
PHYSICAL REVIEW B VOLUME 31, NUMBER 10 15 MAY 1985

Crystal-induced and ima c-an image-potential-induced ememp y surface states on C (111u and Cu(QQ1)
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FIG. 3. Experimental and theoretical E(k~~ ) dispersion relations.
Filled and open circles correspond to data taken at km=10. 2 and
11.0 eV, respectively. Crosshatched area is the projection of the
bulk band structure. The crystal-induced surface state (SS) follows
closely a m =0.42-m dispersion. The image-potential states (IS)
follow a free-electron (m = m ) dispersion. The bulk band-
structure feature (BB) falls close to predictions based on direct tran-
sitions between bands 7 6 (solid curves are for Ace=10.2 eV;
dash-dot and dashed curves are for Ace=9.4 and 11.0 eV, respec-
tively). ao is the lattice parameter ( = 3.615 A).

pears fleetingly near k~~ =m./ao is nicely accounted for by
theoretical calculations based on bulk direct transitions. '

Both kinds of states are generated theoretically in the sur-
face scattering formalism 3 which pictures electron waves
being repeatedly reflected between the bulk crystal and the
image-potential barrier. If we denote the respective reflec-
tivities by rze and r&e, bound states correspond to the

l@~ f@~

poles of the function

Q+ = (1 —rcr~ exp[i (pc+ @it)1)

and occur when the total phase

@—= pc+ps=2nn, n=1, 2. . . (2)
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Experimental E(ks) relations obtained at tai=10.2 and
11.0 eV are compared with theory in Fig. 3. At EF, the
crystal-induced surface state (SS) falls close to the continua-
tion of the parabolic dispersion relation (m'= 0.42m) deter-
mined belo~ E+ by Kevan using high precision angle-
resolved photoemission. On increasing k~~ the SS peak ap-
pears to fall belo~ the parabola and to merge with the bulk
continuum becoming a surface resonance. The image-
potential state (IS) displays a free-electron-like (m =m)
dispersion. The bulk-band-structure feature (BB) which ap-

FIG. 2. KRIPES data on Cu(111) taken as a function of electron
incidence angle in the I K azimuth at Ace=10.2 eV.

Crystal-induced surface states are those determined by the
behavior of $c. This category would include all surface
states observed in ordinary photoemission and also those
generated in typical theoretical calculations. On approaching
the vacuum level Ei, it is dominated by the behavior of $ii
which, because of the long-range nature of the image poten-
tial, diverges according to the formula2

4a/~ = l (&.4 e&)/(Ev —E) I' ' —I

Thus, the condition of Eq. (2) can be satisfied ad infinitum,
giving rise to a Rydberg series. If itic can be treated as con-
stant over the energy range of the series, the binding ener-
gies at k~~=0 can be expressed by the simple formula
e„= (0.85 eV)/(n+ a)2 where the quantum defect
tt —= ~(I —4c/7r ).

There has been some discussion on where one should
start enumerating the surface states, '" and on how one
should accommodate the crystal-induced state into the
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scheme. We sha11 adopt here a simple scheme in which the
crystal-induced surface state will emerge at the "n =0" lev-
e1.

The energy dependence (at k~~ =0) of the phases $c, @s,
and $ for Cu(111) is shown in Fig. 4(a). The L ~ Lt gap

is "Shockley inverted" in that the p-like L level lies below

the s-like Lt level. The phase $c increases from 0 to m.

across such a gap, and its functional form has been evaluat-
ed using a simple nearly free-electron formula. '4 $s is ob-
tained from Eq. (3). The predicted binding energy for the
n=1 image state is e&=0.8 eV in reasonable accord with
the observed value of 0.94+0.15 eV. Proceeding to lower
energies, @ passes through 0 at E=EF 0.5 eV—, in good
agreement with the k]] =0 location of the crystal-induced
surface state —hence, our "n = 0" designation of this state.

The extension of this argument to Cu(001) is illustrated
in Fig. 4(b). The Shockley-inverted X Xt gap lies

higher than in Cu(111), and Ey falls about midgap. The
predicted value for el is 0.55 eV, which agrees reasonably
well with the reported experimental value' of 0.64 eV. We
have confirmed this value in the present apparatus using the
same procedure described above (work function 4.59 eV,
Ref. 12).

The important point is that the theoretical el is smaller on
Cu(001) than on Cu(111) and this is simply related to, the
behavior of $c. For Cu(ill), E~ lies above the top of the
bulk band gap, so that $c has accumulated just about all of
its n increment. For Cu(001), Et falls midgap so that $c
has accumulated only about half this value. Indeed, if we
fit $c (or, equivalently, the quantum defect a) to the mea-
sured binding energies we obtain Pc= l.ln and 0.77r for
Cu(111) and Cu(001), respectively, differing by roughly
n/2 as expected. [The image-potential states observed on
Ni(001), ' Pd(111)," and Au(001) (Ref. 10) also fall in
midgap and have ei close to 0.6 eV corresponding to
@c= m/2. ] We conclude that the observed difference
between et for the (111) and (001) faces of Cu appears to
be real and that it follows from the relative position of E~
with respect to the bulk band gap.

Extrapolating the phase Q to lower energies for Cu(111)
gives excellent agreement for the energy of the crystal-
induced surface state if we designate it as the n=0 level.
To complete the picture we require [see Fig. 4(b)] on
Cu(001) the existence of a surface resonance lying a few
tenths of an eV below the X„band edge. Evidence for
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FIG. 4. Energy variation of the phases @~, @~, and $ showing
the n=1 image-potential states (IS) and (a) the "n=0" crystal-
induced state (SS) for Cu(111), (b) the proposed "n=0" surface
resonance (SR) for Cu(001).

such a resonance appears as a weak shoulder or asymmetry
on a much stronger peak due to bulk direct transitions. 9'

In conclusion, a rather simple phase analysis has yielded
two new insights. Firstly, we have established both experi-
mentally and theoretically the relationship and distinction
between crystal-induced and image-potential-induced surface
states. Secondly, we have shown how this relationship
depends on the crystal face.
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