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The effective elastic constants of a superlattice composed of layers of orthorhombic symmetry (with prin-

cipal axes along the superlattice axis) are derived. These results generalize previous determinations for
elastically isotropic layers (S. M. Rytov, Akust. Zh. 2, 71 (1956) [Sov. Phys. Acoust. 2, 68 (1956)]),but a

completely different approach is used.

The derivation of effective elastic constants that describe
the properties of a laminated medium in terms of the elastic
properties of its constituent layers, is a long-standing prob-
lem dating back to at least 1937. Bruggeman' first obtained
expressions for a superlattice composed of isotropic layers in
the long-wavelength regime; his results were later general-
ized for shorter wavelengths by Rytov using a method
based on superposition of waves. Very recent calculations
by Nizzoli' using this sajme technique were successful in
determining C33 C44 C66 and C11 —C12 for a superlattice
composed of cubic materials. In this case, however, there
are six independent constants which should be determined.

Given the current interest in superlattices, many of whose
elastic properties are currently being investigated, and since
in many cases the properties of the individual layers are far
from isotropic, it is convenient to derive effective constants
for these more general cases. The general treatment for ar-
bitrary wavelengths described in Ref. 2 is, however, difficult
to perform. Here an alternative approach is presented
which is valid only for excitation wavelengths longer than
the modulation wavelengths.

We consider a superlattice with its axis along the z direc-
tion, .x and y lying in the plane of the layers. Each layer is
assumed to have orthorhombic symmetry with one of its
principal axes (z for simplicity) along the superlattice axis.
In what follows, o-„", p, „", and C„" represent the components
of the stress, strain, and elastic constant tensors. Super-
scripts 1 and 2 refer to the two media and no superscript in-
dicates that it refers to the effective property of the super-
lattice. If the thicknesses of each layer are d1 and d2,
respectively, the fraction of each material is defined as

fj = dj/(di+ d2).
Given the assumed symmetry of the layers it can be seen

that the diagonal and off-diagonal components of cr and p,

do not couple. From the symmetry of the problem it is easy
to verify that the following equations must hold:

tive elastic constants; as an example we start with

~zz C33Pzz + C13Pxx + C23Pyy (7)

The equivalent expression for medium 1 or 2 can be. rewrit-
ten as

C13; C2= P zz + P xx ~i + P'yy ~i~33 ~33
(8)

1

C23 C2+ fi, +f2 2 pyy
C33 - C33

(9)

A comparison of the coefficients of p,, in Eqs. (7) and (9)
yields

C33 [f]/C33 +f2/C33 ]
-'

f]C]'3C33 +f2C]3C33
13

f]C33 +f2C33

fiC23C33 +f2C23C33
C23 =

f]C33 + f2C33

Starting with the expression

xx = C11P,xx + C12P,yy + C13P zz

(12)

(13)

or an equivalent relationship for cr~ it is straightforward
although somewhat more complicated to obtain

1 2

Cii=fiCii+f2C]1+f1
1 (C]3 C]3)+f2 2 (C]3 C]3)1

C C33

(14)

Adding Eq. (8) multiplied by f; for i =1, 2 and using Eqs.
(1), (4), (5), and (6) we get

1 1

fi f2 f1 C]3 f2C]3

1 2.
~zz = ~zz = ~zz

ryxx =f1]yxx +f2O'xx1 2

~yy =f]~yy+f2~yy1 2

1 2
p =fip +f2p*. ,

(2)

(4)

Or using Eq. (11) this can be written as

. (15)

2 (C]3 ) (C13 )Ci= f]C]'] +f2C]1 fi, f2-
C33 C

f]C]3C33 +f2C]3C33 f]C]3C33 +f2C]3C33
C33C33 f]C33 +f2C3'3

1 2
P xx = P x]~ = P xlc (5) One also obtains

(6)

We then consider the relationship which defines the effec-

1 2

C]2 f]C]2+f2C]2+f1 1 (C23 C23 )+f2 2 (C23 C23 )
C C

(16)
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or an equivalent expression (they can be shown to be equal) In the same manner as described above it is easy to show
that

C12 f 1C12 +f2C12 +f1 1 (C13 C13 )

2

+f2 2 (C13—C13 ) (17)

C44= [f1/C44 + f2/C44 j

Css= (fl/Cs's +f2/Css ~

C6s=f tCss +f2C66

(25)

(26)

(27)

C13 and C23 can be eliminated from Eqs. (16) and (17) us-
ing Eqs. (11) and (12). In a similar fashion we obtain

1

C22 flC22 +f2C22 +f1 1 (C23 C23 )1 C23

C3

2

+f2 2 (C23 —C23 )
C

(18)

1 2
~zy = ~zy = ~zy

1 2~zx = ~zx = ~zx

tr~ =fter~ +f2tr~1

P~ =f112~+f2P~,1 2

ltd~ =f tlt4 +f2121 2

1 2
P xy

= P xy
= P xy

(20)

(21)

(22)

(23)

(24)

For the shear components, one can write an expression
equivalent to Eqs. (1)—(6), i.e. ,

Equations (10)—(12), (15), (16), (18), and (25)—(27)
represent the nine independent elastic constants of the su-
perlattice that also has orthorhombic symmetry. All expres-
sions can be shown to have the correct limit when dealing
with isotropic layers or with the four known expressions for
layers of cubic symmetry.

If the symmetry of the layers is reduced still further Eqs.
(1)-(6) and (19)—(24) are no longer independent and cross
terms coupling the diagonal and off-diagonal terms appear
in Eqs. (7) and (13). In this case there seems to be no sim-
ple solution for the effective constants; for particular cases,
however, it may be possible to solve the more general equa-
tions by iteration or numerically. If this is indeed true the
method presented here may prove to be a convenient start-
ing point for superlattices composed of layers of arbitrary
symmetry.
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