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Raman heterodyne interference: Symmetry analysis
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The Raman heterodyne interference phenomenon observed recently in the impurity-ion crystals
Pr +:YA103 and Pr +:LaF3 is examined from the viewpoint of symmetry analysis of the nonlinear

susceptibility tensor. General Raman heterodyne signals are derived for all crystal symmetries and
for all optical-frequency and radiofrequency polarizations. An example of the utility of this ap-
proach resolves a controversy over the crystal symmetry of LaF3, establishing that it is trigonal rath-
er than hexagonal.

I. INTRODUCTION

Novel interference phenomena' have been observed in
impurity-ion solids using Raman heterodyne detection.
The interference is a consequence of the linear dependence
of the signal on the participating matrix elements which
permits the detection of relative phases as well as ampli-
tudes. Calculations presented in the preceding paper
show how the interference can occur between two or more
inequivalent nuclear sites or between different Zeeman
components of a single site. The drawback of these calcu-
lations is that they require a detailed knowledge of the
impurity-ion wave functions. In this paper, a group-
theoretical approach allows us to analyze Raman hetero-
dyne interference between sites using symmetry argu-
ments. All that is required is a knowledge of the symme-
try of the point group for the crystal host and for the nu-
clear sites. This approach was first introduced by Taylor
and will be extended here to include a more general
derivation and results for all crystal symmetries. Exam-
ples of crystal symmetry arguments and assignments are
given for two impurity-ion crystals, Pr +:YA103 and
Pr +:LaF3, and compared with experiment. The contro-
versy whether LaF3 has hexagonal or tr'igonal symmetry
is resolved by symmetry analysis and a simple optical po-
larization experiment reported here.

The symmetry argument that we use is based on
Neumann's principle which states that the symmetry of
any macroscopic observable of a crystal must be the same
as the symmetry of the point group of the crystal. The
group-theoretical treatment proceeds as follows. The in-
duced polarization of the optically excited impurity ion in
a Raman heterodyne experiment is given by .

Pt =XijkEjHk (ij,k =x,y,z),

where there is an implied sum over repeated indices.
Since the optical field E and the polarization P are polar
vectors and the magnetic radiofrequency field H is an axi-
al vector, the nonlinear susceptibility P is a third-. rank axi-
al tensor. The macroscopic 7 must be invariant under the
symmetry operations of the point group of the host crys-
tal. These operations can lead to a great simplification in

the expression for P since some of the 3 components of 7
will be zero while the remaining nonzero components are
not necessarily independent. The symmetry properties of
X are tabulated by Birss.

The macroscopic induced polarization is detected as a
heterodyne beat signal S,

S P E g 'J'kE'Ej Hk (2)

S= g X jkE;EqHk.
m=1

must then equal the macroscopic result (2).

II. SITE INTERFERENCE IN Pr +:YA103

To illustrate this type of calculation, first consider the
case of Pr +:YA103 where the host crystal has D2~ sym-
metry (orthorhombic) and the impurity ion Pr + under-
goes the optical transition H&(I &)~'D2(1 ~) between the
lowest crystal-field components of symmetry I &. We
choose a space-fixed coordinate system (x,y, z) parallel to
the crystal (a,b, c) axes. For this symmetry the only non-
vanishing components of P are xyz, xzy, zxy, yxz, yzx,
and zyx (see Table 2e, entry D3 of Birss ). Then the in-
duced macroscopic polarization for general fields
E= (E„,Ez,E, ) and H =(H„,Hp, H, ) is

In principle, this macroscopic signal can be decomposed
into the contributions of the individual impurity-ion sites.
To examine the sites alone we follow the same procedure
as for the macroscopic signal but now we must use the
symmetry properties of the point group of the site. Fol-
lowing the notation of Taylor, we denote 7' ' as the sus-
ceptibility of the mth site. Starting with the induced po-
larization of one site, the polarizations of the remaining
sites can be generated using the symmetry operations of
the host-crystal point group. Thus, if there are n sites,
then there are n-generating matrices o' ' (including the
identity). The generator cr' ' is used to evaluate X™ac-
cording to

(m) (m) (m) (m) (1) (m)
Xijk trip ojq trkr Xpqr (

The total signal
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Px =7 y,EyH, +XxzyE, Hy,

