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Stark-Wannier states in disordered systems
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We compare numerical results on metastable Stark-Wannier states in two semi-infinite disordered

Kronig-Penney models in the presence of an electric field with an analytic derivation from a WKB-

Lyapunov-type formula. Results suggest vanishing of the width of the resonances at the infinite-system

limit.

It is now clear that narrow resonances forming a quasi-
ladder exist for some models which represent one-
dimensional finite crystals in the presence of an external
field; it is also a fact that the resonance widths exhibit, as
the crystal is enlarged, large and unpredictable oscilla-
tions. ' So it was not clear whether or not the resonance
widths vanish in the infinite-crystal limit as suggested by
Berezhkovskii and Ovchinnikov. It appeared to us that by
destroying the crystal regularity, the interference phenome-
na which cause the oscillations would disappear. Therefore
we decided to address the limit problem for disordered sys-
tems. These systems are interesting on their own, because,
due to the link between resonance widths, transmission
coefficient, and resistance through Landauer-type formulas,
their study can provide a better understanding of the resis-
tance properties at low temperatures of thin wires like those
made of doped semiconductors. Their interest comes also
from the fact that a transition from localized to extended
states at a positive field value has been observed by
Soukoulis, Jose, Economou, and Ping Sheng and proved in
different situations by Prigodin' and Delyon and co-
workers. 6

We study two Schrodinger equations, 7
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which differ by the distribution of the mutually independent
random variables V„. In model I the V„distribution is uni-
form in a symmetric interval [ —~12,412] exactly as in
Ref. 4, while in model II, we introduce a "less disordered"
distribution (not considered in Refs. 4 and 6) uniform in
[ —3, —1].

Equation (1) can be easily transformed into the finite-
I

difference system:
1
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where cn=coskn, s„= kn 'sink„; k„=E+Fn is the effective
energy at n; Q„=Q(n), f„'=Q'(n+).

Resonances are defined as usual ~ by the Sommerfeld
condition at N+, Q~= ik~Qz with /~= 1, and the L condi-
tion at —~ is given by Q' z t= k ~ tip z t. Actu-

ally the research of resonances is made easier by previous
computation of bound states with the boundary condition

4N
We remark that resonances are so narrow that corre-

sponding wave functions have the same behavior as any
wave function corresponding to a nearby real energy what-
ever the initial condition at X. Numerical computations
give the following generic decrease for E = 0:

In(p„'+ p„'+~) —Co+ Cq ln(Fn ) as n + ~ (3)

with superimposed regular oscillations of period m in the
(Fn)'~2 variable, apparently almost constant (see Fig. 1) and
independent of F. Ci is apparently linear in F in the
range [0.125,4.0]

C~(F) =0.5+ (1+0.1)F ' for model I

C~(F) =0.5+ (1.1+0.3)F ' for model II

(4)

(5)

If we define as critical field F, the value for which we pass
from extended to localized L wave functions, we get, for
model I, F, = 2 and, for model II, F, = 2.2. If we compare
with Ref. 4 our definition coincides with their F, defini-
tion and our critical value in model I corresponds to their
F, value.

Their heuristic explanation can be made more precise us-
ing a WKB-Lyapunov —type formula. An equivalent form of
(2) is

kn s&nkn+ i sinkn+ i kn sinkn + i
An+1+ V„+cosk„+i+ .

" cosk„f„=0
kn + i slnkn kn + i kn + i sink„

(6)
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Anderson model for disordered systems:

A. +4.-i+ V.4. =El. .

If yT~ and ETB denote the Lyapunov exponent and the den-
sity of states for this latter, we get
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K (E, W) = KTs (Er gr Wra ),
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o e
with Era = 2 cosJE, Wra = W (sin JE )/ JE .

To take into account the main features of yrs (except the
anomalies, ' " which in fact could be treated in a similar
way) we consider on a heuristic standpoint

y TB'(ETBr WTB) —WTB' [24(4 —ET'8 )

+0(Wra )] as WTs 0, (11)

-2 0-

which combines the Thouless approximation'2 near the band
center and the Derrida-Gardner formula' at the band edge.
Despite the fact y(E„, W) = 0, E„=n m, from Eq. (11) it is
easy to prove that y(E, W) is substantially smaller than
( W2/96)E only in intervals IE —E„ I ( C, C & 0, so that

-3.5
8.98 9.10

ln(F n}
9.22

y(E+ Fj ) —( W/96) ln(E+Fn) as n +~
j=a

Similarly, to calculate

K(E, W) =—„' p(E', W)dE'

FIG. 1. Behavior of the wave function P„ for E=O (mean is

over 6000 samples). Top: model I, with F=0.5. The slope of the
line drawn here is —2.5. Bottom: model II with F=0.25. The
slope of the line drawn here is —5.75.

we start with the heuristic behavior for the tight-binding

(E),
I

0 06-'

For F =0 we get

P„+t+ P„~—V„+2 cosJE P„=0sinJX (7)
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whose solutions behave like
0.03-

p„—exp[ + n(E)n ] as n ~ ~
with n(E) = y (E) +iK (E). [y (E) is the Lyapunov ex-
ponent; K(E) is the rotation number which describes the
number of changes of sign of the solution per unit length
and is equal to the integrated density of states. 6tb']

We observe that (6) can be mainly recovered from (7) if
in this latter E is replaced by E+Fn. As n(E+Fn) plays
the role of the wave vector k(E,x) = [E —V(x)]'i2 in ordi-
nary WKB formulation we look for a solution of the form

