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We consider the problem of ion neutralization scattering from surfaces. For large kinetic ener-

gies, the motion of the ion can be treated classically. The electronic part is assumed to be described

by a time-dependent Newns-Anderson Hamiltonian. The ion is supposed to have a closed-shell
structure with one empty orbital outside the shell, which can take up, at the most, two electrons
from the metal. One can obtain a time-dependent Hartree-Fock (TDHF) solution for this using a
procedure suggested earlier. [T. B. Grimley, V. C. Jyothi Bhasu, and K. L. Sebastian, Surf. Sci. 124,
305 (1983)]. We show that this solution is defective in that it predicts that the probability that the
ion comes back as a neutral species is always less than 0.5, thus illustrating that one has to include
electron correlation in order to describe the process correctly. For this we make use of the time-

dependent version of the coupled-cluster approach. In this, one assumes the wave function to have
the form exp[TO(t)+T&(t)+T2(t)+. . . ] ~

Co) where
~
40) is a Slater determinant and T„(t) can

create n-particle hole excitations in it. We take Tl{t) as a linear combination of all possible single-

particle hole-excitation operators while T2(t) is taken as a linear combination of just those two-

particle hole-excitation operators which transfer two electrons to the orbital of the ion from the
solid, neglect T„(t) for n & 2, and derive differential equations for the matrix elements of the opera-
tors Tl(t) and T2(t). These differential equations are solved numerically to obtain the wave func-

tion at any time t. New theorerns which enable us to calculate all the expectation values that arise
in our treatment of the problem are presented. Also, we have derived expressions for the excitation
spectrum, produced as a result of the collision, by particles which come back as ions and also by
those which have taken up one or two electrons from the solid. The method is applied to the

scattering of lithium ions from the Ni(100) surface and also from a Ni surface contaminated with al-

kali atoms. The calculations show that TDHF theory is not a bad approximation if one is concerned

just with the approach of the ion to the surface. But, in treating an ion which leaves the surface,
TDHF fails. The predicted values of charge-transfer probabilities are considerably different in the
two theories. Also, calculation of the excitation spectrum produced as a result of the collision show

that the spectra are much broader for a contaminated surface having a lower work function than for
the clean surface.

I. INTRODUCTION

In the recent past, ion neutralization scattering from
metal surfaces has received considerable attention from
both experimentalists and theoreticians. The main reason
for this is that one can now obtain high-quality experi-
mental data for the scattering of ions from well-defined
metal surfaces. If the energy of the ion is sufficiently
large, then the motion of the i'on can be treated classically,
leading to great simplification in the theoretical treatment
of the problem. The neutralization can proceed either
through a one-electron or a two-electron process. In the
first, the ion has an orbital whose energy lies in an occu-
pied band of the metal (usually the conduction band).
During the collision, an electron is transferred to this
atomic orbital from an occupied orbital of the metal
-whose energy is not very different; the energy required for
(released in) the process is taken from (transferred to) the
translational motion of the ion. This is known as the res-
onance mechanism. The two-electron process is common
if the atomic orbital lies far below the conduction band of
the metal. Then an electron jumps into the atomic orbital,
energy being conserved by the ejection of another electron

from the metal. This process is more difficult to treat
theoretically than the resonance process.

The resonance process has been observed experimentally
for several systems, ' particularly for the scattering of al-
kali ions from metal surfaces. In this paper we shall be
concerned only with this process. There have been several
theoretical attacks on the problem. Tully has constructed
a theory which is capable of explaining the qualitative
features of the process. But an implementation of his
theory requires knowledge of many-body wave functions,
which are not at all easy to obtain. Bloss and Hone con-
sider a one-particle Hamiltonian and solve approximately
the equations of motion for the creation and annihilation
operators. Brako and Newns extended this approa'ch.
They assume the bandwidth of the metal to be very large
and the atomic orbital to be coupled to all the orbitals of
the solid with the same strength and obtain expressions
for the neutralization probability for scattering from a
solid which could be at a nonzero temperature. Muda and
Hanawa suggest solving explicitly for expectation values
of the form (c„(t)c,(t)), which are nothing but the
bond-order matrices so familiar to the quantum chemist.
This procedure is, in our opinion, rather tedious.
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Sebastian, Jyothi Bhasu, and Grimley consider another
procedure, viz. , finding numerically the matrix elements
of the time-evolution operator. For one-body Hamiltoni-
ans, exact solution can be found. This method is particu-
larly suited for the cases in which the bandwidth is small.
This method was applied to the scattering of ions from a
linear chain. Also, this method can be applied, under cer-
tain assumptions, to scattering from a three-dimensional
solid, the computational effort required being the same as
that for a linear chain. Furthermore, the possibility of ac-
counting for electronic repulsions, at least partially, using
the time-dependent Hartree-Fock approximation was
pointed out.

This procedure was further investigated by McDowell
who also suggested another procedure similar te those
used in studying the effect of vibrational degrees of free-
dom of the solid on the scattering of atoms from surfaces
(see Adelman' and Tully. "). Inglesfield' has calculated
the spectrum of excitations produced in the metal when
an atom is scattered from its surface. He makes use not
of the differential equations but of the integral equations
that can be easily obtained from them.

J. Hermann et al. ' have investigated experimentally
the scattering of Li+ ions from the surface of Tungsten
and compared the results with that of time-dependent
Hartree-Fock (TDHF) approximation, calculated using
the method of Grimley et al. The probability that the
Li+ ion becomes neutralized by electron transfer to its 2p
orbital is found to be not in agreement with these results,
thus indicating that TDHF is not sufficiently good for the
description of the process. Our aim in this paper is to
suggest a method for going beyond TDHF. For this we
make use of a time-dependent version of the coupled-
cluster approach of Coester and Kummel, ' Cizek, ' and
others. ' Using this procedure, solutions which take
correlation effects into account can be obtained easily.
Also, it is possible to calculate the spectrum of excitations
produced in the solid by particle" that have come out as
ions and also by those that have picked up one or two
electrons from the solid.

