation of
errors in P, (k) and P~(k) cannot be ruled out. As an ex-
ample of testing the effect of P~(k), the I L3-edge
EXAFS data from I-Si(CH3)3 was analyzed, giving an er-
ror of 0.04 A between the known and derived I-Si bond
lengths. This error is smaller than that found for I-Cu,
attesting to the fact that the effect of P&(k) is non-
negligible. Despite the fact that there is no method for
determining the distribution of errors between two dif-
ferent kinds of phase shifts (backscattering and central
atom), the above analysis from different edges in the same
system shows that regardless of Pq(k), there must be some
inaccuracy in the calculated PI= (k) value which appears
to be larger than that of PI='(k) and which cannot
be removed by changing Eo .

In answering question (ii), the inaccuracy of rV(k) for
elements other than I has been tested by analyzing I, &-

and L3-edge EXAFS data from bulk Ag. Again, a
discrepancy between the calculated and experimental
values of h~s(k) was found (it is larger than that for I).
Furthermore, a test of the accuracy of the central-atom
phase shifts for Ag gave results opposite to that for I in
CuI, i.e., the Ag-Ag bond length was within 0.01 A of the
known value using the L3-edge data whereas the Ag-Ag
bond length error using the L ~ edge was 0.1 1 A. This re-
sult has also been found in an independent analysis of Ag
K-edge data, where the inaccuracy of the calculated to-
tal phase shift using P s'. (k) led to an error of 0.10 A.
The inaccuracy of Pzs (k) thus appears to be greater than
that of P~~ (k) [there is no experimental test of P~s (k)].
The conclusion to be drawn from the sum of these find-
ings is that for I and Ag there are non-negligible inaccura-

[~'«)] '&«8&)=nd(81)sin[2kR +p»(k)]
+n,d(8&)sin[2kR +p»(k)

+b,.(k)]

[~'(k)] '&(k, 82) nd(82)»n[2kR+p»(k)]

+n,d(82)sin[2kR +p»(k)
+h. (k)]

the following difference spectra can be obtained

[&'(k)] 'IX(k, 8~) —[n,d(8&)/n, d(82)p'(k, 82) j

(27)

=X*sin[2kR +y»(k)],
(28)

d(81) d(82)n d(8I)/n d(82)

cies in the calculated c'entral-atom phase shifts P,
'= '(k)

and P,
= (k). ' These inaccuracies can, in some cases, lead

to bond-length errors as large as 0.1 A.
In addressing question (iii), it is important not to con-

fuse the effects of inaccurately calculated central-atom
phase shifts on bond lengths, which depend on P~(k),
with the effects of such inaccuracies on b,,(k), which do
not. This was the reason for introducing the parameter
b.', (k). Having established with isotropic model com-
pounds that the calculated b f(k) is in error, the question
still remains as to how significant the effect of the cross
term in anisotropic systems would be if comparable errors
existed in b,,(k). To evaluate this most simply, assume
that the errors in 6& (k) are the same for b, &(k), and that
from Fig. 7 these can be approximated by an average
"correction" value of -0.6 rad. Uniformly adding this
amount to the TL-calculated quantity b,&(k =7) modifies
the values of a(k, 8) and g(k, 8) to a'(k, 8) and g'(k, 8) and
these are shown for 0=0 and 90' at k =7 A ' in
Fig. 1(c). The effect of using this "corrected" cross term
is also shown in the simulated I-Si(111)SEXAFS data for
8= 10' and 90' in Fig. 2(c). It is apparent from both these
figures that g(k, 8)—and thus the bond length —is little
affected by this small change in 51(k). However, the af-
fect on a(k, 8)—and thus the coordination number —is
dramatic. Specifically, the effective coordination numbers
and relative amplitude Ns(0')/Ns(90') at k =7 A
change from 2.16/0.47=4.6 in Fig. 1(b) to 1.94/0. 58 =3.3
in Fig. 1(c). Such a change is more than half that seen be-
tween using the TL-calculated value of b, &(k) and using
b,q(k)=0 as in Fig. 1(a), i.e., 1.6/0. 7=2.3. Beyond the de-
tails of the correction itself (see below), it is clear that the
amplitudes of the L2 3-edge SEXAFS data are very
strongly dependent on the absolute value of b,,(k). This
implies that for a reliable assessment of its accuracy,
b,,(k) needs to be determined directly. This is the second
method alluded to in the beginning of this section.

Th™pirical procedure for measuring b,, (k) is sug-
gested from the above determination of b,', (k), ™y,
taking difference spectra within a given system. Here the
SEXAFS (or EXAFS) is measured with two different po-
larization angles, 8& and 82, from the same system whose
structure is known and is anisotropic. It is then easy to
see from Eq. (16) that with two measurements,
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and

[3'(k)] 'Ig(k, 8, ) —[nd(8&)/nd(8z)]X(k, 82) I

=N**sin[2kR +$2b (k) +b,,(k) ]
(29)

N**= nd(0~) —n,d(&2)nd(&~)/nq(&2) .

Now the difference in total phases (i.e., the arguments in
square brackets) between the linearly combined spectra,
Eqs. (28) and (29), is simply b,,(k). Note that an advan-
tage of this second procedure over the above empirical
determination of P,b (k) or b.,*(k) (a=l, b =Cu) is that
the same absorption edge, and thus the same k scales and
Eo values, apply to both measurements.

An example of this procedure is applied to the atop
configuration of I on Si(111). Its structure is anisotropic
and well established from second-neighbor distances and
from relative and absolute amplitudes. ' A direct com-
parison of the TL-calculated and empirically derived
values of b,&(k) is shown in Fig. 8. As opposed to the
comparison in Fig. 7 for b,*, (k), there is reasonable agree-
ment in the k dependence of these functions, but similar
to the case of b,I (k) there is a clear and approximately
uniform difference in their average values. Error bars are
difficult to estimate in difference spectra (particularly
near the truncation points), but the uniform discrepancy
shown in Fig. 8 has been found to be relatively insensitive
to systematic treatment of the data. To quantify the ef-
fect of the error in the cross term, the calculated relative
amplitude Ns(35')/Ns(90') is plotted in Fig. 9 as a func-
tion of a mean "correction" value which is added to the
calculated quantity b, t(k =7) [the choice of k =7 facili-
tates comparison with Figs. 1(b) and 1(c)]. Note that the
calculated relative amplitudes plotted here are the recipro-
cal of those in Fig. 6. With zero correction added to
b, t(k =7) the predicted relative amplitude is 3.3. Adding
0.6 rad decreases this to -2.6, and adding 1 rad decreases
it further to -2.2. The average observed' value of

