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Electron correlation effect in the momentum density of copper metal
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The total Compton profile for the (110) direction of crystalline copper has been measured with

high statistical accuracy by a y-ray scattering experiment. Special attention was paid to the correc-
tion of multiple photon scattering in the sample and the slight spectral contamination of the in-
cident y radiation. The results are discussed in conjunction with earlier measurements of the

Compte profile anisotropies and existing band-structure calculations. The effect of the electron
correlation on the Compton profile and the momentum density is found to be significantly larger
than' in the homogeneous electron gas. A correlation correction functional required by the
Hohenberg-Kohn-Sham density-functional theory is calculated in the local density approximation
and is shown to improve the agreement between density-functional band-structure calculations and
experiment. The remaining discrepancies can be characterized by a redistribution of momentum
density in reciprocal space as compared to the model of noninteracting electrons. The appearance
of this nonlocal correlation effect is specific for the momentum density and does not contradict the
generally good agreement between one-electron theory and other experimental results for copper.
Possible origins of the effect are discussed tentatively.

I. INTRODUCTION

Under ambient conditions the electronic state of most
systems can be described by a ground-state wave function,
which thus attracts a lot of theoretical efforts. Photon-
scattering experiments can probe the ground-state space
and time correlation function of the electronic charge den-
sity of the scattering target' and contribute sensitive tests
for theoretical models. In the limit where the recoil elec-
tron from the scattering process can be considered to be
free, i.e., when the energy and momentum transfer from
the photon is very' large, the impulse approximation ap-
plies, and the differential cross section of initially mono-
chromatic photons provides information about the elec-
tronic momentum density n(p ) via the so-called Comp-
ton profile:

J„(q)=fn(p )5(q ph/h—)dp,

where h is the difference between the wave vectors of the
scattered and the incident beam. The condition of high
energy and momentuin transfer is especially well satisfied
for the backscattering of high-energy photons, as it hap-
pens for instance in the Compton spectrometer of the
Hahn-Meitner-Institut (HMI), which utilizes the 412-keV
radiation of neutron-activated gold and which works at a
scattering angle of 165'.

Due to the impetus of the newly developed experimental
technique of angular-resolved photoemission spectros-
copy, theories which aim at the understanding of the
electronic structure of crystalline materials have been con-:
centrated mainly on the calculation of the electronic band
structure, i.e., the eigenvalues of an effectiv'e one-particle
Schrodinger equation. It should be quite clear, however,
that the energy spectrum is only one aspect of the elec-
tronic properties and a theory which is not able to repro-

duce the results of different experiments is incomplete at
best. Because of the simplicity of the experimental setup,
the well-understood scattering cross section and the
straightforward data analysis, Coinpton-scattering experi-
ments are well suited to deliver quantitatively reliable and
easily interpretable data which are useful for testing
theoretical models. It should be mentioned here that the
accurate determination of crystal structure factors of the
electronic charge density serves the same purposes. '

The present paper is the fourth in a series on the Comp-
ton profile and the momentum density of copper.
%'hereas in previous work the emphasis was put on the
Compton-profile anisotropies, the total experimental
Compton profile is discussed here, ' which is considerably
more difficult to measure if high accuracy is desired. The
opportunity is met to discuss the observed electron corre-
lation effect from different viewpoints.

The experimental problems, which are the photon mul-
tiple scattering and to a lesser extent the slight nonmono-
chromaticity of the incident y radiation, are the subject of
Sec. II. In Sec. III the observations are explained in terms
of an electron correlation effect which is identified to be
due to a redistribution of the occupation numbers of the
band states, which is quantified by a simple model. The
experimental Compton profile is then compared with ex-
isting band-structure calculations"' and the results are
discussed in the context of the Hohenberg-Kohn-Sham
density-functional formalism. ' ' In Sec. IV we will fi-
nally discuss why the presently available theoretical
models and methods do not cope with the problem re-
vealed in the Compton profile of copper, in the hope of
motivating new theoretical efforts.