Py =&yxzExHz+&yzx EzHx

P, =7 yE Hy+XzyxEyH

P'"=2P'"+2P"'

For the experimental conditions' E=(E„,E», 0) and
H=(O, O, H, ), the signals of the four sites are

This can be simplified further by restricting the electric
field polarization to x and y directions for the electric di-
pole transition to be allowed between states of I

&
symme-

try. ' Then L'xzy Xyzx Xzxy Xzyx 0. The detected
signal is

Summing (9) over all four sites, the total signal

(9)

(10)
S=(X.„+X,„,)E.E,H, . (5)

—1 0
o' '(i)= 0 —1

0 0

0 1 0 00, o'"'(iRy)= 0 —1 0
—1. 0 0 1

where o'" is the identity, o' ' is rotation by m. about y, o' '

is inversion, and o' ' is o-' '&&o' ' so that sites 3 and 4 are
the inversion images of sites 1 and 2, respectively. It is
easily shown using (3) that any X is invariant under inver-
sion since

For the site interference experiments reported in Refs. 1

and 2, where E=(E„,E»,0) and H=(O, O, H, ), the macro-
scopic signal in zero static magnetic field was observed to
be zero within the limit of sensitivity of the experiment,
allowing us to conclude in (5) that X„»,+Xyx, -0.

We now examine the contribution of the individual
Pr + sites to the macroscopic signal. The site symmetry
of Pr +:YA1O3 is CI~. There are four sites with half of
the sites being inversion images of the other half. For C&I,
the nonzero components of X are the same as for D2k with
the addition of zzz, xxz, and yyz (Table 2e, entry B3 of
Birss ). For site 1 the polarization is

(&) (&) (&) (&)
Px =+xyzEyH. +&xzyE.Hy +&xx.ExH.

(1) (1) (&) (&)
y +yxz xHz ++yzx EzHx ++yyz Ey Hz

(&) (&) (&) (&)P, =7 yE Hy+g~ EyH +7 E H, .

We can generate all of the sites by applying the symmetry
. operations of D2k to X,

100 —10 0
o'"(E)= 0 1 0, o' '(Ry)= 0 1 0

001 0 0 —1

(7)

can now be compared to the macroscopic result (5). We
thus conclude that

(&) (&)
(Xxyz +Xyxz ) = 4 (Xxyz +Xyxz )

and that the remaining contributions of sites 1 and 3 are
exactly canceled by sites 2 and 4 so that the macroscopic
signal is zero due to site interference. This is also con-
sistent with the observations' of Pr +:YAlO3 under a
weak static magnetic field. The static field lifts the de-
generacy of the two sites and yields signals' of opposite
sign.

In another experimental configuration, E=(E„,E», 0)
and H=(H, H», 0), the theory predicts that S=P E be
identically zero for each site. This corresponds to the ob-
servation of Zeeman interference in each individual site
where positive and negative Zeeman signals exactly cancel
in zero static field.

III. Pr +:LaF3 AND DETERMINATION OF CRYSTAL
SYMMETRY

Consider next the group-theoretical treatment of the
Raman heterodyne signal for Pr +:LaF3 where again the
coordinates (x,y, z) are parallel to the crystal axes (a,b, c)
In this case, there is some controversy over the correct as-
signment of the crystal symmetry. Oftedal and
Schlyter' report D6~, Mansmann, " Zalkin et al. ,

' and
Reddy and Erickson' give D3d from x-ray data, while de
Rango et al. ' select C6, from neutron diffraction. The
behavior of the Raman heterodyne signal can be used to
distinguish between these different possibilities. The sym-
metries D6~ and C6, both belong to the same class of hex-
agonal symmetry while D3d is a trigonal symmetry (see
Table I). The macroscopic signal for arbitrary fields,
E.=(E„,E»,E, ) and H=(H, H», H, ), for D6k and C6„
symmetries should obey

Thus any two sites related by inversion symmetry will
yield the same signal S=Xj'kEEjHk This leaves only
two sites that are inequivalent. It remains to calculate the
polarization of the second site. Using (3), we write

(2) (2) (2) (2) (1) (2)
Xijk ~ii ~jj ~kkXijk I

~

and it follows that

S:(X~+X y)(E Hy EyH )E

while the signal for the D3d symmetry should obey

S X x [(Ex Ey )H 2ExEyHy t

+(X„~+X~»)(EHy EyH )E, . —(12)

(2) (&) (1) (&)P =7 y, EyH, +7 zyE, Hy —7~,E H, ,
(2) (&) (&) (&)

Py gy E H +Xy E H gyy EyH
(2) (&) (&) (&)P, =g E Hy+g~ EyHx —7 EzH, .