We now give a brief outline of the paper. In Sec. II, we
give details of the Hamiltonian that we use. Section III
points out a serious defect of the TDHF method, namely,
under this method, the probablity that the ion returns as a
neutral species is less than 0.5. Section IV introduces and
discusses the time-dependent version of the coupled-
cluster approach. The problem of extracting useful infor-
mation from the wave function, once it is in the coupled-
cluster form, is considered in Sec. V. We give two
theorems which, we believe, are new [Eqs. (23) and (25)].
Another interesting result of this section is Eq. (28). Sec-
tion VI gives expressions for charge-transfer probabilities
and excitation spectra while Sec. VII is concerned with
the task of solving the differential equations of the theory
numerically. Exact, numerical solution of the equations
can be carried out if the solid is represented by a semi-
infinite one-dimensional chain. For the semi-infinite
three-dimensional solid, the numerical implementation at
first appears to be a formidable problem, but a single as-
sumption, regarding the time dependence of the interac-
tion [Eq. (52)] of the orbital of the ion with the orbitals of

the solid, reduces the problem exactly to that of scattering
from a one-dimensional linear chain. In Sec. VIII we ap-
ply the formalism to the scattering of Li+ ions from the
Ni(100) surface. The main conclusions of the paper are in
the Sec. IX.

II. HAMILTONIAN

We consider the scattering of an ion such as Li+ or
Na+, which has a closed-shell structure, with one empty
orbital outside the shell, from the surface of a metal. In-
cluding more than one orbital on the ion is not difficult.
In the scattering one or two electrons could be transferred
to the ion by a resonance (one-electron) process. We as-
sume that the solid can be described by a one-electron
Hamiltonian. Because of our neglect of the two-electron
terms, we are not able to describe the Auger process that
is caused by them. The eigenfunctions of this Hamiltoni-
an shall be labelled by a set of quantum numbers k. Spin
is not included in k and is specified by the variable o.

which can take the values up (t) or down (l). The Hamil-
tonian for the solid H„can now be written as

where nj, =ct, cj, , ct, (ct, ) represents the annihilation
(creation) operator for the orbital

~

ko. ), which has an en-

ergy e'i. . We assume that
~

ko ) is normalized according
to (k'o'

~

ko) =6(k', k)5 ~ . 5(k', k) has Dirac 5 func-
tions over the quantum numbers that vary continuously
and Kronecker 5 functions over those that vary discretely.

We shall consider ions having energies in the range
200—1000 eV so that the motion of the ion can be treated
classically. Furthermore, the ion is assumed to be in-
cident and reflected back in the perpendicular direction.
The attractive potential in which the ion moves as a result
of its interaction with the solid and any energy loss caused
by the collision are both neglected. The ion's distance at
any instant t, is taken to be R =8o+ U

~

t ~, where u is the
velocity of the ion and Ro, a constant (see Sec. IX for fur-
ther details).

~

Ao. ) will represent spin orbitals on the ion,
the associated operators being cz and cz .

~

Ao) is as-
sumed to be orthogonal to

~

ko. ). The orbital energy of
~

Ao ) at large distances from the solid is denoted as ez.
We write the time-dependent Hamiltonian for the elec-

tronic part as

H(t) =g et, nI, + g ez(t)nz + U(t)n„,n~,
k, o o.

+g [Vz~(t)cz cj +H c].. (2)

=Ho(t)+ U(t)n„, n„, . (3)

The defimtion of Ho(t) is obvious from Eq. (3).
ez (t) =ez +I(t), where I(t) represents the shifting of the
energy of

~

Ao ) due to the images. The term U(t)nz, nz,
represents the Coulombic interaction between electrons of
opposite spin in the orbital of the ion. The images make
the Coulombic repulsion dependent on the distance of the
ion from the surface, which in turn causes U to be time
dependent. This Hamiltonian is usually known as the
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Newns-Anderson Hamiltonian. The symbol gk in Eq.
(2) and all the equations that follow means that integra-
tion has to be performed over all quantum numbers that
vary continuously and summation has to be performed
over those that take discrete values.

This Hamiltonian, however, neglects the following as-
pects of the problem. (i) All the dynamics of the atoms in
the solid are neglected. (ii) Excitation of plasmons is not
considered. Plasmons, however, are included indirectly as
we have taken the image interaction into account. (iii)
Imagine that ez is high above the Fermi level eF of the
metal. Then the orbitals

~

Ao. ) are unoccupied during the
collision so that the electronic system of the solid sees the
ion only as a time-dependent potential which can create
excitations. The fact that e~ is not high above eF can
now cause a switching off of this potential by the transfer
of an electron.

III. TIME-DEPENDENT HARTREE-FOCK SOLUTION

At the time t = —oo, the ion is far away from the solid
so that V~k( —ao ) =0 and the wave function for the sys-
tem is a Slater determinant with all the levels in the solid
having an energy less than ez being doubly occupied. We
denote this state by

~

&Po). At this time, the net spin of
the combined system is zero. Because our Hamiltonian in
Eq. (2) has no spin-flipping term, the spin of the com-
bined system has to remain zero at all times. We wish to
solve the time-dependent Schrodinger equation,

q(t) ) =~(t)
~
q(t) ) .

. a
at

(4)

Because II (t) contains the two-body operator
U(t)nz, nz„ the exact solution of Eq. (4) is not known.
One can obtain an approximate solution by the TDHF
method in which H(t) is replaced by the one-electron
Hamiltonian,

~HF(t) =~0(t) + U(t)( & na „,)n~, + & nz „,)n~,
—

&nest, t &&nAL, t &) (5)

Because the wave function at time t is a single Slater
determinant and not a linear combination, we have

&g(t) ~.„... ~

g(t) &
= &n„,, & &n„,, & .