O
O

5
c3

FIG. 8. Comparison between experimental and calculated
(Ref. 25) value of bq(k) [Eq. (10)]. The experimental function is
determined from the difference of linearly combined SEXAFS
data taken at different polarizations [Eqs. (27)—(29)]. The lack
of quantitative agreement for the two functions is evident and is
relatively insensitive to systematic errors.
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FIG. 9. Dependence of the predicted SEXAFS amplitude ra-
tio on the absolute value of Aq(k), evaluated at k =7 A '. The
conditions for which the amplitude ratio is calculated [Eq. (25)]
match the I-Si(111) system (Ref. 14, Fig. 4), i.e., I in the atop
geometry. The calculated A~ (k =7) value from Ref. 25 (see Fig.
8) predicts an amplitude ratio of 3.3 [the reciprocal of this ratio
is plotted in Fig. 6 for the curve labeled b, &(k)]. A constant posi-
tive correction to AI(k =7) is necessary to bring the predicted
amplitude ratios into closer agreement with the experimental
value, indicated by the hatched region. The consistency between
the approximation of AI(k) =0 (dashed line) and the hatched ex-
perimental region corresponds to the curve crossing in Fig. 6.

2.0+0.2 delineates the hatched region in Fig. 9, which de-
fines the experimentally compatible values of h~ (k =7)
and thus the magnitude and sign of the needed correction.
As noted in Sec. IIIA2, the approximation of b,t(k)=0
(dashed line in Fig. 9) gives excellent agreement with the
average - experimental relative amplitude. However, the
polarization dependence of the SEXAFS phase for
Si(111)7&&7—I (Fig. 4) and the k dependence of the rela-
tive amplitude (Fig. 6) are both consistent with the empir-
ical determination in Fig. 8 of b,&(k) not being zero.
Therefore, the strong discrepancy observed between the I-
Si(111) data and the predictions using the TL-calculated
b, t(k), along with the evidence that b, &(k) is nonzero, is
understood by recognizing that the actual value of
b,q(4 & k & 8 A ') is approximately half that calculated by
TL, lying in the range of about —1 rad.

These findings are summarized in Fig. 10, where the
experimental relative amplitude Ns(35') /Ns (90') from
Si(111)7X7—I is compared with various calculated ampli-
tudes. As in Fig. 6, using c =0 in the cross term, which
is equivalent to setting the entire cross term equal to zero,
is the least satisfactory approximation. The TL-
calculated value of b,&(k) gives good agreement in the k
dependence of the amplitude but unacceptably poor agree-
ment in the absolute magnitude. The approximation of



712 P. H. CITRIN 31

0
O

0

I- Si(111)

LJJ
D
I—

Q 2—
4J0

0'

b,&(k)=0, which is next simplest, gives very good agree-
ment in the average magnitude but poorer agreement in
the slope. A reasonable compromise is obtained using a
value of b, &(k) with about a 1 rad correction. The main
conclusion from these results, then, and the essential point
of this section, is that the inconsistency between the am-
plitudes of the real data in Fig. 4 and those predicted us-
ing the TL-calculated value of h&(k) is almost entirely due
to the inaccuracies of the calculated central-atom phase
shifts.

I I I I I

4 5 6 7 8

k(A )

FIG. 10. Same as Fig. 6 but with the reciprocal af the
SEXAFS amplitude ratio plotted and with the corrected values
of h&(k) shown. The experimental function is consistent with a
corrected b,i(k) and with the approximation of A&(k) =0.

This then gives
N

g ~

e.r;
~

=N(cos 8cos P+ —,
'

sin 8sin P) .

Substituting Eq. (30) into Eqs. (17) and (18) allows the rel-
ative sizes of the effective partial coordinate numbers
nd(8) and n, d( 8) to be plotted as a function of P and 8.
SJ have done this and, using the notation of the present
work, their plot is redrawn in Fig. 11 [SJ used the quanti-
ties C2(8) (=n~(8)/N) and C02(8) (= n,d(8)IK)]. These
authors have chosen the criterion that when the ratio
n,d(8)lnd(8) is greater than 10%%uo the effect of the cross
term cannot be ignored. The adsorption geometries in
which the P or 8 values produce this condition are indi-
cated by the shaded regions in Fig. 11. Only for those
geometries falling within the unshaded region do SJ re-
gard the approximation b,,(k) =0 to be valid.

It is possible to test the above criterion for deciding
which adsorption geometries are sensitive to the effects of
the cross term. In Fig. 11, open and filled symbols have
been included to represent the geometries determined
from previous SEXAFS measurements. The circles corre-
spond to the onefold atop position of I on Si(111),' the
triangles and squares represent the threefold and fourfold
hollow geometries of I on Cu(111) and Cu(100)," and the
hexagons represent the sixfold quasicoplanar hollow site
of Te.on Cu(111) (Ref. 15) [as with b.As(k), the value of
bT,(k) is virtually indistinguishable from ht(k)]. Accord-
ing to SJ, only the I-Cu(100) geometry is sufficiently iso-

& 0.4
d

C. Effects of b, (k) for other geometries

The preceding section has established that for atoms in
the atop geometry the effect of the s-d cross term on
I.2 3 edge SEXAFS amplitudes depends very strongly on
the value of b,,(k). Using calculated central-atom phase
shifts to analyze SEXAFS data for atoms in this
geometry, therefore, places unreasonably stringent
demands on their accuracy. More reliable empirical
analysis procedures are given in the following section.
Here the question is explored as to how sensitive the effect
of the cross term is for atoms in other geometries. If the
effects of the cross term are important for these other
geometries it could be possible to determine empirically
the value of b„(k) as was done for the case of I-Si(111).
If, on the other hand, the effects of the cross term in these
other geometries are unimportant, then the exact nature of
b, (k) should be of lesser consequence. In the discussion
below, the absorbing atoms I, Te, and Ag are considered
because SEXAFS data from them are available for com-
parison with theory. Also, for simplicity all calculated
phase shifts are assumed to be completely accurate.