The total polarization is

(8)

In order to experimentally verify the symmetry, we
rewrite these last equations using cylindrical coordinates
for the special case E, =0 and H, =0, such that

E=E(cosO, sine, 0), H=H(cosy, siny, O) .

Equations (11) and (12) then become
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TABLE I. Raman heterodyne signal S=P-E for all crystal symmetries.

1. Triclinic (C],S2)

S= (PxxxHx +XxxyHy +XxxzHZ )Ex + (XyyxHx +XyyyHy +XyyzHZ )Ey

+ (PzzxHx +PzzyHy +PZZZHZ )Ez + (Pxyx +Pyxx )ExEyHx + (Pxyy +Pyxy )Ex EyHy

+ (+xyz ++yxz )ExEyHz + (+xzx ++zxx )Ex zHx + (+xzy ++zxy ) x Ez y

+ (+xzz ++zxz )ExEzHz + (+yzx ++zyx ) y zHx + (+yzy ++zyy )EyEzHy

+(X +X,)EyE H,

2. Monoclinic ( C2, C]~, C2~ )

S= (+xxz Ex ++yyz Ey ++zzz Ez )Hz + (+xyz +&yxz )ExEy Hz + (&xzx +&zxx )ExEzH

+ (+yzx +&zyx ) y z x + (Xxzy +Xzxy )ExEzHy + (&yzy +Xzyy )Ey EzHy

3. Orthorhombic (D&, C», D2q )

(+xyz ++yxz ) x Ey Hz + (+xzy ++zxy )ExEzHy + (+yzx ++zyx )Ey EzHx

4. Tetragonal I (C4,S4, C&~ )

+xxz(Ex +Ey )Hz ++ZZZEz Hz + (+xzx ++zxx )(EXHx +EyHy )Ez

+(X +X y)(E H —E H )E,

5. Tetragonal II (D4, C4„D2d, D4p, ) and Hexagonal II (D6, C6„D3h,D6p, )

S=(g +g )(E H —E H )E,

6. Trigonal I (C3,S6)

S:Pxxx ( ExHx 2Ex EyHy Ey Hx ) +Pyyy (Ey Hy 2Ex Ey Hx ExHy )

++ZZZEz Hz +Xxxz (Ex +Ey )Hz + (Xxzx +Xzxx )(ExHx +Ey Hy )EIZ

+ (y zy +y y )(E Hy EyH )E

7. Trigonal II (D3 C3„,D3d)

S X[(E Ey—)H 2E Eye]+(X ~+X y)(E Hy EyH )E

8. Hexgonal I (C6, C3$ CQg)

+xxz (Ex +Ey )Hz ++zzz Ez Hz

+[(X ~+X. )(E H +Eye)+(X ~+X y)(E„Hy EyH„)]E, —

9. Hexgonal II (See No. 5. )

10. Cubic I ( T, Tq )

S:(Pxyz +Pxzy )(ExEyHz + y zHx + x zHy

11. Cubic II (0, Td, OI, )

S=O (De„C6,), (13)

S=X „„EHcos(20+@) (D3d) .
/

(14)

We see that in a Raman heterodyne experiment with
E, =0 and H, =0 the hexagonal symmetries will yield a
zero signal while the D3d symmetry will yield a signal
that varies sinusoidally in magnitude with rotation of the
electric or magnetic field polarization. We have tested the
prediction (14) for the ground-state hyperfine
H4

~

+ —,
' )~

~

+ —', ) transitions of Pr +:LaF3 by observ-

ing a signal whose amplitude displays (Fig. 1) the predict-
ed cosine behavior with period 180' as the laser polariza-
tion is rotated. Figure 2 displays how the si~nal of the
other ground-state transition H4

~

+ —', )~
~

+ —, ) changes
sign when the polarization is changed by 90. Since the
signal is clearly nonzero, in disagreement with (13), and
(14) is verified, the assignment of D3d to the LaF3 crystal
is unambiguous. This case is a clear example of the use of
Raman heterodyne interference in elucidating the symme-
try properties of crystals.