Now we write
~
g(t) ) as

~

y(t) ) =ng, ng$
~

q(t) )+(1—ng, )(1—ng])
~
q(t))

+[nz, (1 n~, )+n»(1—nw, )]
l
P(—t) ) . (g)

nz, n~,
~

g(t)) is that component of the wave function

&nz, ) stands for &g(t)
~
n„~

~
P(t)). This solution, how-

ever, has the defect discussed below.
Because the initial state is a Slater determinant with

identical orbitals for spin-up and spin-down electrons, the
wave function at any time t, obtained by time evolution
under the Hamiltonian of Eq. (5), will also be a Slater
determinant with identical orbitals for spin-up and spin-
down electrons. This implies

(6)

P„,„(t)=2&n~, , )(1—&nz, , )) . (10)

Because nz, is an occupation number operator, its expec-
tation value is between zero and unity so that 2
&nz, , )(1—

& n~, , )) can have, at most, a value of 0.5,
which happens when & n„, , ) =0.5. Thus, under the
TDHF approximation, the probability that the ion would
return as a neutral particle [=P„,„(co.)] is less than or
equal to 0.5, in clear contradiction with physical intuition
and experimental data. Almost complete neutralization is
observed in some experiments. ' However, if there was
one electron with a given spin in the atomic orbital at
time t = —oo, then Eq. (6) would not be true and our ar-
guments would not mean inapplicability of TDHF.

IV. TIME-DEPENDENT COUPLED-CLUSTER
APPROACH

The argument given above suggests that one has to look
for methods for going beyond the TDHF method. An ob-
vious procedure would be to perform a time-dependent
configuration interaction (CI) which, however, is extreme-
ly tedious. So we make use of a time-dependent extension
of the coupled-cluster approach. The coupled-cluster ap-
proach was originated by Coester and Kummel' and
developed into a powerful tool for molecular electronic
structure computations by Cizek et al. ' ' The time-
dependent version was used by Hoodbhoy and Negele'
for applications in nuclear physics and by Schonhammer
and Gunnarsson' for the calculation of core-hole spectra.

To introduce this procedure, we adopt the following no-
tation. Orbitals of the solid that are occupied in the ini-
tial state

~

@0) will be referred to as the hole states and
denoted by lower case symbols such as p, q, etc., while or-
bitals that are unoccupied in

~
No) will be called the parti-

cle states and denoted by upper case symbols such as P,
Q, etc. The labels k, k', etc. will be used to denote orbi-
tals of the solid which could be particle or hole states, and
a summation over such a label will imply summation over
all the orbitals of the solid.

Following the idea of the coupled-cluster expansion, we
write the wave function as

~
f(t) ) =e '"

~
40) .

Here T(t) is a time-dependent operator, which is assumed
to have the form

T( t):T ( )o+tT) (t) + T~(t) + (12)

T„(t) is an operator that will excite n electrons from hole
states to particle states. Using Eq. (11) in Eq. (4) and
multiplying by e '" we get

that has two electrons in the atomic orbital of the ion,
while (1 n—z, )(1 n—z, )

~
g(t) ) is that which has no elec-

trons in this orbital. [n~, (1 n—~, )+n~~(1 —n~, )] g(t))
has exactly one electron in this orbital, the spin of which
can be up or down. The probability that exactly one elec-
tron is transferred to the ion at the time t is

P„,„(t)= &f(t) n~, (1 n~—,)+nz, (1 n—z, )
~
g(t)) .

Now using Eqs. (6) and (7), we get
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i T(t) 4&o) =e '"H(t)e '"
~
4O) .8

at
(13)

Taking the matrix elements of this equation with respect
to

~

@o) and the states obtained by creating one, two, etc.
particle-hole excitations will lead to a set of coupled non-
linear differential equations for the matrix elements of
T(t). As in the time-independent case, this can be done
systematically using the diagram techniques of Cizek, ' '
though for our Hamiltonian it is easier to perform the cal-
culations by the method given below.

In principle, one has to include all T„(t) which, of
course, is not possible. For oug problem, we truncate the
expansion in (12) at n =2 and as even this is rather diffi-
cult to handle, we make further approximation in the ex-
pression for T2(t). Thus we take

T)(t)=g TAp(t)cA cp + g Tpp(t)cp cp (14)

tions which are expected to be most important for a
correct description of the process, viz. , those in which two
electrons are transferred to the atomic orbital from the
solid. In this transfer, the pair of holes that are left
behind also must have a net spin zero, which is assured by
taking Tp q(t) to be symmetric in the indices p and q. As
T2(t) of (15) obeys T2(t) =0, we can write the wave func-
tion as

~1i(t))=e ' ' [1+T,(t)] ~C, ) .

On the right-hand side of (14), one has to calculate
quantities of the form e ("cz cz~e '". We write this
as

e
—T(t) ~ e r(t) —&(t) e &(t)cz e e cz e

and in e '"cz~e '", we expand the exponentials to get

p, l7 e cA e =cA + [cA, T(t)] (17)

T2(t) = g Tp q(t)CA )CA 1'�(cq(
2

p e

(15)

We have not allowed the matrix elements Tzp and Tpp to
be dependent on the spin. This assures that the system is
always in a state with net spin zero. Also, we do not take
Tz(t) to have its most general form, rather we take it as a
linear combination of just those two-particle hole excita-

As the particle hole operators, occurring in the expansion
of T(t), commute among themselves, only the first power
of T(t) remains in Eq. (17). Using equations similar to
(17) one can evaluate Eq. (13). On taking matrix elements
of this equation with respect to

~
4o), cA cp

~

C&0),

cp cp ~

C o ), and cA, cA, cp, cq,
~

&bo ), we get the following
equations:

i To(t) =2 y [eP + TAp (t) VpA (t)]

iT'p(t)=VAp(t)+[" (t) —ep]T'p(t)+ 2 VAP(t)TP~(t)+ g V,.(t)[T,', (t) —T'p(t»'q(t)],
q

i TPp(t) =(ep —ep)Tpp(t)+ VPA(t)TAp(t) QTPq(t—) VqA(t)TAp(t),

(19)

(20)

I' Tp q(t) = [2eA (t) + U(t) —ep —eq ) Tp q(t) + U( t)TAp (t) TAq (t)

[2TAp (t)Vp A(t)Tpq(t)+TAp(t)Vp A(t)Tp q (t)+TAq(t)Vp'A(t)Tpp (t)]
Pl

(21)

Because
~
f( —oo )) =

~
4&o), the above equations have to

be solved subject to

To( —oo ) = TAp ( —oo ) = Tp p ( oo ) Tp q ( —oo ) =0 (22)

V. CALCULATING THE MATRIX ELEMENTS

Having solved the above set of differential equations
and obtained the wave function in the form e ~"

~

40),
how does one compute the expectation values of the
operators of interest? For a general T(t) this is an ex-
tremely difficult task and there does not exist efficient
ways of doing so. This is one of the difficulties that have
to be overcome before one uses a general T(t) For the.
approximate T(t) that we use, this may be done using the
formulas derived below.

