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Optical properties in modulation-doped GaAs-Ga& „Al„As quantum wells
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Optical properties of modulation-doped GaAs-Gai „AlzAs semiconductor quantum wells are studied

with the use of a multiband effective-mass theory. %e consider the case where Gal „Al„As is doped with

acceptors and the first GaAs valence band is populated with holes. Significant mixing of light- and heavy-

hole states at points away from the zone center gives rise to interesting optical properties.

Semiconductor quantum-well heterostructures have
played an important role in advances in semiconductor sci-
ence and technology and a large number of optical measure-
ments on quantum-well heterostructures have been made.
Recent photoabsorption and excitation spectra of GaAs-
Gai „Al„As superlattices have revealed that the selection
rule hn =0 (where n is the principle quantum number) is
not strictly obeyed. ' Calculations of electronic properties
of semiconductor quantum wells and superlattices have
been performed using various methods. " Recently, opti-
cal properties of semiconductor superlattices have been cal-
culated using a tight-binding method and the importance of
heavy- and light-hole band mixing in determining optical
properties was noted. '4

In this paper, we report on calculations of detailed optical
properties of modulation-doped quantum-well heterostruc-
tures based on a multiband effective-mass method which in-
corporates mixing of heavy- and light-hole states and the
excitonic effect. It is found that light- and heavy-hole states
with envelope functions of both parities are mixed and
hence dipole-allowed transitions between all pairs of valence
and conduction subbands occur. Thus the violation of the
An=0 selection rule in the observed spectra can be ex-
plained. It is further found that the valence-band structure
is a complicated function of the width and depth of the well
and the doping concentration. Our calculations show that
for some values of the well parameters the second valence
subband has a negative effective mass, in agreement with
previous theoretical calculations. ' '4 Thus a singularity can
occur in the joint density of states causing peaked structures
to appear in the band-to-band absorption, and we find that
the binding energies of excitons associated with these sub-
bands are substantially enhanced.

For clarity, we consider a modulation-doped quantum-well
structure in which the barrier material is doped with accep-
tors. At low temperatures the acceptors are ionized with the
liberated hole carriers residing in the quantum well. We
consider the low-doping case where only the first valence
band is filled (with Fermi level EF).

In our model, the effective-mass Hamiltonian for the
electron is given by

p2
H, = .+ V, (z) —V, (z),

2 H1~

where m,
' is the effective electron mass, V, (z) is a finite

square well potential, and Vq(z) is an additional parabolic
potential of height Vo which models the effect of modula-
tion doping. We have chosen the z axis to be perpendicular

to the quantum-well interfaces. The effective-mass Hamil-
tonian for the spin-T hole operates on a four-component

spinor wave function with column index m= 2, —,',
and —T. In the effective-mass approximation we have

(H„),= T,+ [ VI, (z)+ Vd(z)]h

where Vq(z) is a finite square well potential. The kinetic
energy matrix T is given in the limit of infinite spin-

Nl, Nt

orbit splitting by the 4x 4 k p expression of Luttinger and
Kohn. '5 Our treatment for the electronic structure is similar
to that reported by Fasolino and Altarelli. '

Strictly speaking, the electrostatic modulation-doping po-
tential should be obtained in a self-consistent Hartree-Foch
calculation for holes in a confining well. The parabolic-
potential approximation is equivalent to the assumption that
there is a uniform density of holes in the well. Examination
of the calculated hole ground-state wave function for low
doping shows that the assumption of uniform hole density is
fairly good. The relation between the potential Vo and the
two-dimensional hole concentration (hole column density)
in the quantum well is given by X= (1/4vre )(8e Vo/ W),
~here e is the static dielectric constant, 8'is the well width,
and e is the electric charge of the hole.

To obtain the energies and envelope wave functions, the
Schrodinger equations for the electron and hole are solved.
Because of the translational symmetry along the x and y
directions, the parallel wave vector k~I = k„x+ k~y is a good
quantum number. The envelope functions for the electron
and hole are in the Bloch form (letting p~~

= xx+yy):

(klan

~ P II

where the index n labels the subband, m labels the z com-
ponent of the spin, and the labels e and h refer to electron
and hole, respectively. Upon substitution of these expres-
sions into the Schrodinger equation we obtain a set of equa-
tions to be solved for 4' and C ".