Following SJ, there is a concise way to illustrate the ef-
fect of the cross term for any adsorption geometry with
greater than twofold symmetry around the surface normal
n. The angle between n and the unit vector along the
adsorbate-substrate bond r is defined as the bond angle P.
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& 0.4
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0 20 8040
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FIG. 11. Effect of the s-d cross term as a function of adsorp-
tian geometry and palarization, taken from Ref. 21 but modi-
fied with the notation fram the present work. The cross term is
expected (Ref. 21) to be important for those adsorption
geometries with corresponding values of n,d /n, d & 10%, indicat-
ed by the shaded regions. Added to this figure are geometric
shapes representing experimental adsorption geometries and po-
larization measurements: circles: onefold atop, I-Si(111), Ref.
14; triangles: threefold hollow, I-Cu(111), Ref. 11; squares:
fourfold hollow, I-Cu{100), Ref. 11; hexagons: quasisixfold sub-
stitutional, Te-Cu(111), Ref. 15.
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FIG. 12. Comparison between experimental SEXAFS ampli-
tude ratios, indicated by geometric shapes with error bars, and
the predictions of Eq. (25) using (i) calculated values of EI(k)
(Ref. 25), (ii) hq(k)=0, and (iii) c =0. The k-averaged experi-
mental relative amplitudes are shown at some intermediate
value of k. For I-Cu(111) and I-Cu(100) (Ref. 11), top and mid-
dle cases, it is not possible to distinguish between conditions (i),
(ii), and (iii). For Te-Cu(111) (Ref. 15), bottom case, only the ap-
proximation labeled b,&(k) [=ET,(k)] is consistent with experi-
ment.

tropic to assume that 4&(k) =0 because only it falls in the
unshaded region. The relative amplitudes Ns (20') /-
Ns(90') determined from data simulating the experimen-
tal threefold, fourfold, and sixfold geometries have been
plotted in Fig. 12 for the three conditions c =0, b,&(k) =0,
and bt(k)&0 (see Fig. 10 for the analogous plot of the
onefold geometry). The experimentally observed k-

'
averaged relative amplitudes and their error bars have
been indicated on these plots at some arbitrary intermedi-
ate value of k. For the cases of I on Cu(111) and I on

' Cu(100), all three conditions fall within the corresponding
error limits. The size of the errors from these earlier mea-
surements" could now be reduced with better normaliza-
tion procedures and better signal-to-noise quality under
dedicated synchrotron radiation conditions. The smaller
error bars in the more recent SEXAFS measurements'
from Te on Cu(111) taken under these better conditions
reflect this fact. Nevertheless, unavoidable systematic un-
certainties in the measurement of relative amplitudes
from even high-quality data preclude such errors from
becoming much smaller than —10%%uo. Within these limits,
then, it may be possible to distinguish between the condi-
tions of b,&(k)&0, ht(k)=0, and c =0 for the threefold
hollow geometry, but for the I-Cu(111) data shown in Fig.

12 this is not the case. A much more polarization-
dependent geometry is required for assessing the detailed
nature of the cross term, and it is for this reason that the
atop geometry was used in the preceding section. SJ con-
sidered the atop geometry but they did not have experi-
mental data with which to compare their simulations. In-
stead, they and co-workers used the quasicoplanar
geometry of Ag on Si(111) for which they have made
measurements. Their assigned configuration for a partic-
ular coverage of Ag is essentially the same as that found'
for Te on Cu(111) and thus falls within the same shaded
region in Fig. 11. In Fig. 12 there is agreement between
the experimental data of Te on Cu(111) and the curve la-
beled h&(k) =0, not with the curves labeled b &(k) or c =0.
This conclusion is opposite to that reached by Stohr
et al. To understand the source of this difference re-

quires a brief summary of their work.
Stohr et al. measured L2-edge SEXAFS from Ag on

Si(111) as a function of coverage and temperature. At
coverages above 1 monolayer (ML), clear evidence for
clustering of Ag metal was found, which was character-
ized by a Ag-Ag peak in the Fourier-transformed
SEXAFS data at -2.8 A and an approximately 50%
smaller satellite at -2.0 A due to a resonance in the Ag
backscattering amplitude. ' At Ag coverages below 1

ML a Ag-Si peak, also at -2.0 A, was observed to in-
crease in intensity. The lowest coverages studied were
0.33 and 0.6 ML, and corresponded to unannealed and an-
nealed samples, respectively. The quoted experimental
relative amplitudes Ns(90')/Ns(25') from these two sam-

ples, 1.45+0.25 and 1.65+0.15, were compared with those
values calculated from Eq. (16) using either c =0 or
b,zs(k)=0. From this comparison two adsorption sites
for Ag atoms were identified, the threefold fcc hollow
on top of the Si(111) surface for the 0.33 ML system and
the sixfold quasicoplanar hollow (interstitial) between the
first and second layers for the 0.6 ML system. Stohr
et al. argued that since the lowest calculated value for
N (9s0')/N (2s5') using b,~z(k) =0 is 1.47, which is outside
the experimental value of 1.65+0.15, the approximation
of b,&z(k) =0 must be inappropriate. Because of this, and
the fact that the calculated relative amplitudes are about
equal at k-6 A ' either assuming c =0 or using the
TL-calculated value of b,As(k) in Eq. (16), Stohr et al.
analyzed the Ag-Si(111) data using the approximation of
c =0.

The reason Stohr et al. looked primarily at low cover-
age data was to minimize the contribution of Ag metal
clusters. However, the 0.33 and 0.6 ML data contain
Fourier peaks between 2.8—3.0 A whose intensities are
comparable to or greater than features originating from
higher-frequency noise. A narrow window function
around the main peak (1.4—2.6 A) cannot remove the con-
tributing peaks in this region due to noise or to the Ag sa-
tellite at -2.0 A (should small amounts of Ag metal be
present). Both of these effects therefore necessitate more
realistic relative amplitude error limits of at least
+0.25—0.3, particularly for the 0.6 ML system. This re-
moves much of the apparent inconsistency between the
value of 1.47 predicted with b,As(k)=0 and the experi-
mental value of 1.65. (The presence of Ag clusters would,
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in fact, lead to a larger observed value. ) It also demon-
strates that like the threefold and fourfold hollow
geometries in Figs. 11 and 12, the quasicoplanar geometry
is not well suited for assessing the detailed nature of the
cross term.

As mentioned in Sec. III B 1, the agreement between the
average relative amplitude using the approximation of
c =0 and that using the TL-calculated value of h&s(k) is
a result of b,As(k-6) being close to —~/2. However,
since the calculated b,,(k) has been shown above to be
inaccurate for I (Fig. 9) and since b.zs(k) is essentially
identical to b,&(k), not much significance can be attached
to this agreement. In the absence of experimental evi-
dence demonstrating that the calculated h, (k) is indeed
accurate, analysis of L2 3-edge SEXAFS data using c =0
can only be assumed valid for systems with P or 8 values
near the central unshaded region in Fig. 8. The simple
approximation of b,,(k) =0, on the other hand, has been
empirically shown above and in Ref. 14 to be reliable in
the analysis of I Lq 3-edge SEXAFS data even for the
worse-case condition of the atop geometry. The similarity
between bt(k) and b,As(k), and the fact that the inaccura-
cies in the calculated central-atom phase shifts for I are
likely to be present for Ag as well, ' suggest that the ap-
proximation b, (k) =0 should also be applicable to Ag.