In this section, symbols such as x, y, etc. will stand for
spin orbitals which are occupied in the state

~
@0), while

X, Y; etc. will stand for spin orbitals that are unoccupied.

We wish to calculate the overlap of the two functions
e

~
No) and e

~
C&0), where S and W can create only

single-particle excitations and may be written as
S=g» „S»„c»cx and W =g» W» c» c . For this, we

expand the exponentials in (@0
~

e e
~

@o) and use
Wick's theorem and diagrammatic techniques. We
represent S by the vertex shown in Fig. 1(a), which we
refer to as an open vertex. It has one directed line enter-
ing it from the left and one leaving it to the left. 8' is
represented by the vertex shown in Fig. 1(b) (the dark ver-
tex). All the terms that arise when Wick's theorem is ap-
plied to the overlap can be obtained in the following
fashion. Imagine that the term contains n S vertices and

, m 8'~ vertices. The contractions that arise from Wick's
theorem are represented by joining together the associated
lines. Due to the contraction of cg with c& or of c~ with
c~ and contractions of two creation operators or two an-
nihilation operators being zero, there is no line joining two

vertices or two S vertices. Any line has to start at a
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FIG. 1. (a) represents the operator

chic&

S~ and (b) the

operator 8'&~c&eg. Note that particle lines run from right to
left and hole lines from left to right.

(a} (c)
FIG. 2. First three diagrams of &4z

l
e e

l
C&0&c. The

lines in the figure are to be labeled by particle or hole indices,
depending on the direction of the line, and summed over. This
is to be done in all the diagrams, wherever we have left a line
unlabeled. -

8' vertex and end at an S vertex or vice versa. The rules
for drawing the diagrams are as follows. (i) Draw n Wt
vertices and m S vertices such that the 8' vertices are on
the left and the S vertices on the right (see Fig. 2). (ii)
Join together the lines such that there are (a) no lines join-
ing a 8' vertex with another 8' vertex or an S vertex
with another S vertex, (b) the directions of the lines are
preserved; (iii) only diagrams which have no free lines
need be drawn, and (iv) all possible combinations are to be
drawn. To calculate the contribution from a diagram that
arises in this fashion, we use the following rules. (i) Each
line running from left to right represents a hole line and is
to be labelled by a lower case index such as x, y, etc.
Each line running from right to left is a particle line and
is to be labelled by capital letters such as X, Y, etc. Each
open vertex with lines labelled by x and X contributes the
quantity S~ and if it is a dark vertex then the contribu-
tion is W«„. (ii) Each closed loop contributes a factor of
—1 as does each hole line. (iii) A diagram with n W and
m S vertices has a factor (n!m!) ' associated with it. (iv)
Sum over all the lines that are labeled.

The diagrams that arise can be classified as those that
are completely connected and those that are not. It is pos-
sible to sum the series exactly and express the result only
in terms of the connected diagrams. That is,

o l

e e
l

C&o& =exp(&eo e e
I
+o&c) . (23)

The subscript C in Eq. (23) means that we need to retain
only the connected diagrams. As this result is known in
the literature for the case where S=8' we shall not give
a proof for it. (We have been unable to find a reference
where it is proved, but the proof is fairly easy. )

The first three connected diagrams that contribute to
I

&4&o le e
l
No&=det(I+ W S) . (24)

Here I denotes the identity matrix. Our result of Eq. (23)
is valid even if S and 8' are general operators of the form
given in Eq. (12).

Now we calculate the matrix element
&4&o

l
e Be

l
No& of an operator B. Using a diagram-

wT s
matic representation for 8, one can again represent this
matrix element as an infinite series. The series can be
summed exactly to get

le Be
l

C& &

= &eo
l

e Be
l
eo&c&eo

l
e e

l
eo& . (25)

As an example, consider the case where B=c~cz. We
represent this operator by the vertex in the Fig. 3(a). The
first three diagrams that contribute to
&C&o

l

e c«c e
l
@o&c are given in Figs. 3(b)—3(d).

Summing the contributions from all such diagrams, tak-
ing into account all topologically equivalent diagrams,
leads to

8'~
&4o

l

e c«c e
l
@o&c=[(I+WtS) 'Wt] . (26)

Representing

c«cyclic

by the vertex in Fig. 4(a), one has
the diagrams 4(b)—4(e) contributing to the left-hand side
of Eq. (26). All these diagrams can be summed exactly to
get

&4o
l

e e
l
4o&c are shown in the Figs. 2(a) to 2(c).

These diagrams can be summed to get

&@o
l

e e
l
@o&c=Tr»(I+W S»

so that

&col e c«cici, c e
l
No&c=[(I+& S) W ]x«[(I+W S) W ]yr —[(I+WS) W] «[(I+W S) Wt] r . (27)

Px

Y I

(b) (c)

FIG. 3. (a) represents the operator Cjcx. (b) to (d) are the
first three diagrams that arise from & C&o

l
e cj cx e'

l
C&a) c.