Based on the choice of host-crystal symmetry, the re-
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I ~y~~ I suits of nuclear quadrupole resonance work' and the ob-
served optical polarization selection rule, ' which we dis-
cuss below, the site symmetry in Pr +:LaF3 must be C2.
Using this assignment we have calculated the contribu-
tions of the sites to the total signal. Here the situation is
more complicated. There are six nuclear sites with half of
the sites being the inversion image of the other half, leav-

ing a total of three inequivalent sites. For this case the
generating matrices for the three inequivalent sites are

100
~'"(E)= o 1 o

001
l

30 60
I

90
+~ I

120 150 180
1

2

Laser Polarization Angle 0 (degrees) o' '(R3) = —V'3/2 ——, 0 (15)

FIG. 1. Maximum amplitude of the Raman heterodyne sig-

nal for the H4
~

+
2 )~

~

+ z ) (16.7 MHz) ground-state transi-

tion in Pr+:LaF3 as a function of the electric field polarization
angle. Circles represent experimental points and the solid line is

the best fit of the cos(20+y) dependence of Eq. (14) to the data.
The experimental configuration is E=E(cosO, sin0, 0) with opti-
cal power of 10 m%', H=H(cosy, siny, 0), a radiofrequency
field H =0.7 G, arid y held fixed.

0=0

cr' '(R3)= &3/2

0

—v'3/2 0

0

0 1
L

where R3 and R3 represent 120 and 240 rotations about
the crystal c axis. We will also make use of an additional
restriction for the optical transition H4(I'~) —+'Dz(I ~).
Since the initial and final electronic states have I"& sym-
metry in the C2 symmetry group, the transition is al-
lowed' ' only when E)~C2 axis where C2 of site li~x
axis. This restriction has the consequence that for site 1

only the tensor P"' is applicable. Then the signal from
site 1 is

(16)

while the signals from sites 2 and 3 using (15) and (3) are

S:X» [ s (E H +3EyH +6E»Eye�)

&3(E Hy+3EyHy+2E»EyH )]
(17)

0' + —,~3(E„Hy+3EyHy+2E EyH„)] .

Using cylindrical coordinates E=E(cosO, sino, o) and
H=H(cosy, siny, o), we have

S' '=X»"„E H cos (6)+120 )cos(y+120'),

S' '=X~„E H cos (8—120')cos(y —120') .
(18)

I I

8 9
Frequency (MHzI

I

10

FKr. 2. Line shape of the H4
~

+
2 )~

~

+ z ) (8.47 MHz)

ground-state transition of Pr +:LaF3 in dispersive phase show-

ing sign reversal when the electric field polarization is rotated by
0=90 . The experimental configuration is E=E(cosO, sin0, 0)
with optical power of 10 mW, H=H(cosy, siny, O), H=2. 4 G,
arid y held fixed.

From (18) we see that when g=y =90, the electric and
magnetic field polarizations are appropriate for these two
sites interfering completely. In general, however, the in-
terference is only partial and the signal will be composed
of contributions that are not necessarily equal from all
three sites.

IV. RAMAN HETERODYNE SIGNAL FOR
GENERAL CRYSTAL SYMMETRY

Table I shows the results for the macroscopic signal for
any crystal-host symmetry. The 32 point groups are di-
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vided into 11 categories according to the symmetry prop-
erties of P. In general, the higher the crystal symmetry,
the simpler the expression for the signal and the more
likely is the possibility that complete interference can
occur for some experimental configuration. In the last
group containing the symmetries 0, Td, and OI„ the sig-
nal is identically zero regardless of the experimental con-
figuration. For these crystals (examples being CaF2 and
YAG), site interference necessarily occurs when the im-
purity ion has a site symmetry lower than the host-crystal
symmetry, as then the signal of a site does not vanish.

V. CONCLUSIONS

We have shown that interference behavior can be
predicted easily using group-theoretical methods. A Ra-

man heterodyne signal can vanish either because of in-
terference when the contributions of the sites exactly can-
cel or when the signal for each site is zero. When a signal
is nonzero, the contributions from the sites are not neces-
sarily equal and partial interference may occur. Further-
more, we have shown that it is easy to determine the
behavior of the Raman heterodyne signal as a function of
electric and magnetic field polarizations, which can be a
useful tool in distinguishing between possible crystal sym-
metries.
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