030

~ ~ s s e s e r ~

52.5 7.5

&„=A„exp + X n(E+Fj )

Inserting it in (6) and considering (8) as the solution of (7),
and not only as its asymptotic form, we get

1

1
,i2 exp + g n(E+Fj), as n +~

n E+Fn

0.1 5-
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Now we only need to calculate the expressions of y and E.
For model I, we compare (7) and the tight-binding (TB)

FIG. 2. Lyapunov exponent for the Kronig-Penney models
(F =0). Top, model I; bottom, model II.
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FIG. 4. Ladder structure (model II, F = 1) for resonances whose
Ig„l has a maximum at some point n with ReE+nF in the second
band: [m 4m ]

FIG. 3. Resonance width behavior for model I with F = 8.

density of states

pTB (ETBj II TB)
—I/[4m(1 —

Er2s )'/2+0 ( WT2( ) ] as 8'rs 0

. Using formulas (10) we get p (E, 8') —I/ (47r~E )
E ~ if IE —E„l ) C. Then asymptotically E(E, W) goes

Inserting in (9) the estimates just above and letting E = 0,

e + & s' /96~»«~~&
(Fn)'/'

(Fn) —t/4+ w /96F

Taking the minus sign we get perfect agreement with the
numerical analysis given by (2) and (3).

The oscillations cannot be completely explained at this or-
der of %KB approximation which makes the behavior

l

monotonic. In any case, as n'(E + Fx) is singular at
x„=(E„—E)/F, these points could be considered as turning
points and large deviations from the WKB formula are ex-
pected there.

For model II we can see that y(E) is fairly well approxi-
mated (Fig. 2) by the Lyapunov exponent for the crystal
V„= V = —2. From this it can be seen that

pFn V2
J y(E)dE = X —1n[(Fn)' /m] as n

0 I' F. & F 4l

For similar considerations as for model I, IC(E) behaves
like JE as E ~. From formula (9) we get
Ct (F) = 0.5 +F ' in good agreement with (5).

Now we pass to consider the resonance widths. Note that
instead of fixing N and to varying ReE as in Rt'.f. 8 it is
equivalent to look at resonances near 0 and to vary N, so
FN plays the role of ReE. Then by the well-known formula
for the resonance width we get as X

Im(lwfw) (FX) ' = (FX) ' for F (F„
Iy(x) I dx (FX) for F F„

in agreement with the numerical results (see Fig. 3).
For model II we observe the resonances are almost ar-

ranged in Wannier ladders as in -crystals (Fig. 4). Here
wave functions do not need to cross a "gap, " as in the usu-
al Zener effects in order to give rise to narrow resonances.

It turns out that our results are compatible with the fol-
lowing conjecture: As the sample becomes infinite the reso-
nances become bound states for I' & E, . For I" «I", the
width of the resonances do vanish and the "eigenfunctions"
in the limit are characterized by the behavior

—F /2F —0.5—X ' as X oo

F /2F —0.5
(while the other possible behavior is N ' ). To study

for I' ~ I', the evolution of a wave packet it should be very
interesting to know if this behavior is linked to some char-
acterization of the operator spectrum.

%e expect wave packets locally approximating Stark-
Wannier states to be metastable in a sense to be specified.

Finally, from the similarity of model II and crystal
models, in view, for instance, of the y (E) values, we can
expect these results to be valid for crystals.
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staff of the Centro di Calcolo, Universita degli Studi di
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'J. Avron, Ann. Phys. (N.Y.) 143, 33 (1982).
F. Bentosela, V. Grecchi, and F. Zironi, Phys. Rev. Lett. 50, 84

(1983).
3A. M. Berezhkovskii and A. A. Ovchinnikov, Fiz. Tverd. Tela

(Leningrad) 18, 3273 (1976) [Sov. Phys. Solid State 18, 1908
(1976)].

4C. Soukoulis, Jorge V. Jose, E. Economou, and Ping Sheng, Phys.
Rev. Lett. 50, 764 (1983).



6912 F. BENTOSELA, V. GRECCHI, AND F. ZIRONI 31

5V. Prigodin, Zh. Eksp. Teor. Fiz. 79, 2338 (1980) fSov. Phys. JETP
52, 1185 (1980)].

(a) F. Delyon, B. Simon, and B. Souillard, Phys. Rev. Lett. 52,
2187 (1984); (b) F. Delyon and B. Souillard, Commun. Math.
Phys. 89, 415 (1983).

7Following our previous works (Refs. 2 and 8) and Soukoulis, Jose,
Economou, and Ping Sheng (Ref. 4) we substitute the linear po-
tential Ex by the steplike potential I' $„0(x—n), where O(x) =0
for x & 0 and O(x) = 1 for x ~ 0.

/

8F. Bentosela, V. Grecchi, and F. Zironi, J. Phys. C 15, 7119
(1982).

~For the stability of resonances in the limit No ~, see Ref. 8.
' B. Derrida and E. Gardner (unpublished).
'tM. Kappus and F. Wegner, Z. Phys. B 45, 15 (1981).
~2D. J. Thouless, in III-Condensed Matter, Proceedings of Les

Houches Summer School, Session XXXI, edited by R. Balian, R.
Maynard, and G. Toulouse (North-Holland, Amsterdam, 1979).