(t) (d) (p)
FICi. 4. (a) represents the operator ckcI chic . (b) to (e) are

four diagrams that contribute to &Na le~ chic«cycle'l 4a)c.
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The first term in this equation is obtained by summing
4(b), , 4(d), 4(e), and similar higher order diagrams, while
the second term is the result of summing 4(c) and a set of
diagrams similar to 4(d) and 4(e). An interesting point
about this result is that it can be written in the following
form:

M ( CX C YCy Cx ) =W( CX Cx )W ( C FCy ) —M ( CXCy )W ( C YCx ),
(28)

where M(M) means the following expression for any
operator M:

&ep e~Mesl Cp&~(M)= t ——(4Q
l
e Me

l
@p)c .

(+le e lC)
(29)

The result of the Eq. (28) is new, though a special case of
it is known. Thus it is true if M represents taking expec-
tation value with respect to a given Slater determinant.

P;,„(t)=N(t) (4&o
l
e ' ' (1 —ng„)

T& (t)+ T2(t)
X (1 n—~, )e

I
@o&

The methods of the preceding section lead to

(1—&n~&, i &c)'
P;.„(t)= 1+K(t)

where

&1(t) r] (t)
& nays &c=&@o

l

e '
ngqe

'
l
C'p&c

= [T i(t)[I+T i(t» i(t)] 'T i(t) I-
The probability that two electrons are transferred is

P„„(t)= (g(t)
l n»n»

l
g(t) )

(n~~, i &c+K(t)
1+K(t)

(34)

(37)

VI. EXPRESSIONS FOR CHARGE TRANSFER
PROBABILITIES AND EXCITATION SPECTRA

As a result of solving Eqs. (18) to (22) we have the wave
function in the form

lg(t)&=e ' ' [I+T2(t)] I
C'o&

To(t)
Tp(t) is a constant such that e ' should normalize this
function. Our truncation of expression (12) for T(t) at
n =2 and the further approximation that we made in

To(t)
T2(t) causes e not to be equal to the actual normaliza-
tion constant N(t). This defect can be rectified only by
keeping as many terms as possible in the expression for
T(t). N(t) contains a time-dependent phase factor which
we can safely neglect as we shall not be computing quanti-
ties involving 8/Bt. N (t) can be calculated from

P„,„(t) of Eq. (9) can be evaluated to get

P„,„(t)= 2&no&, i &c(1—&no~, i &c)

1+K(t) (38)

Another quantity that is of interest is the spectrum of
excitations produced as a result of the collision of the ion
with the solid. This is given by a formula used by
Muller-Hartmann, Ramakrishnan, and Toulouse; it js

s(~)=y
l
(c',

l
y(M)) l'&(~ —Ep+E„) . (39)

In the above, 4„) are eigenfunctions of the Hamiltonian
H( oo ) having eigenvalues E„. From here until the end of
this section, the symbols +Qp Tpp T f H K X U and

Ty ~ will be used to denote the values of these quantities
evaluated at the time t= oo. S(to) can be written as the
Fourier transform,

l f(t) ) =N(t)e ' [1+T2(t)]
l

& p), (g(t)
l
g(t) ) = I

(30)
so that

N(t) '

oo

S(co)= f S(s)e' 'ds,

with

(40)

= (@Q
l

e ' [1+T2(t)][1+T2(t)]e '
l
@Q)

=[1+K(t)](@o
I
e ' e '

I
No& i

K(t)

(31)
s( )=(q( )

l

' ly( )) .

Explicitly, H is given by

H =y eg ng +y eknk + Un/ bing $

0

k, o

(41)

=&C'ol e ' [T2(t)+T2(t)+T2(t)T2(t)]e "'
l
eo&c

Using Eq. (24) we get

T~(t) T (t)
(@o

l

e ' e '
l
@o)= [det[I+T )(t)T, (t)]I' . (33)

The square comes from spin. T ~(t) is the matrix, whose
elements are given by [T,(t)]~y=T„'y(t) and [T &(t)]yy
= TI'y(t). K (t), defined above, can be computed using the
methods of the preceding section. The probability P;,„(t)
that no electron is transferred to the ion at the time I; is
the norm of (1 n»)(1 n~, )—

l
g(t—) ) and is given by

S(s) may be written as

T
~
=g TgyCg~C&~+ g Tp'y CpaCycr

p, 0'

T2 =g [(e —1)T~y Ta'q + Tui ]e~ ic~ qey qcq q

p q

(43)

S(s)=N (C&p
l

e '(1+T2)e ' 'e '(1+T2)e' 'l Np) .

(42)

where we have made use of the fact that
l
@p) is an eigen-

function of H having the eigenvalue E0. Now defining
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1, 1 [ A p &,s &
' L' 8

~ 0

TAg) = T TPp TPpe

Tp'q' T—p—qexp[ —i(2e~+ U —ep —eq)s],
(44)

and

2("~ t ~c(1—
~nest

~c)
S„,„(s)= R, ,1+K

we get
Tl z S

S(s)=N (C'o
~

e '(1+ Tz)(1+Tz)e '
l
@o~

=N (1+If')(det[I+ T )T', ])z .

Here

&'=(eo
~

e '(Tz+Tz+TzTz)e '
~
eo)c .

(45)

S„,s(s) = (R, )1+%
(51)

VII. SOLVINCx THE DIFFERENTIAL EQUATIONS
AND CALCULATING THE MATRIX ELEMENTS

S„,„(s) and S„,s(s) are obtained by replacing
~
g( oo ) ) in

Eq. (41) by [(1 n—~, )n~, +(1 nz,—)nz, ] ~
P(oo)) and

n„,n„,
~
P( oo )), respectively.

