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Study of Stark-ladder resonances in random chains in a constant electric field
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An electron in a disordered 8-function potential in the presence of a constant electric field is studied in
one dimension. Using different criteria from scattering theory we find that there are Stark-ladder-like reso-
nances in the electronic spectrum. A detailed analysis of the statistical properties of these resonances and
their connection to the resistance as a function of disorder and field strength is given. The possibility of
seeing these resonances in the resistance of ultranarrow wires is suggested.

Ever since Wannier' proposed the existence of Stark-
' ladder resonances (SLR) in periodic lattices subject to an

electric field, the subject has been somewhat controversial.
It is only recently that the actual existence and some proper-
ties of the SLR are becoming well established. A physically
intuitive argument to motivate the existence of the SLR ar-
ises from using Zener's tilted band picture when a field is
applied. The band edges represent a natural boundary in
momentum space for the motion of the electrons while ac-
celerated by the field. These closed orbits can be quantized
using the Bohr-Sommerfeld quantization condition, thus
leading to a discrete energy spectrum. The above argument
is not quite right since the electrons can tunnel from one
band to the next, thus converting the discrete eigenvalues
into resonances in the continuum. Proving that this is
indeed what happens, starting from a Schrodinger equation
for free electrons in the presence of a field, is a subtle
mathematical problem. 2 In all the analyses that treat the
SLR, the translational invariance of the potential has played
an important role. This leads one to believe that Bloch's
theorem is essential in having the SLR. Also, several at-
tempts have been made to see these resonances experimen-
tally in periodic systems but none of these attempts seem to
have been successful. '

The purpose of this paper is to show, for the first time,
that translational invariance is not necessary to have Stark-
ladder-like resonances, and that they could be seen in disor-
dered systems. We study here only a one-dimensional
model. The existence of the SLR in a random system is
connected to a recent finding that electrons in a disordered
chain are power-law localized when acted on by a constant
electric field. 4' Most of the studies of SLR in periodic
models have been directed at calculating the electronic ener-
gy spectrum of a free electron in a field. Here we follow a
different route, with the aim of obtaining results that can in
principle be compared directly with experiments. We then
concentrate on the calculation of the transmission and re-
flection coefficients as a function of energy and study the
statistical properties of the location of the resonances and
their widths for different values of the disorder, length of
the system, and magnitude of the electric field. The con-

nection to the measurable resistance is carried out via a
Landauer-type formula, ~ and we obtain the density of
states from the derivative of the phase shift in the reflectivi-
ty. Experimentally we have in mind the very narrow wires
fabricated in Si inversion and accumulation layers where
resonance spectroscopy seems to be possible at sufficiently
low temperatures. 7

