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We suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect
(FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statis-
tics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number
of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings,

regardless of the presence of an energy gap.

I. INTRODUCTION

The fractionally quantized Hall effect (FQHE) in a two-
dimensional electron gas in a strong magnetic field
discovered by Tsui, Stormer, and Gossard"? has stimulated
a series of theoretical investigations. One of the most im-
portant and interesting discoveries in this effect is the odd-
denominator rule: fractional quantization of Hall conduc-
tance is only found at filling factors with an odd denomina-
tor, such as §,+,%, . . ..

Up until now this odd-denominator rule does not have
any convincing explanation. The usual guess that this rule
is due to the absence of an energy gap at fillings with an
even denominator lacks evidence and proof. Laughlin’s
trial wave function® does not tell us anything about states at
fillings with an even denominator. Physically, at these fil-
lings there must be a ground state though it cannot be ex-
pressed in Laughlin’s wave function. Especially at filling
factor v=-=%, 4, 5, ®,» +» ¥, &, the system is not in a
charge-density wave (CDW) state;* why is there no FQHE?
Unfortunately, Haldane’s sequence does not provide any
suggestions about the nature of the ground state at these fil-
lings, either.’ On the other hand, the many-body theory®-
for this effect, as a microscopic theory, suggests a systematic
way to find the ground state for the filling ¢/p. The calcula-
tion in this theory yields an energy gap at fillings with an
even denominator though it is very crude. Some recent nu-
merical calculations* also indicate the possible presence of
an energy gap at these fillings. Using a gauge-invariance ar-
gument, we showed elsewhere® that there may be a more
profound reason for this odd-denominator rule. In this Ra-
pid Communication, we further suggest that the origin of
the odd-denominator rule may lie in fractional statistics
which govern quasiparticles (elementary excitations) in
FQHE, regardless of the presence of an energy gap.

Fractional statistics were first suggested in two specific
models.!® It recently has been shown!! that because of the
complicated topology of the configuration space for indistin-
guishable particles in two dimensions, the path-integral for-
malism in general allows fractional statistics in addition to
Bose-Eistein and Fermi-Dirac statistics. Fractional statistics
were characterized by an angular parameter 6. An inter-
change of two identical particles along a counterclockwise
loop yields a phase factor e where —7 < 6= . Halpe-
rin!? suggested that quasiparticles in FQHE obey fractional
statistics, based on the approach of Laughlin’s wave func-
tion. Arovas, Schrieffer, and Wilczek recently proved this
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suggestion with the adiabatic theorem and showed that an
interchange of two quasielectrons (quasiholes) along a coun-
terclockwise. loop yields a phase factor e’ with 6=vw.13
Their proof can be generalized to include v = g/p cases. All
quasiparticles discussed in FQHE possess the property that
creating "a cluster of p quasielectrons (quasiholes) is
equivalent to creating a cluster of ¢ electrons (holes) at
v =gq/p. From this, quasielectrons (quasiholes) have charge
—ve (ve) and the statistics of quasielectrons can be deter-
mined to be fractional with 8 =pzr.14

In Sec. II, we further clarify the role of fractional statistics
in FQHE. At fillings with an even denominator, fractional
statistics forbid the .coexistence of a large number of quasi-
particles, so that even the presence of an energy gap at
these fillings does not lead to condensation. This is a
consequence of the following theorem: the statistics of a
cluster of p quasielectrons can be the same as a cluster of g
electrons only when p is odd. Since the formation of a Hall
plateau and a dip in p, depends on coexistence of a large
number of quasiparticles, fractional .quantization of Hall

~ conductance can only be found at fillings with an odd

denominator.

II. ODD-DENOMINATOR RULE

Now let us exploit the property that the statistics of a
cluster of p quasielectrons are the same as a cluster of ¢
electrons. We want to prove the following theorem.

Theorem. Let p and q be mutual primes. If quasielectrons
obey fractional statistics with 6 = q/p and p quasielectrons are
equivalent to q electrons, then many quasielectrons can coexist
only when p is odd.

We first consider a counterclockwise interchange of two
identical clusters, each having p quasielectrons joined to-
gether. The sizes of these clusters are negligible in compar-
ison with their separation. Because we are considering
statistics, as with considering the statistics of atoms, the or-
dering of particles inside the cluster is fixed. There are p?
interchanges of pairs of quasielectrons. After the inter-
change, the wave function gets a phase factor

e?0— i Q.1
On the other hand, we consider an exchange of two identi-
cal clusters, each having g electrons. From Fermi statistics,
the phase factor should be (—-1)"2. If a cluster of p
quasielectrons is equivalent to g electrons in charge and in
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statistics, we must have

e = (—1)7" 2.2)
Thus, if p were even, g would have to be even; then p and ¢
could not be mutual primes.

This argument can be easily generalized to two identical
clusters each having N, electrons and p quasielectrons,
which are not joined together. The separation of these two
clusters is also much bigger than their own sizes. A coun-
terclockwise exchange of these two clusters gives a phase
factor

ei(wNez+p20)_ei1r(Nez+pq)

, 2.3)

where e/"Me? is from N2 interchanges of pairs of electrons;

e"’2° is from p? interchanges of pairs of quasielectrons.
There is not any other phase factor picked up because
quasielectrons and electrons are not identical particles. On
the other hand, these clusters are equivalent to two identical
clusters, each having N, + g electrons, so that the phase fac-
tor gained in this exchange should be

eiw(Ne+q)2=ei1r(Nez+q2) ' (24)
These two must be equal. Comparing Egs. (2.3) and (2.4),
we have Eq. (2.2) again: if p is even, we always have a con-
tradiction. Because in two-dimensional systems there are no
other exotic statistics than the fractional ones,!! this incon-
sistency implies that no more than 2p quasielectrons can
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coexist when p is even. The same conclusion is also true
for quasiholes. Q.E.D.

The current picture for the origin of finite width of the
Hall plateau is as follows. Suppose that at filling factor
v=g¢q/p there is an energy gap separating the ground state
from excited states. When v is near ¢q/p, v=gq/p + Av, the
ground state is composed of the g/p state plus quasiparti-
cles. These quasiparticles are localized by impurities; they
do not contribute to any current, so oy is still given by
(g/p)e*/h and px has a dip. In order to produce a finite
Hall plateau and a dip in px, Av must have a finite value.

For example, experiments!® showed Av =~ +0.07 at v=%.

Therefore, the formation of FQHE depends on the coex-

. istence of a large number of quasiparticles. When p is even,

the above theorem tells us that only few quasiparticles are
allowed to coexist; therefore, no Hall plateau and no dip in
pxx can be formed at these fillings. At v=g/p with an odd
p, fractional statistics do not forbid quasiparticles to coexist;
only in these cases can the presence of an energy gap lead
to condensation, and the strength of FQHE is determined
by the calculation of an energy gap.
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