Using Eqs. (32) and (33) we get

S(s)= R, ,1+%
where

det(I+ T (T'))

det(I + T ) T ) )

(46)

(47)

= I Ti(I+T iT i) (49)

Similarly,

The quantity S(co) in Eq. (40) is the spectrum of all possi-
ble excitations and includes excitations in which zero, one
or two electrons are transferred to the ion with or without
the creation of particle hole excitations in the solid. More
interesting quantities, both from experimental and
theoretical points of view, are the spectrum of excitations
produced by a collision in which (i) no electron is
transferred to the ion, (ii) one electron is transferred (the
particle returns as a neutral species), and (iii) two electrons
are transferred to the ion (it returns with a unit negative
charge). These will be denoted by S;,„(co), S„,„(co), and

S„,g(co), respectively. The quantities which on Fourier
transformation would lead to these will be denoted by
S;,„(s), S„,„(s), and S„,s(s). They can also be evaluated
easily. Thus S;,„(s) is obtained by replacing

~
g(oo )) in

Eq. (41) by (1 nz, )(1—n~, )
~

P—( oo ) ). This gives

We now have the difficult job of solving numerically
the differential equations (18) to (20) to obtain T~(t) and
Tz(t). For scattering from a semi-infinite one-
dimensional tight-binding linear chain, this is not diffi-
cult. For this system one needs only the energy to specify
any given orbital. For a semi-infinite three-dimensional
solid one needs at least three quantum numbers, all of
which can vary continuously, to specify a given orbital of
the solid. We have to solve the differentia1 equations at a
selected set of values for each quantum number, which
implies that one has X k points. For N=10 this means
that we have —10 differential equations to be solved.
This is clearly impossible. However, the following as-
sumption reduces the number of differential equations to
+2,22

Vzk(t)=akf(t) . (52)

f(t) is a given function of time, which we assume to be
real and o;k is a complex quantity, which depends on the
value of k.

We can get the solution of Eqs. (19) to (21) by making
the following ansatz. Let us assume that we can write

T~p(t) = T~(ep, t)ap,

Tpp(t) = T'(ep, ep, t)apap, (53)

Tpq(t) = T (ep, eq, t)apaq,

where the quantities Tz(ep, t), T'(ep, ep, t), and T (ep, eq, t)
depend only on the energies Ep Ep and eq and not on the
other quantum numbers that specify the states p, P, q,
etc. Putting these into Eqs. (19) to (21), we find that if we
choose T~(ep, t), T'(ep, ep, t), and T (ep, eq, t) to obey Eqs.
(54) to (56), then we have the solution of Eqs. (19) to (21):

i Tg ( ep t ) = [eg ( t) —ep ]Tg ( ep t ) +f( t) 1 + f d Epp( eP ) T ( ep, &p t )

+ f deqp(eq)[T (ep, eq, t) —Tg(e»t)Tg(eq, t)]

tT (ep, e, t)=(ep —ep)Tp (t)+f(t)Tg(ep&t) 1 —f deqp(Fq)T (eP, eq, t)

(54)

(55)

t?' (ep, eq ~t ) = [2eg (t) + U(t) —ep —Eq] T (ep ~Eq~t ) + U(t) T'g (ep '~t ) Tg (&q &t )

f(t) Tz(ep, eq, t) f de p(e )Tg(ep, , t)+ f dep T (ep, , eq, t)p(ep, )Tg(&p~t)
F F

dg T' ep, e~, t p e~ T~ ~„t
p) F

(56)
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dip(, , dep) means integration over all energies less (greater) than eF. In the above equations we have intro-

duced the density of states,

p(e)=g
~

teak ~'&(e —ek) . (57)

p(e) has the information regarding the electronic structure of the solid and is the only quantity one needs to know in or-
der to calculate the neutralization probabilities or the excitation spectrum.

Having obtained T&(t) and Tz(t) by solving the above differential equations, we have to calculate the expectation
values. The problem of working with large dimensional matrices (X XX ) can also be avoided because of the special
structure of T&(t) and T2(t) given in E~. (53). For example, consider [I+T &(t)T &(r)] 'T ~(t), which occurs in Eq.
(36). As the labels on the matrix, [I+ T ~(t) T ~(t)], are continuous variables, inverting it amounts to solving the integral
equation,

g [I+T,(t)T, (t)]pqQqp (t) =o(p,p') .
q

Putting

Qqp (t) =&(q,p')+~qap R(eq, ep, t),

(58)

and defining

D(ep, ep, t) = Tg (Ep, t)Tg (Ep, t')+ f„de T (e,&p, t) p( e)T (e,ep, t)

we get the solution of Eq. (58) if R(ep, eq, t) obeys

R ( ep, Eq, r ) + f', d e'D ( ep, e', t )p( e') R( e', eq, r ) = D( ep, Eq—, r)'
This is a simple integral equation which can be solved by selecting X sample points for the energy in the occupied band
when this is converted to a matrix equation involving N &X matrices. All the quantities of interest except the ratio of
the determinants in Eq. (47) can be evaluated in a similar fashion. To evaluate the ratio, we write

det(I+ T &T ~) =exp[Tr ln(I+ T &T'&)] .

The use of Eq. (53) in the terms obtained by expanding the logarithm in the exponent leads to

Tl(T iT i) =f depp(ep )F(Ep, Ep, s ), '

Tr(T~T', ) = depp(ep) depp(ep )F(ep, ep, s)F(ep, ep, s),
Ep & EF 6 ' & EF

etc. F(ep,ep, s) is defined by

(59)

F(ep, ep, s)=exp (ep+ep ) —Tg(ep, oo )Tg(ep' M )+ f depT (ep, ep, co)*p(ep)T'(ep, ep, co )e

Now we sample a set of energy points e&,ez, . . . , e& in
the occupied band. Then each integral in (59) and (60)
can be approximated by a summation over these points.
Thus for any function g(e), we write fg(e)de

,p;g;, g; =g(e;) and p; are weight factors chosen in

such a fashion as to attain a good approximation for the
integral. With this, we get

det[I+T ~T &] det[I &+A']
(62)

det[I+ T tT, ] det[I &+A'],

where (A'),J +p;pJF(e;, e——j,s) and I ~ and A' are ma-
trices of dimension %XN. To evaluate F(ep, ep, s), we

again select a set of energies in the unoccupied band and
replace the integration in (61) by summation.