The potentials V„VI„and Vd are even in z and so
4„'~(k~~,z) and 4„"~(k~~,z) have definite parity. At k~~ =0,
the hole Hamiltonian (HI, ) is diagonal in the spin indices
and the associated wave functions are pure spin-2 ( —

2 )
heavy-hole states or pure spin-~ ( —~) light-hole states,
whereas away from the zone center the presence of the off-
diagonal terms results in mixing between heavy- and light-
hole states. It can be shown that at any k~I, the two sets of
states (even r, odd T, even —~, odd —

2 ) and (even
—-r, odd —T, even ~, odd ~) are completely decoupled;

6892 1985 The American Physical Society



OPTICAL PROPERTIES IN MODULATION-DOPED GaAs-. . . 6893

therefore, all valence subbands are doubly degenerate.
The subband structure and envelope wave functions for bound electron-and hole states can be obtained by variational

method using 10 even and 10 odd Gaussian-type orbitals. Having obtained the subband energies and envelope wave func-
tions, the optical absorption coefficient for vertical transitions can be obtained. Apart from a constant factor, the band-to-
band absorption coefficient is given by'

as(ho)) — g g Ii P (k)))l [1—f(E„(k))))lb(E,(k))) —E„(k)))—to))
n, n

where ~ is the polarization direction of the electric field, @co

is the energy of the incident photons and E„(k))), and
E (k)) ) are valence- and conduction-subband energies,

respectively. f(E) is the temperature-dependent Fermi dis-
tribution function for holes. 5 (E) —= (I'/n ) (E'+ r ')
describes the effects of line broadening with a half-width of
I . In the envelope function approximation we have

f oo

P, „(k)) ) = X (sm'lplpm)J) dz4' (k)),z)4„" (k)),z)

e(E)
2 (1 + e-2w/JE) (2)

where E =hem —Eg, Eo is the binding energy of the exciton
in the ground state, and P,2„ is the squared optical-matrix
element. In our calculation, we ignore the absorption due

I

where (sm'Iplpm) is the optical matrix element between
the s-like spin-T conduction Bloch state lsm') and the p.
like spin-~ hole Bloch state lpm), which is proportional to
the matrix element (s IP„Ix) defined in Ref. 17. In our cal-
culation, we average over all polarization directions of the
incident light.

The absorption coefficient including the excitonic effect in
two-dimensional systems was previously calculated by Shi-
nada and Sugano. '~ They find that (apart from a constant
factor)

P2 oo

n(E) — '" g (n —1/2) 35(E+ (2n —1) 2Eo)
A QJ

where 4 (k))) is the ground-state exciton envelope func-
nn

tion in k)) space. We further replace the function 0(E) in
(2) by 44uo)s(tee), where as is our band-to-band transi-
tion. Note that if we let P (k))) =P,„5, then our

model will give an absorption spectrum identical to that
described by (2) with broadening and ignoring excited exci-
tonic bound states.

The exciton envelope function in k)) space, 4 (k)) ) for
relative motions between the electron and hole was obtained
by solving the two-dimensional effective-mass equation

with

X 0 i(k)), k)) )4 i(k)) ) = E i4 i(k)) )
II

0 i(k)), k'))) = [E i(k))) —E„(k )))]8 k
II ' ]l

+ V (k)) —k)) )/e(k)) —k)) )

where e(q) is the two-dimensional wave-vector-dependent
dielectric function of Stern' which takes into account the
screening effect due to free holes. The bare Coulomb po-
tential in real space is

to the exciton in bound excited states and replace the delta
function term in (2) by a Lorentzian function foh(E+ Eo).
Here fo is the oscillator strength which is determined by

2

fo= g@„„(k)))P„„(k)))[I —f(En(k)) ))]
k

& .(p) = e „' „dz,dz), !4&'.(O,z, )l'IC„"(O,z„)l'/[p + (z, —z„) ]')'

which is computed numerically. The nonparabolicity of the
valence-subband structure [E„(k))) ] is fully incorporated in
our calculation and is found to have an important effect on
the exciton binding energy. The widths of the exciton lines,
which depend on their lifetimes, are difficult to calculate.
For purposes of generating artificial absorption spectra, we
selected a set of half-widths which allowed us to reproduce
photoluminescence spectra reported by Gossard. ~ We found
that reasonable choices of I are given by the simple relation
I = n, nq meV, where n, and nz are principle quantum
numbers of the conduction- and valence-band states.

The method just described was applied to the GaAs-
A1„Ga~ „As system. The electron well depth is taken to ac-
count for 60% of the band-gap difference and the hole well
depth accounts for the remainder. For the Luttinger
parameters we adopted the values of Lawaetz for GaAs. '
The line broadening factor I for band-to-band transitions
was taken to be 0.5 meV.