Bond-length anisotropies due to the cross term were
also stated to be present in the data of Stohr et al. They
quote Ag-Si bond lengths of 2.48+0.04 A and 2.46
+0.04 A in the 0.6 ML system measured at 0=90' and
25, respectively. The 0.02-A shorter bond length at
0=25' agrees with the corresponding shortening of 0.03 A
determined from their analysis of Ag-Si simulated data.
However, it was shown in Sec. IIIB 1 that their analysis
of simulated data ' overestimates the determination of
bond-length errors due to the cross term. Using different
analysis procedures described in that section and else-
where, the simulated Ag-Si data for the configuration in
question is found here to give an error Of only 0.011 A.
This value is also consistent with the bond-length aniso-
tropy of &0.01 A observed' for the case of Te on
Cu(111), which has almost the same configuration as that
proposed for the 0.6-ML Ag-Si(111) system.

The above considerations can be generalized to the fol-
lowing conclusions. Bond-length anisotropies (not total
errors ) due to the effects of the cross term are largest for
atoms in the atop geometry, & 0.02 A, next largest for the
coplanar geometry & 0.015 A, and less than 0.01 A for all
others. The essential constancy of the calculated b,, (k)
values for all atoms (see next section) and the fact that the
effect of the calculated h, (k) values on the phase is a
maximum (see Fig. 1) makes this statement generally
valid under all conditions. With regard to relative ampli-
tudes, the differences predicted from simulated data as a
result of using c =0, 5, (k)=0, or 6,(k)&0 in Eq. (16)
are possible to distinguish experimentally for atoms in the
atop geometry. For other geometries, realistic experimen-
tal uncertainties make it more difficult to distinguish be-
tween these conditions. This is particularly so since the
inherent uncertainties in the calculated values of h, (k),
which have thus far been ignored, must be taken into ac-
count. Correcting the calculated curves labeled At(k) in

Fig. 12 as was done in Fig. 10, for example, makes it even
more difficult to distinguish between them and those la-
beled b,t(k) =0. The conclusion from these results, there-
fore, is that for the atoms I and Te (and probably Ag) the
approximation of b.,(k) =0 should be valid for determin-
ing average relative amplitudes from Lq 3-edge SEXAFS
data for any adsorption geometry (other atoms are con-
sidered in the next section). The approximation c =0, on
the other hand, is not valid for these atoms because it
neglects the inaccuracies of the calculated b,,(k) values.

D. General analysis of L2 3-edge data

78)
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FICx. 13. Calculated values of i)„(k) [Eq. (10)] from Ref. 25
as a function of absorbing atom a. Despite the very different
individual P,'= (k) and P,'= (k) values, their difference is nearly
constant for all elements.

The preceding section has shown that with the excep-
tion of the atop geometry, the atoms Ag, Te, or I in other
adsorption geometries do not exhibit dramatic effects due
to the cross term in their L, 23-edge SEXAFS. That is,
strong modifications in either the SEXAFS bond lengths
or relative amplitudes as a result of h, (k) being finite or
zero are difficult to observe in these other geometries, and
for these atoms the simplifying approximation of
b,, (k)=0 appears to be valid. The question arises as to
how well this result can be generalized to other atoms. In
Fig. 13 the calculated values of b,,(k) are plotted for a
range of elements. Despite the fact that the individual
central-atom phase shifts P,

'= (k) and (t,
= (k) for these

elements are very different, their differences [Eq. (8)] are
remarkably similar. Thus, if these calculated b,, (k) values
were accurate, analysis of their average L2 3-edge
SEXAFS amplitudes could be well approximated assum-
ing c =0 for any atom because all of the values of
b,,(k-6)= —m/2 (see Sec. IIIB1). However, short of a
direct empirical test as was done for I in Sec. IIIB2, it is
not possible to assess the inaccuracy of the b,,(k) values
for the other elements. For example, instead of the posi-
tive correction to b,,(k) needed for I (see Figs. 9 and 10), a
zero or even negative correction may be needed for a dif-
ferent element. With a correction of any magnitude or
sign to the calculated h, (k) value, its effect on the total
phase would always be reduced because 5, (k -6—7), and
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thus g(8), is a maximum, see Fig. 1. With regard to the
relative amplitude, however, a negative correction to
h, (k) would actually increase its effect. Thus, while the
preceding section did establish that a finite b,,(k) is of less
importance for adsorption geometries other than the atop
configuration, a value of b„(k) more negative than the
calculated one could be potentially more important on the
amplitude. What is needed, therefore, is a general pro-
cedure for determining adsorption geometries and bond
lengths from L2 3-edge SEXAFS data which is indepen-
dent of any assumptions about the accuracy of the calcu-
lated h, (k) values. A simple empirical approach for do-
ing this is presented below.

One way to remove the effect of the cross term in the
L2 3 edge absorption from an anisotropic surface system
is to make the SEXAFS measurement at 8=54.7', the an-

gle at which 3g, ~

e.r;
~

=N. The SEXAFS values of R
and N referenced with respect to either simulated data or,
preferably, data from a model compound, then reflect the
actual bond length and coordination number. If only a
single SEXAFS measurement is made, however, possible
systematic errors due to sample imperfections or coverage
inhomogeneities, for example, may not be detected.
Furthermore, any polarization dependence of the mea-
sured distance which could arise from anisotropic averag-
ing of different neighbor contributions (see below) will
also go undetected. An alternate approach for removing
the effects of the cross term is to make two different mea-
surements from the same system at normal (8=90') and
grazing (8(25') photon incidence angles, and then take
linear combinations of the data as described in Sec.
IIIB2, see Eq. (28). As with a single measurement at
8=54.7', a direct determination of R is obtained, i.e., no
modifications due to b,, (k) need be considered. However,
in addition to providing an important consistency check
for systematics and testing for polarization-dependent dis-
tances, there is another factor to consider. The values of
the absolute amplitudes of the 1inearly combined data, i.e.,
N' in Eq. (28), are larger than the values of N derived
from the individual data, and these make it easier to dis-
tinguish between various adsorption sites.