We have studied the model with the Hamiltonian

10= ——
2

+ g P„5(x—na) —Fx,
dx

where a is the lattice spacing, I' the electric field strength
times the electronic charge, and P„an independent random
variable with a uniform probability law of width O'. The
length of the system, which we call the sample, is L with N
5-function potentials in between. We consider a scattering
problem in which we have an incoming wave incident into
the sample. For an arbitrary nonzero field we have two
possibilities which are clearly different from the scattering
theory point of view. If we approach the potential from the
right with energy smaller than I'L the wave is completely re-
flected and the transmission coefficient is zero. Under this
condition the S matrix is equal to the reflectivity and there-
fore the only change in S comes from the phase shift 5(E)
experienced by the wave after it emerges from the sample.
In this case the value of the momentum of the incoming
and outgoing wave is the same. This is the situation con-
sidered in most SLR studies in periodic systems. ' This
possibility is not as close to the experimental situation as
having the electron entering the sample from the right with
an energy which is above FL. The difference is, however,
that the S matrix cannot be defined in the usual way be-
cause the incoming and outgoing waves have different mo-
menta. " For an electron entering above the ramp formed
by the electric field potential, the transmission and reflec-
tion coefficients are on the other hand well defined. An ap-
propriate way of defining the resonances is in terms of the
maxima of the derivative of the phase shifts as a function of
energy E, defined from the bottom of the ramp. In fact
5'(E) is equal to 27m(E), where n(E) is the density of
states. '~
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In Ref. 5 the Poincare map representation of the
Schrodinger equation was used to calculate the wave func-
tions for a fixed energy, while the electric field was approxi-
mated by a step potential. Since what we want to do here
requires the calculation of the derivative of the phase 5(E)
with respect to E, and this derivative is related to derivatives
of the wave functions with respect to the energy as well, it
turns out to be more accurate to study a Poincare map for
the derivative of the wave functions combined with a Poin-
care map for the wave functions themselves. This is what
we do in our calculations. To convince ourselves that our
calculational procedure does converge to the correct
answers, we first analyzed the location of the maxima of the
derivative of the phase shifts with respect to energy in the
periodic case for wave incidents below the ramp. We then
compared our results with the highly accurate calculations of
Benosela, Greechi, and Zironi that were obtained from find-
ing the poles of the resolvent operator. 2 For the param-
eter values used by Bentosela et al. N=13, a =6, and
F=0.0125, including the type of potential they use, we
found that the maxima of 5'(E) do correspond with high
precision to the values found in Ref. 2, i.e. , a resonance is
located at E= 1.556 140 828 094 9, whereas with our
method of calculation we find E=1.5561408. In order to
get the accuracy- of the resonance reported in Ref. 2 we
need to reduce the grid in the energy interval, which is ti'me

consuming. Since our goal is to make connections to exper-
imentally measurable quantities we keep the accuracy in
determining the location of the resonances up to six signifi-
cant figures. From our calculations we notice that the reso-
nance spectra above and below the ramp are qualitatively
different. Below the ramp we see several SLR superim-
posed on each other. On the other hand, above the ramp
we only see one ladder but with smaller lifetimes. There-
fore, it is in fact easier to detect the individual ladders
above the ramp than below. Looking at the numbers above
the ramp we find indeed that the location of the maxima in
5'(E) corresponds to the location of the maxima in T with
an accuracy of up to six significant figures. In order to
study the length dependence of the results for energies E's
above the ramp we set the origin of energy, for a given FL,
to zero at the top of the ramp. This procedure allo~s us to
see the same resonances as we vary L. Also, because the
calculation is done in a finite system the spacing between
resonances is not exactly equal to sJ'a, with s an integer. In-
stead of analyzing the distance between any two resonances
we introduce an average separation between resonances by
taking an average over clearly defined resonances for a
given energy interval. For example, when F=0.4, a =1,
and N = 100, we can distinguish clearly 30 resonances and
the average separation distance between resonances is
(b, E) —Fa =0(10 4), where ( ) means a resonance aver-
age. The same comments go for the width I" of the reso-
nances as measured in terms of the transmission's coeffi-
cient half-width at half maximum. We find as well that the
variations of I for different peaks are larger than the fluc-
tuations in the location of the maxima of T for a given L.
On the other hand, the location of the maxima of T does
have a small oscillatory L dependence which is related to in-
terband Zener tunneling whereas I is essentially indepen-
dent of L when going from L =85 to L =115. Notice that
since we have to calculate T for every value of E for dif-
ferent L's and a small grid in E the calculations are some-
what lengthy. In Fig. 1(a) we show the results for the loga-

rithm of resistance defined in terms of a Landauer-type
formula, which has its minima exactly located at the points
where 5'(E) and T have their maxima.