The calculated valence-subband structure along the (100)

I 0
and (110) directions for a 100-A quantum well with an
aluminum concentration x=0.4 in the absence of doping is
shown in Fig. 1. We label the pure states of definite parity
at k]] =0 by HHn and LHn for the nth heavy- and light-
hole levels, respectively. As can be seen in Fig. -1, the band
structure is nearly independent of direction in k[] space.
The band structure is seen to be rather complicated since
coupling between heavy- and light-hole states gives rise to
significant level repulsion between the bands. At points in

k]] space where the noninteracting bands cross, an anticross-
ing phenomenon is clearly observed. Since the strength of
the coupling terms increase with increasing k][, effective
masses for some of the valence-band states are observed to
be negative. In particular, the increasing strength of the
level repulsion interaction between the LH1. and HH2 state
for increasing k]~ causes an upward shift in the LH1 level,
hence the appearance of the negative LH1 mass.

The variation of the hole effective mass at I' as a function
of the well width 8 for the first three valence subbands
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FIG. 2. Zone-center hole effective masses in a 100-A GaAs-

A104Ga06As quantum well for the first three valence subbands as a
function of well width in the absence of modulation doping.

O

FIG. 1. Hole subband energies of a 100-A GaAs-A104Ga06As
quantum well in the absence of modulation doping.

(VB1—3) is illustrated in Fig. 2 for x = 0.4 in the absence of
modulation doping. It is seen that the VB2 effective mass
remains negative for all quantum wells with reasonable
width. With a doping potential of height V0=15 meV,
these effective masses are found to be practically un-
changed. Thus we take the density of states hole mass for

HH1 in Stern's expression for the dielectric function to be
0.14mo

We now turn to a discussion of the optical absorption.
Because of the mixing of heavy- and light-hole states of
both even and odd parity at points away from the zone
center our theory predicts the existence of vertical transi-
tions between all pairs of valence and conduction subbands.
Transitions which are forbidden based on theories which
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F16. 3. Computed optical-absorption spectra of a 100-A thick 6aAs-Aio46a06As quantum well for incident radiation polarized in the x-y
plane (a) in the absence of modulation doping and (b) with a modulation doping potential with Vp = 15 meV.
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neglect heavy- and light-hole coupling can be explained by
the existence of exciton peaks near the thresholds of transi-
tions which violate the An =0 selection rule. The presence
of the negative effective masses results in the creation of
sharp peaks in the joint density of states near the threshold
of transitions between the negative mass valence bands and
all conduction subbands; hence peaked structures in the
band-to-band transitions are also expected.

The calculated absorption spectra for x=0.4 and 8'=100
A in the absence of doping is shown in Fig. 3(a) for unpo-
larized light propagating along the z direction. The valence-
band VB2 state is LH1 at the zone center and hence over-
laps strongly with the CB1 ground-state envelope function.
This strong overlap in conjunction with a sharp peak in the
joint density of states then gives rise to a small peak in the
band-to-band absorption spectrum labeled B(LHI-CBI). In
the absorption spectrum, the major features are due to exci-
tons. The strong peaks labeled X(HHI-CBI) and X(LHI-
CB1) are the heavy- and light-hole excitons corresponding
to An =0 allowed transitions. Weaker exciton structures
corresponding to b, n w0 transitions [especially X(HH3-
CBI)] are also evident. We find that the binding energies
for X(LHI-CBI) and X(HH3-CBI) are 13.6 and 12.6 meV,
respectively, which are substantially larger than the binding
energies of other excitons (6-9 meV) due to the effect of

large joint density of states.
If we dope the sample so that the doping potential is 15

meV, we get the absorption spectrum shown in Fig. 3(b).
The average hole concentration in the well for this case is
8.18X10' cm and the Fermi level EF lies 6.23 meV
below the HH1 band edge; hence the HHl valence band is
partly filled by holes and the remaining valence bands are
unfilled. At this level of doping the holes screen the
Coulomb interaction so strongly that only the excitons asso-
ciated with LH1 and HH3 subbands (with negative effective
mass at I") are bound. The binding energies of these two
excitons are 2.1 and 0.4 meV, respectively. The parabolic-
doping potential shifts the energies of the valence- and
conduction-band levels with the net result that the band-to-
band transitions are shifted to higher energies. This partial
filling of the HH1 band results in the suppression of all ex-
citon transitions and sharp cutoff of the HH1-CB1 band-to-
band transition below 16SO meV. The absorption edge in
this case corresponds to transitions between VB2 and CB1.
As can be seen in the figure, the 8(LHI-CBI) transition
due to negative LH1 effective mass becomes more pro-
nounced and may even be observable.
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