As examples of how the adsorption geometry can be
determined using these general procedures, consider the
case of an atom adsorbed on a Cu(111) and a Si(111) sur-
face. The former is treated first. The relatively larger
second-nearest-neighbor distances in Cu(111) lead to only
first-neighbor Cu atoms dominating the measured
SEXAFS. A first-neighbor adsorbate-Cu distance
R ~

——2.5 A is assumed. The highest-symmetry adsorption
sites are indicated in''Fig. 14(a) and are given the notation
& for atop, 8 for bridge, F for fcc hollow (i.e., with no Cu
atom lying directly below in the second layer), H for hcp
hollow, and S for substitutional [i.e., within the Cu(111)
surface]. The values of N for these sites are 1,2,3,3, and

, 6, respectively. In addition to N, two other quantities are
shown in Fig. 14(a), N' =nd (20') [n,d (20 ) /—
n,d(90')]nd(90'), from Eq. (28), and the relative amplitude
Ns(20')/Ns(90'), calculated assuming h, (k) =0. (For the

. purposes of this discussion it is not necessary to assume
that 6, (k)=0, but the assumption of c =0 [which is a
reasonable approximation for those elements whose calcu-
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lated b„(k) values may be accurate] does not alter the
conclusions below and only makes the differences in rela-
tive amplitudes even greater for the different sites. ) In-
spection of N, N*, and Ns(20')/Ns(90) shows that sites
A and S can be easily distinguished from a measurement
of relative amplitudes alone, but that such quantities are
insufficiently different to distinguish between sites 8 and
(E,H )(the difference between 'F and H for these and other
close-packed systems is not possible to determine with
SEXAFS). It is this result, i.e., that L2 3-edge SEXAFS

FIG. 14. Predicted values of absolute and relative coordina-
tion numbers as a function of high-symmetry adsorption site for
the case of an atom absorbed on a (a) Cu(111) and (b) Si(111)
surface. An adatom in the atop (A), bridge (B), fcc hollow (F),
or hcp hollow (H) site lies above the surface, in the substitution-
al (S) site it is within the surface, and in the interstitial (I) site
in (b) it is below the surface between the first and second layers.
The prime notatipn in (b) indicates that the closely spaced
second-neighbor atoms can contribute to the measured
SEXAFS. The effect of the s-d cross term is approximated by
setting A, (k) =0 (adsorption site assignments are not strongly
affected by this approximation). The effect of the second-
neighbor contributions is assumed to be zero in (a) with
R

&
——2.50 A, in (b) it is approximated by using Eq. (32) and the

R& and R2 values from Ref. 36 (these are listed in parentheses
in Table IV). N* is calculated from Eq. (28) and N is calculated
from Xz(8) [Eq. (32)] with 8=54.7'. The lines connecting the
different values serve only as a visual guide. In (a) it is possible
to identify sites 2 and S using the relative amplitudes, while for
site B and sites F or H (which are indistinguishable in
SEXAFS) the absolute amplitude X is required. Using the
quantity N* the adsorption sites can be distinguished from even
simulated data (relative amplitudes should nonetheless be ob-
tained to minimize systematic errors). In (b), sites A, S and I
can be identified as in (a), while sites B', H', and F' require
considering the contribution from the second-neighbor atoms.
This can be accomplished from a study of both the SEXAFS
amplitudes and the polarization-dependent distances [Eqs. (31)
and (32) are simplifying approximations; Eq. (36), used in Fig.
15, is more exact].
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measurements of effective coordination numbers for cer-
tain sites are too similar, which is responsible for the fact
that both absolute and relative amplitudes are generally
necessary for a reliable determination of adsorption site
geometries. "' ' From Fig. 14(a) it is easy to see that

,the- absolute coordination numbers provide the necessary
information for distinguishing between the different ad-
sorption sites. What has not been previously appreciated
is that this statement applies even if a model compound is
not available Th.e difference in N' for sites 8 and (F,H),
i.e., 5.45 versus 8.39, is large enough to allow even simu-
lated SEXA,FS data to be used with confidence.
Knowledge of the actual adsorption site is not needed
a priori despite 'the fact that this information goes into
the calculation of the corresponding values of n,d(20') and
n~(90') which comprise N* in Eq. (28). The reason for
this is that the ratio n, (d20')/n, ~(90) or n,d(8&)/n, d(82),
in general, is nearly constant for all adsorption sites, see
Table III. Thus, for example, if the n,d(20')/n, d(90') ra-
tio for the fcc hollow site were incorrectly applied to a
data representative of an adatom in the bridge site, the
value of X* would be 5.61 instead of 5.45, a negligible er-
ror. By the same token, using Eq. (28) and an average
value of n,~(8&)/n, ~(8z) provides a very accurate deter-
mination of R irrespective from knowing the adsorption
site. With this procedure, the accuracy of R will always
be limited by the uncertainty of R~ in the model system,
just as in the case of E-edge data.

Consider now an atom adsorbed on a Si(111) surface.
For an ideal Si(111)lX1 surface the first- and second-
layer Si atoms are separated by only 0.78 A, so the
second-. neighbor contributions for certain sites cannot be
ignored. The high-symmetry sites for Si(111)are indicat-
ed in Fig. 14(b), with a notation analogous to that used in

Fig. 14(a). An additional site labeled I for interstitial has
been indicated, lying midway between the first and second
Si(111) layers. The degree to which the second-neighbor
Si atoms contribute SEXAFS relative to that from the
first-neighbor atomy depends on the distances R

&
and R2.

Table IV lists the values of R2 as a function of site using
R

&
——2.50 A. Since this R

&
distance is also close to the

sum of covalent radii for Ag and Si (2.51 A) it can be con-
sidered representative of the Ag-Si(111) system. For com-
parison, values of R~ and R2 assumed in Ref'. 36 for the
Ag-Si distances in Ag-Si(111) are shown in parentheses.
Sites A, S, and I are seen to have AR (=R2 —R &) values
& 1.5 A, large enough for standard Fourier filtering pro-
cedures to isolate the second-neighbor shell contribution
(see, e.g., Fig. 5). Sites B', H', and F', on the other hand,

TABLE III. Values of n~(20 )/n, q(90 ) for different adsorp-
tion geometries.

System

Cu(111)

Site'

B
F,H
S

n,d (20') /n, d (90')

—1.65
—1.84
—1.73
—1.65

Si(111)
B'
S
H'
F'
I

—1.65
—1.64
—1.65
—1.57
—1.84
—1.65

'See text and Fig. 14 for description of sites.

have much smaller AR values, making such procedures
useless for shell separation. The prime notation has thus
been used to indicate that second-nearest-neighbor atom
contributions are possible for these sites.