VIII. APPLICATION TO Li+ SCATTERING
FROM Ni(100)

We now apply the above formalism to the scattering of
Li+ ions from the Ni(100) surface. We assume that the

Li+ ion is incident perpendicularly on top of a given Ni
atom and assume that its distance from the Ni nucleus at
time t is given by R =Ro+u

~

t ~, where Ro ——2.6 a.u. and
v is the velocity of the ion. The hopping between the Ni
orbitals and the 2s orbital of Li is modelled using the
Wolfsberg-Helmholtz formula, ' 0.5K(IL; +IN;)S with
%=1.5. Here IL; and IN; denote the ionization potentials
of lithium and nickel atoms respectively. S is the overlap
of the relevant orbitals. Using this formula and assuming
that the orbitals on nickel and lithium are described by
Slater-type orbitals for the free atoms, with orbital ex-
ponents given by Clementi and Rainaldi, one can esti-
mate that the hopping between the Ni 3d orbitals and the
Li 2s orbital is at least 70 times smaller than the hopping
between Ni 4s and Li 2s orbital, for R ~2.6 a.u. So we
make practically no error in neglecting the 3d orbitals.
We model f(t) in Eq. (52) by putting it equal to the hop-
ping between Ni 4s and Li 2s orbital calculated using the
Wolfsberg-Helmholtz formula. We also have to model
the density of states p(e) in Eq. (57), which actually
represents the fact that the Ni atom on which the Li+ ion
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is incident is bonded to other atoms in the solid. We as-
sume that it has the form

1.0

Here P is a parameter, defined by the relationship 413=
the s bandwidth. For Ni we take it to be 2.84 eV. The
ionization potential of the Ni atom is 7.633 eV and that of
the Li atom is 5.390 eV. The Coulombic repulsion U for
the free Li atom can be estimated as the. difference of the
electron affinity and ionization potential of Li to be 4.790
eV. The image interaction between the Ni surface and a
charge which is kept at a distance of R a.u. from the
plane formed by the first layer of Ni atoms is taken to be
given by —1/(4R) in atomic units. Not that this does not
diverge as the minimum possible value for R is R0 in our
problem. Thus if the ion is at a distance R, then the orbi-
tal energy is ez(R)=@~+I(R), where I(R)=1/4R. The
Coulombic interaction between two electrons in the 2s or-
bital of Li at this distance is U(R)=U 2I(R).—The R
dependence of e~(R) and I(R) can be converted to time
dependences as we know R as a function of time. The
Ni(100) surface is taken to have a work function of 5.1

eV. We take the s band to be half-filed. We have cah u-
lated the neutralization probabilities for the scattering of
Li ions having an energy in the range 250 to 1000 eV.

Figure 5 shows the occupation number of the affinity
orbital of the ion ((nz, , ) ) as a function of time, calculat-
ed using the TDHF method and the coupled-cluster
theory (CCT). The ion is closest to the surface at the time
zero. For t &0 the ion is approaching the surface and in
this region, the predictions of the two theories are not
very different. This is a common feature of all the calcu-
lations reported in this paper. The reason for this is that
the occupation number of the affinity orbital of the ion is
still not very large and hence the two-electron term is not
expected to be of importance. For t &0, however, the
behavior of (nz, , ) is roughly the same in the two
theories, but the predicted value of (n~, „) in CCT
(0.137) is approximately four times the TDHF result
(0.0345) indicating that correlation effects are important
in the final outcome of the scattering. Figures 6 and 7

0.5—

0 0
—4.0 —20 15 00

10
2.0 4.0

FIG. 6. Probability of transferring zero (- . - -), one (--—),
and two ( ) electrons as functions of time, according to the
TDHF theory. The kinetic energy of the Li+ ion is 1000 eV.

show the probabilities of transferring zero, one, or two
electrons as a function of time according to the TDHF
theory and CCT. As before, the two results are not very
different for t & 0. Both theories predict that two-electron
transfer has a low probability (1.16X10 in TDHF and
4.1)&10 in CCT). The predicted value of neutralization
probability in TDHF (6.58&10 ) is approximately ~ the
CCT value (2.6X10 '). A rough estimate of the error
that we make in truncating T(t), as in Eq. (14), and
neglecting all the higher-order T„(t) can be obtained by
comparing exp[Re To( oo )]/X( oo ) with unity. For the
calculations reported above, it was found that

ReTO( Do )

~

e /N( ao ) —1
~

&0.015 indicating that the approx-
imation that we use is reasonable.

There have been experiments in which the scattering of
the ion takes place from a surface which has a fraction of
a monolayer of alkali atoms deposited on it. One can
model this deposition simply by changing the work func-
tion of the solid, if the coverage of the adsorbed alkali
atoms is small. Figures 8 and 9 report the results of a cal-
culation where we have assumed the decrease in the work
function to be 0.513 (i.e., the work function is now 3.68
eV). 'One immediately notices that charge transfer is
much more probable now. In CCT the probability of
single-electron transfer takes a maximum value of 0.77
while in TDHF it always remains less than 0.5, in accor-

],0

0.2—

b
U

I

/

/
I

/

/

0.0 I I

—2.0 0.0
15

10

2.0

F1G. 5. Occupation number (n„„t) of the affinity orbital of
the ion as a function of time. Time is in units of seconds in all

the figures. . ~ - is the TDHF result and - —the CCT one.
The kinetic energy of the Li+ ion is 1000 eV.

0.0 I

4.02.0—2.0 0.0
15

]0 t

FICx. 7. Probability of transferring zero (- ~ ), one ("—),
and two ( ) electrons as functions of time, according to the
CCT theory. The kinetic energy of the Li+ ion is 1000 eV.
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FIG. 8. Probability of transferring zero ( ~ ~ ~ ~ ), one ("—)

and two ( ) electrons as functions of time, according to the
TDHF theory, for Li+ ions having a kinetic energy of 500 eV.
To simulate the effect of depositing small amounts of Li on the
surface, we have changed the work function of the metal to 3.68
eV.

dance with our expectation of Sec. III. The affinity orbi-
tal of the ion lies below the Fermi level if the ion is far
away. As one brings the ion close to the surface, the im-
age interaction causes the energy of this orbital to go up
and eventually cross the Fermi level. For a clean Ni sur-
face this occurs at about 10 A and for the alkali deposited
case at about 2.5 A. The effect of this crossing is seen
clearly in Fig. 9. The ion is at this distance at the time
—3X 10 ' s, and until this time the probability of
single-electron transfer is steadily increasing.