We can now use the understanding of resonances gained
in the periodic case given above to treat the disordered case,
which is the central theme of this paper. As in the periodic
case we calculate 5'(E) to make sure that its maxima corre-
spond to the maxima of T for a given realization of the ran-
dom potential. In Fig. 1(b), we show an example of the
results when 8'=1.0. The first thing we notice is that the
essential structure of the Stark-ladder-like resonances is in
fact stable against the addition of weak disorder. This is
true mainly when aI'N & E, which corresponds to the
power-law localized regime found in Ref. 5. On the other
hand, the resonances sometimes become smaller in height
and their width increases while increasing O'. The opposite
can occur also, however. In order to get representative
results about the properties of the resonances quantitatively,
apart from the averages over resonances defined in the
periodic case for a given realization of the random potential,
we need to carry out an average over an ensemble of sys-
tems. The number of systems over which the ensemble
averages are carried out need not be large, however, in or-
der to get standard deviations of only a few percent. In our
calculations we found than an ensemble with 20-30 systems
gave good statistical averages. In order to have more reso-
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FIG. 1. Logarithm of the resistance as a function of energy for
the potential treated in Ref. 2, with N=45, a =6, and F=0.012S.
The energy grid is (10 3). (a) The periodic case and (h) the disor-
dered case with P(P) =1/W and —W/2 —1 (P ( W/ 2 —1, with

8 =1.
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nances over which to carry out the averages we choose a
system with N = 100, a = 1, and F= 0.4 with the same po-
tential as the one studied in Ref. 5. We find that the
separation distance between resonances changes linearly as a
function of 8'. When we take only one system and vary 8'
we obtain, of course, nonmonotonic results. The linear
dependence of the average separation between resonances
as a function of 8'is given in Fig. 2(b). With regard to the
widths of the resonances as a function of disorder we find
that they grow quadratically with W, as shown in Fig. 2(a).
Finally we look at the behavior of the resonance widths as a
function of F. We find that for a resonance and ensemble
averaged analysis the width of the resonances change ap-
proximately exponentially with —I/F. This result is shown
in Fig. 2(c) and is compared with the result for a periodic
system (see Ref. 13 for a discussion of the lifetimes as a
function of F).

We now give a heuristic argument to explain the ex-
istence of SLR in the model. It was found in Ref. 5 that
the disordered model considered here has two qualitatively
different regimes as a function of t= aFN/E. When t & 1

the states have a transmission coefficient that decays ex-
ponentially with distance. In this case the term Fx varies
slowly as a function of x for small F. We find that the
ladder in this regime is not well defined. In the case when
t & 1 the electron has acquired enough energy from the
field such that it "sees" less of the disordered potential and
therefore the electronic wave functions decay algebraically.
It is in the regime t & 1 of quasiextended states that we dis-
tinctly observe the SLR in our calculations. Thus the ex-
istence of the SLR is directly related to the power-law na-
ture of the electronic states. ' An analytic analysis of the
resonance spectrum of the model considered here, that
would lead the results as a function of disorder quoted
above, seems to be quite difficult. It is good to remember
that even in the periodic case, mathematically, this is a very
subtle and difficult problem in itself. We should point out
the important difference between the resonance widths in
the F= 0 case as compared to the Fe0 case. In the former
case the width decreases exponentially with L 9 whereas for
F~O it decays as a power law. This important difference
could make possible the observation of SLR in experiments
like those in Ref. 7. The experiments should be carried out
at sufficiently low temperatures such that the thermal
broadening of the resonances is minimized. Also, an insu-
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lating material with narrow bands can be used, such that
heating as well as screening effects are reduced.

Note added. After this paper was submitted for publica-
tion we learned of work by F. Bentosela, V. Grecchi, and
F. Zironi [following paper, Phys. Rev. B 31, 6909 (1985)] in
which the same problem is studied. Both works are comple-
mentary to each other. We thank Dr. F. Bentosela for in-
formative correspondence.

The work done at Northeastern University has been sup-
ported in part by the National Science Foundation under
Grant No. DMR-8114848. G.M. is on leave from Centro
de Estudios Nucleares and wants to thank the Consejo Na-
cional de Ciencia y Tecnologia (Mexico) and the National
University of Mexico for financial support.

FIG. 2. The model here corresponds to P(P) = 1/ 8' and
W/2+ I & p & W/2+ I, with parameter values, iV=100, a =1,

and F=0 4. In the t.hree figures (a)-(c) we show resonance and
ensemble averaged results. In (a) the vertical scale is multiplied by
(10 4), whereas in (b) it is multiplied by (10 2). In (c) the dots
correspond to 8 =0, and the X to 8'=1.0. The discussion of the
results is given in the text.
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