The identification and characterization of an adatom in
one of the unprimed sites 2, 5, or I on Si(ill) are the
same as for the case of an adatom on Cu(111). Thus, for
example, the quoted value' for R in I-Si(111) was deter-
mined from Eq. (28) using the calculated quantity
n,~(90 )/n, d(35')= —1.01 [note that in this example an
equivalent result is obtained by simply taking the mean
value of R (35') and R (90'), see Sec. III B2]. Similarly,
the distinction between sites 2, S, and I for Si(111)can be
readily accomplished using relative and absolute ampli-
tudes X or X*. Model compounds are unnecessary. Fig-
ure 14(b) shows the values of N, N*, and Ns(20')/Ns(90 )

for these three sites calculated using R& ——2.48 A from
Stohr et aI. These authors state in their analysis of Ag
on Si(111) that site S could not be distinguished from site
I due to the unavailability of a Ag-Si model compound.
However, the distinction between the very different
N*(N) values of 7.96(3.0) and 15.9(6.0) from Fig. 14(b)
could be performed using simulated date since the uncer-
tanties in the theoretical amplitudes are much smaller
than these large differences.

For an adatom in one of the primed sites B', H', and
I" on Si(ill), different analysis procedures are required.
The simplest approach for incorporating the effects of the
second-neighbor she11 of Si atoms is to assume an arith-
metic sum of first and second shells. ' ' The total L2 3-
edge SEXAFS obtained with this assumption is analogous

TABLE IV. Second-neighbor Ag-Si distances for Ag on Si(111) [where an ideal Si(111)1X1surface is assumed] as a function of
first-neighbor distance and adsorption site [see text and Fig. 14b) for description of adsorption sites]. The values of R& ——2.50 A cor-
responds closely to the sum of Ag-Si covalent radii (2.51 A); the values of R

&
and R2 in parentheses are from Ref. 36.

H'

Ri
R2
hR

2.50(2.48)
3.96(3.95)
1.46( 1.47)

2.50(2.48 )

2.63(2.60)
0.13(0.12)

2.50(2.48 )
4.01(4.00)
1.51(1.52)

2.50(2. 13 )

2.80(2.60)
0.30(0.47)

Z.S0(2.34)
2.95(2.70)
0.45(0.36)

2.50(2.48 )

4.01(4.00)
1.51(1.52)

0
For Ag (or any atom) in the interstitial site I with R

& greater than 2.35 A (the Si-Si nearest-neighbor distance), an expansion of the Si
double-layer distance is required.
No lateral rearrangements are assumed here, while Ref. 36 did assume small lateral rearrangements.
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to Eq. (24),

X( k, g) =A'(k)Ns(8)sin[2kR (8)+$2b(k)+ @(k,g) j .

(31)

X(k, g) =&'I (k)Nsl(8)W(k, g)

Xsin[2kR(8)+$2&(k)++(k, g)],
where

(36)

The average effective coordination number is

Ns(8) =Ns, (8)+(R, /R2) Ns2(8), (32)

with the individual values of Nsl(8) and Ns2(8) being
described by Eq. (25). The measured distances are
polarization-dependent weighted averages,

R(8)= I Nsl(8)R I+ [Ns(8) —Nsl(8)]R21/Ns(8)
I'( k, g) = tan-' a (8)sin[2khR+bg(k, g)]

1+a (8)cos[2k hR +A@(k,g) ]

M(k, g}=(I 1+a(8)cos[2kbR+ 611(k,g) j I2

+a'(8)sin'[2kaR+~y(k, g)]}' ',
4( k, g) = 2ka (8)[R(8)—R2]+1l,(k, g)+ I (k, g),

(37)

(38)

(39)

Only when b,R is «1 will the second term in Eq. (38}
[due mainly to A, (k)] be comparable to the first and third
terms (due mainly to b,R), because b,R is multiplied by
2k. The polarization dependence of the total SEXAFS
phase will thus be determined primarily by the magnitude
of hR. Even more significant than the effect of AR on
the total phase is the extremely large effect of AR on the
total SEXAFS amplitude. To see this by inspection, con-
sider the limiting case when a (8)= 1, whereupon
R(8) =[RI(8)+R2(8)]/2, %(k,g) =[/), (k, g)+$2(k, g}]/
2, and M(k)=2cos[kbR +A/(k, g)/2]. Under the con-
dition when (kbR +6g(k, g)/2) =n./2 the total SEXAFS
amplitude becomes zero. Taking hR =0.36 A, for exam-

ple, and neglecting bg(k, g)/2 (it is «khR), the total
SEXAFS amplitude becomes zero at k =4.4 A '. The
other extreme occurs at k =8.8 A ', where W(8.8) = —2.
Thus when a (8)=1 the breakdown of Eqs. (31) and (32)
for even modest values of hR is seen to be substantial. As
a (8) becomes smaller than 1, of course, the effect of hR
decreases.

The above discussion points out the competition be-
tween three terms: b,R, a(8), and b,,(k). To illustrate
their relative importance more graphically, simulated
Ag-Si(111) data were generated from Eq. (36) for Ag oc-
cupying sites B', H', and F' on an ideal Si(111)1)&1 sur-
face using the R q and Rz values assumed in Ref. 36 (see
Table IV), values of a (8) according to Eq. (34), and the
calculated b,~s(k) value from Ref. 25. The results are
shown in Fig. 15 for 8=20' (solid lines) and 8=90'
(dashed lines). Almost identical spectra were obtained us-

ing b~s(k) =0 (not shown), confirming that the effect of
b,R is much larger than that of b.As(k) due to the multi-
plicative factor of 2k (also see below). For comparison,
the simulated Ag-Si(111) SEXAFS for Ag in sites A, S,
and I [and with b,As(k) from Ref. 25] are shown in Fig.
15. Superposed on all these spectra with a dotted line is
the simulated EXAFS data from the hypothetical model
compound AgSi3 (RAss; ——2.5 A). The distinction be-
tween all the sites is clearly apparent. The spectra for
sites B' (bR =0.12 A) and H' (b,R =0.47 A) not only
have different polarization-dependent distances and dif-
ferent total phases, but the total amplitude of the spec-
trum for site H' is significantly altered with respect to

' that of B' (or AgSi3). Distinguishing between sites F'
(b,R =0.36 A) and I (hR =0) is also not difficult. The
polarization dependence of R (8) for site F' due to the ef-
fect of AR is greater than and of opposite sign to that for
site I due to the effect of b~s(k). More obvious, however,

=[R~+a(8)Rz]/[1+a (8)], (33)

where

a(8)=(R (/R2) Ns2(8)/Ns, (8) . (34)

In Fig. 14(b) the values of N, N', and Ns(20')/Ns(90)
have been indicated for sites B', H', and F' using Eqs.
(31) and (32). From this figure it appears that site S can
be readily distinguished from sites B' and H' using rela-
tive amplitudes (the absolute amplitudes are nearly identi-
cal). Discriminating between sites B' and H' or F' and I,
on the other hand, appears difficult even using both rela-
tive and amplitude amplitudes. One approach to this
problem is to analyze the polarization dependence of
R (8) (i.e., the relative distances) according to Eq. (33) and
to compare the absolute values of R(8) with expected
values of R I. Such considerations of absolute and relative
distances have been carried out in previous studies'" and
shown to give qualitatively useful information. It will
now be shown that by using a more accurate description
of the interference between the SEXAFS from two dif-
ferent coordination shells it is even more straightforward
to discriminate between various adsorption sites.