When the ion is brought still closer, the affinity orbital
goes above the Fermi level as a result of which the proba-
bility of finding one electron on the ion decreases. It is in-
teresting that the probability of transferring two electrons,
however, steadily increases as one approaches the surface.
This can be traced to the following reason. A configura-
tion having only one electron on the ion has an electronic
energy e~(R), while a configuration with two electrons
has 2e~(R)+U(R)=2ez+U. That is, the electronic en-

ergy of the two-electron configuration is independent of

FIG. 10. The spectrum of excitations produced as a result of
the collision of the ion with the surface, according to CCT.

is the excitation spectrum produced by those ions which
have taken up zero electrons from the surface [S;,„(co)], while"—is that produced by ions which have taken up one electron
from the surface [S„,„(co)]. Note that S„,„(co) has nonzero value
even for co&0 because of the fact that if the ion is far away
from the surface the ionic orbital has an energy less than that of
the Fermi level of the metal. The straight line at m =0
represents a 5 function at that point having a strength 0.239.
The kinetic energy of the Li+ ion is 1000 eV.

the distance of the ion from the surface. The crossing of
ez(R) with the Fermi level tends to reduce the weight of
configurations having one electron on the ion by two
mechanisms: (i) by transferring electrons back to the met-
al and (ii) by getting one more electron from the metal. In
practice, both happen (though the second is more in Fig.
9) leading to an increase in the weights of configurations
which have zero or two electrons on the ion. The predict-
ed values of single-electron transfer (0.382 in TDHF and
0.165 in CCT) and two-electron transfer (6.63X10 in
TDHF and 0.318 in CCT) are very different. For this cal-
culation,

~

e ' /N( ao ) —1
~

=0.247, indicating that
the solution is not as good as in the previous case.

In Figs. 10 and 11, we give the spectrum of excitations
produced as a result of the collision for the two cases that
we considered above, viz. , clean and alkali deposited Ni

1.0 0.2,

0.0
3.00.0—6.0 —3.0 6.0

10 t

FIG. 9. Probability of transferring zero ( . .), one ("—),
and two ( ) electrons as functions of time, according to the

CCT theory, for Li+ ions having an energy of 500 eV. To simu-

late the effect of depositing small amounts of Li on the surface,
we have changed the work function from 5.1 to 3.68 eV.

0.0
0.0

w (eY)
3.0 60

FIG. 11. The difference between this diagram and the previ-

ous one is that we have changed the work function to 3.68 eV
and that the kinetic energy of the Li+ ion is now only 500 eV.

~ ~ represents the excitation spectrum produced by particles
which come back as negatively charged Li+ ions [S„,s(co)).
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FIG. 12. —1n[1 P;,„(co—)] against 1/VE, for scattering
from clean Ni surface. is the TDHF result and - —is the
CCT one. E is in eV.

surfaces. The vertical line in both the figure at co=0
represent Dirac 5 functions, the height being equal to the
strength of the 6 function. This strength gives the proba-
bility of elastic scattering. The excitation spectra extend
into the region co & 0 due to the reason that the affinity or-
bital on the ion lies below the Fermi level if the ion is far
away from the surface. The main conclusion to be drawn
from the two figures is that the spectrum of excitations
produced in the solid is much broader if the crossing of
the affinity leve1 occurs in a region near the solid than in
the case where it occurs at a large distance. Note also that
in the Fig. 11 we report results for a Li+ ion kinetic ener-

gy of 500 eV. For a kinetic energy of 1000 eV, the spec-
trum would be even broader.

We now consider the dependence of the outcome of
scattering on the velocity of the particle, for the case of
scattering from a clean Ni surface. Calculations showed
charge-transfer probabilities at the distance of the closest
approach to be almost independent of the velocity of the
particle. This implies that nonadiabaticity is not impor-
tant for t &0. Even though at large distances the affinity
orbital is be1ow the Fermi level, at distances over which
the transfer of electron does not have a vanishingly small
probability it is above the Fermi level. Hence, for very
low velocities the outcome of the scattering will be Li+
ion with unit probability. The deviation from this at fin-
ite velocities, measured by 1 P;,„(oo ) is expe—cted to have
the functional form exp( —constant/Ut), where Ut is the

velocity of the ion perpendicular to the surface. To verify
this, we have made a plot of —in[1 P—;,„(ac )] against
1/VE in Fig. 12. The result is approximately a straight
line at energies less than 350 eV. The TDHF results, plot-
ted in the same figure, show a similar behavior.

IX. CONCLUSIONS

We have considered the problem of ion neutralization
scattering from the surface of a metal using a time-
dependent Newns-Anderson Hamiltonian. For an ion
with a closed-shell structure, the time-dependent Hartree-
Fock solution was shown to be defective in that it predict-
ed that the probability of neutralization should always be
less than 0.5. We suggest that the time-dependent exten-
sion of coupled-cluster theory is a possible alternative.
We have applied it to the problem and derived some in-
teresting new theorems that are required for the applica-
tion. The usefulness of the procedure is illustrated by ap-
plying it to the scattering of Li ions from the Ni(100) sur-
face. The predictions of the TDHF and CCT are very
different in the calculations that we have done for this
system. However, the calculations also showed that
TDHF is not a bad approximation if one is concerned
with the region in which the ion is approaching the sur-
face. We have simulated the effect of depositing small
amounts of alkali atoms on the surface by simply decreas-
ing the work function of the surface. In this case the af-
finity level of the ion crosses the Fermi level of the metal
at a shorter distance than for the pure Ni surface. Corre-
spondingly, we find the charge-transfer probabilities to be
higher and the spectrum of excitations produced in the
solid as a result of the collision to be broader.
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