Equations (31) and (32) are valid so long as b,R «1,
but they break down dramatically as AR increases. The
reason for this is identical to why the effect of the total
cross term depends so strongly on the value of h, (k),
namely, the interference between two circular functions
depends not only on their relative amplitudes but also
very sensitively on the difference of their phases. The ex-
pression for the total Lq 3-edge SEXAFS from two shells
composed of the same atoms at RI and R2 is actually
given by

X( k, g) =A 'I (k)Ns I(8)sin[2kR I + $2b(k)+ g, (k, g)]

+A 2 (k)Ns2sin[2kR 2+ p~g (k)

+$2(k, g)], L2 3 edges . (35)

An analogous expression for K-edge SEXAFS can be
written using [2kRJ+P&b(k)] for the phase and Ns(8)

J
defined by Eq. (4). For isotropic EXAFS from L2 3 or K
edges, Ns (8)=NJ. (The situation of isotropic IC edge ab--
sorption for two closely spaced shells has been previously
considered by Martens et al. ) Assuming for simplicity
that A2(k) =(R ~/R2) A'I (k) and defining bg(k, g)
=$2(k, g) —@I(k,g), Eq. (34) can be rewritten [see Eqs.
(21}—(23)] as
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FIG. 15. Simulated I.z3-edge data for Ag occupying dif-
ferent adsorption sites on a Si(111)1x 1 surface. The effect of
the cross term is treated by using the calculated value of h«(k)
from Ref. 25 (as in Fig. 14, this is unimportant), while the effect
of the second-neighbor contributions is treated more exactly by
using Eq. (36). The values of R& and R2 from Ref. 36 are used.
Simulated data from the hypothetical model compound Ag3Si
with R ~

——2.50 A are indicated by the dotted line. Note the very

large differences in polarization-dependent distances, absolute
amplitudes, and overall displacements between the different
sites.

are the very different amplitudes, with that of +' being
not only smaller in magnitude but almost completely anti-
phase. This situation is reminiscent of the one con-
sidered above for b,R =0.36 A and a (8)= 1.

The effects of b,R versus h, (k) as a function of adsorp-
tion site can be quantified. Table V summarizes the
values of RAs s;(8) for 8=20' and 90' evaluated with two
different procedures. The first, labeled I, approximates
the interference between the first- and second-atom shells
using Eq. (31) and approximates the interference between
the s and d final states by setting KAS(k) =0, i.e., Eq. (20).
The second, labeled II, determines R&s s,(8) from analysis

of simulated data using the more exact interference ex-
pression, Eq. (35), and the calculated value of b,~s(k),
i.e., Eq. (25). Both methods use the values of Ri and R
assumed in Ref. 36. Because the total amplitudes for the
spectra of sites H' and F' are so different using method II
from that of the model system (see Fig, 15), standard
analysis procedures could not be applied and analytical
treatment of the simulated data was necessary to evaluate
R(8) (the quantities N and N' for these sites are not
meaningful). Comparison between the values of R(8)
determined from methods I and II show that their differ-
ences are only quantitative. Thus if the interference ef-
fects between the first- and second-atom shells were only
approximated (as in method I) but the interference effects
due to a finite b„(k) were included (as in method II), the
net effect on the distances would be comparable to or
smaller than the differences seen in Table V. The difficul-
ty in obtaining quantitative values of R i and R2 for sites
8', H', and F' is a general one in both K-edge and L23-
edge SEXAFS and EXAFS data. However, the explicit
consideration of the competition between the effects from
bR and h, (k) in the case of Ag on Si(111) is system
dependent since it varies with both the values of b,R (Ref.
36) and the calculated value of h&z(k). Its purpose is to
show how in this system the effects of AR dominate due
to the multiplicative 2k term and the comparatively small
effect of b,~s(k) for the other adsorption geometries.

Summarizing this section, general procedures for re-
moving the effects of the cross term and for reliably
determining bond lengths and adsorption sites from L2 3-
edge SEXAFS data have been described. The use of a
model compound is still valuable for providing the most
accurate determination of R, but to distinguish between
high-symmetry adsorption sites these general procedures
can rely on even simulated data. For the Cu(111) surface,
for example, a measurement of both absolute and relative
amplitudes alone is sufficient for identifying the adsorp-
tion site. This is also true for most of the sites on the
Si(111) surface. However, for some of the sites on the
Si(111) surface a measure of the polarization dependence
of the distance is also required. The procedures developed
for these surfaces are empirical and should be applicable
to other systems.

IV. SUMMARY

The transition probability for L2 q-edge absorption con-
tains three terms corresponding to final states of s, d, and
s-d symmetry. The first is negligible compared with the

TABLE V. Ag-Si distances for Ag on Si(111)as a function of adsorption site [see text and Fig. 14(b) for description of sites] and
method of determination. Method I uses Eq. (31) with P(k, 8)=0, i.e., the interference effects from both the different first- and
second-neighbor atom shells and from the s-d cross term are only approximated; method II uses Eq. (35) with 4«(k) from Ref. 25,
i.e., both interference effects are included explicitly. Values of R & and R2 assumed in Ref. 36 are used here (see Table IV). (Some of
the distances in this table using method I are slightly different from those in Ref. 36 using the same. method. due, in part, to the use of
8=20 rather than 25'.)

R (20')
R (90')

2.48
2.48

2.48
2.46

2.48
2.47

2.48
2.45

2.48
2.48

2.47
2.48

2.39
2.48

2.43
2.52

2.51
2.49

2.50
2.46

2.48
2.48

2.47
2.48
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second while the third is zero for isotropic absorbers. For
the case of anisotropically distributed adatoms on a
single-crystal surface, the contribution of the s-d cross
term is nonzero and must be included with the transition
probability of the d state. The result of doing this has
been a subject of recent discussion. If the SEXAFS asso-
ciated with the adatom's outgoing s-state photoelectron
wave is in phase (or very nearly so) with that of the e-
state wave, then the s-d and d absorption terms simply
add and only the SEXAFS amplitude is modified. If, on
the other hand, the s and d waves are sufficiently out of
phase, then the two interfere and both the SEXAFS am-
plitude and phase are affected. Based on generally accept-
ed calculated phase shifts for s and d waves and using
the Ag adatom as an example, simulated SEXAFS data
had been analyzed and shown that it was the latter situa-
tion which was the case. ' In particular, for the configu-
ration of Ag in the atop site, that analysis gave a bond-
length anisotropy of -0.05 A and an amplitude correc-
tion of about a factor of 2. A comparable bond-length an-
isotropy and an amplitude correction of —1.5 were ob-
tained for Ag in a coplanar geometry. The conclusion '

that effects of such large magnitude are a general
phenomenon and the fact that these predictions are at
odds with both the analysis and the experimental data
from previous I and Te L23-edge SEXAFS work"' '
motivated the present study.

First, the validity of the predictions regarding the ef-
fects of the s-d cross term in the simulated data was
checked using the example of I in the atop configuration.
The very large modification of the SEXAFS amplitude
was confirmed, but the effect on the determined bond
length was shown to be overestimated by a factor of 2 as a
result of the particular method used ' in the data analysis.
The predictions based on the simulated data were then
compared with the experimental data of I in the atop con-
figuration. Evidence for the small bond-length anisotropy
could be identified (a value of -0.02 Az or a bond-length
imprecision from this effect of +0.01 A), but the sizable
amplitude corrections were decidedly absent. Using two
different empirical procedures the source of this
discrepancy for I was traced to the inaccuracy of the cal-
culated phase shifts involved in generating the simulated
data. It was shown that the actual relative phase between
the s- and the d-state waves, a quantity defined as h(k), is
about half the theoretical value. This result demon-
strates why the effect of the s-d cross term on the SEX-
AFS amplitude is well approximated by its simple addi-
tion to the d-absorption term as had been performed in
the initial studies. "' ' It further shows that while cal-

culated phase shifts may be useful for obtaining qualita-
tively accurate bond lengths from EXAFS data, their
strong effect on the interference between the s-d and d-
state terms places unrealistic demands on their accuracy
required for meaningful analysis of SEXAFS data.

The above result carries with it a number of implica-
tions which depend on three factors: the type of absorb-
ing (ad)atom, the configuration of that atom with respect
to the surface, and the accuracy of the calculated relative
phase shifts for that atom, i.e., the accuracy of h(k). The
first factor was examined by assuming the calculated h(k)
values to be accurate and comparing these values for dif-
ferent atoms. Within +,0.1 rad they were all very similar,
implying that conclusions based on simulated data alone
should apply to any atom. The second factor was exam-
ined by again assuming accurate h(k) values and compar-
ing simulated data for I or Te in different adsorption sites
with corresponding experimental data. The goal was to
study not only the importance of the s-d cross term as a
.function of adsorption site but also to see whether atoms
in other sites could be used to assess the reliability of the
calculated b, (k) values. It was found that the atop config-
uration exhibits the greatest sensitivity to the effects of s-
d cross term and so is the best suited for empirically
determining b,(k). For SEXAFS data with less than very
high signal-to-noise quality it was shown that it is diffi-
cult to evaluate b.(k) for atoms in other adsorption
geometries, including the coplanar configuration.

The accuracy of b, (k), the third factor, affects the
above conclusions regarding different atoms and different
adsorption sites because these are all based on simulated
data generated from calculated b,(k) values. Since it was
shown that b, (k) is, in fact, not accurate for I (and undou-
btedly for nearby elements such as Te and Ag), it is
tempting to assume that the same corrections to h(k) ap-
ply for all atoms. However, without experimental evi-
dence from a broader range of elements this assumption
cannot be justified. A general procedure for analyzing
L2 3 edge SEXAFS data was therefore developed which
eliminates the need for making any assumptions about
b(k). Using this empirical procedure it is possible to
determine bond lengths and adsorption sites with a relia-
bility comparable to that obtainable from E-edge SEX-
AFS data.
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R —[R(8~)+R (82)]/2, and this is always smaller than the
corresponding bond-length anisotropy.

4 SJ in Ref. 21 conclude on the basis of calculated h, (k) values

that the anisotropy in R due to the cross term will be
enhanced in future SEXAFS data because they will extend to
higher k values. As seen in Fig. 1(b), however, this statement
is incorrect since the effect of h, (k) on g(k, 0) decreases with

increasing k.
47G. Martens, P. Rabe, N. Schwentner, and A. Werner, Phys.

Rev. Lett. 39, 1411 (1977).
There can be differences in o.

2 and A,2{k) from o.] and A, ~(k)
which make A 2 (k) & A ~ (k).
The unannealed 0.33-ML Ag-Si(111) system in Ref. 36 was in-

terpreted with Ag occupying site F' rather than site I (as in

the annealed 0.6-ML system) because a polarization depen-

dence of R, which was attributed to the effect of AA@(k), was
observed for the 0.6-ML system [2.48+0.04 A (90 ),
2.46+0.04 A (25 )], whereas for the 0.33-ML system it was

not [2.48+0.05 A for 90 and 25']. The isotropic R was ex-

plained as a cancellation between the effects of h«(k) and of
AR. However, (i) Table V shows that the effect of hR for site
I" exceeds that of EAg(k), (ii) Fig. 15 shows that the predicted
effect of AR on the amplitude for site F' is unusually large
and this was not reported, and {iii) the value of R~ ——2.34 A
assumed for this site (see Table IV) is much shorter than the
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sum of Ag-Si covalent radii, 2.51 A. A more likely explana-
tion of the 0.33-ML data is that (i) Ag does occupy site F' but
vvith a value of R~ -2.5 A, (ii) the uncertainties in the mea-
sured R(25') and R(90) values obscure the actual small
(-0.01 A) anisotropy due to EA~(k), and (iii) the contribu-

0
tions from the second-neighbor Si shell at Rq-2. 95 A (see
Table IV) are negligible (i.e., a{8) is &~1) due to their larger
distance and the probable static disorder from the as-
deposited Ag. A comparison of SEXAFS amplitudes from
the 0.6- and 0.33-ML data should clarify this point.