II. EXPERIMENTAL

Our aim is the accurate determination of a total direc-
tional Compton profile of copper to sort out the addition-
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al information it contains as compared to the previously
measured Compton-profile anisotropies. ' Unfortunate-
ly the total profile is affected by several experimental er-
rors which are expected to cancel to a large. extent in the
Compton profile anisotropies but have to be corrected
more carefully for the total profiles.

The main problem is the fact that the photons reaching
the detector may have been scattered more than once in
the sample. ' The importance of the multiple scattering
becomes clear by inspection of Fig. 1, where the results of
the measurements on copper single crystals are displayed
as a difference between experiment and theory" (see Sec.
III B). The samples were four discs of different
thicknesses (0.6, 1.0, 1.4, and 3.0 mm) and square lateral
dimensions of 4)&4 cm, which is much larger than the
area illuminated by the source (-2 cm ) and seen by the
detector (-3 cm ). The experimental data from different
measurements on the same samples have been treated
separately by the conventional data processing. ' They
showed good reproducibility, and were averaged to im-
prove the statistical accuracy. For negligible multiple
scattering all runs should give identical results. The large
differences shown in Fig. 1 indicate the seriousness of the
problem, which exists even for the thinnest 0.6-mm sam-
ple. For the 3-mm sample every fourth photon is scat-
tered more than once (see below).

Another problem which becomes significant for the
measurement of total Compton profiles, especially of
heavier compounds, is the slight nonmonochromaticity of
the primary beam, which is mainly due to inelastic
scattering processes inside the y-ray source itself. In the
following both problems addressed above will be discussed
in more detail and the measured profiles will be corrected
for it. By this treatment we believe to have determined an
experimental total profile which is more accurate than the
previously published ones. The corrections are isotropic
and the results for the anisotropies ' remain valid, how-
ever.

A. Multiple scattering correction

The currently employed methods to correct for the ef-
fect of multiple scattering can be separated roughly into
three categories. A purely empirical approach is for ex-
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FIG. 1. Difference between the theoretical (Ref. 11) (see
Table II) and the experimental Compton profiles for the (110)
direction for samples of different thicknesses before the multiple
scattering correction: Solid line, 3.0-mm sample; dashed line,
1.4-mm sample' , dashed-dotted line, 1.0-mm sample; dotted line,
0.6-mm sample. The statistical error is hardly visible on this
scale.

ample an extrapolation procedure, where measurements on
different sample thicknesses are extrapolated to zero thick-
ness, with the aim to obtain a Compton profile which no

. longer contains any multiple scattering effects. An un-
desirable feature of this approach is the fact that the ex-
trapolation is certainly not linear and some linearizing
function of the sample thickness has to be guessed. A
well-defined approach is provided by the computer simu-
lation of the scattering process, referred to as the Monte
Carlo method. ' Problematic are the necessary assump-
tions for the scattering cross section, which are difficult to
verify. The third category are hybrid methods, where one
tries to combine the advantages of both approaches, which
are then called semiempirical. The method in Ref. 21
consists, for example, of the calculation of the ratio of the
total multiple to single scattering for samples with dif-
ferent thicknesses for which experimental profiles must be
available. The results for each profile point of measure-

TABLE I. Results of the Monte Carlo computer simulation of the multiple scattering for the
Compton-scattering experiments on copper single crystals. J'"I"(0): Maximum of the experimental
Compton profile before correction for multiple scattering. J""(0): Maximum of the experimental
Cornpton profile after correction for multiple scattering. x~ ——Nq/(N, +Nd), x2 ——(Nq+N, )/(N,
+Nd +N] ), x3 ——Nd /(N, '+Nd ), x4 ——(Ng+N, ')/(N, '+N~+N& ), where (N„Nd, N, ), respectively
(N,',N~, N,'), are the number of single, double, or triple scattered photons which are detected in the total
(t), respectively, interest region (—7,7) in atomic units of momentum.

Sample
thickness

(mrn)

0.6
1.0
1.4
3.0

JexPt(0)

(a.u.-')

4.945
4.849
4.779
4.509

JcolY( 0)
(a.u. ')

5.226
5.233
5.260
5.243

X&

(%)

10.22
13.83
16.95
25.06

X2
(%)

11.04
15.27
19.05
29.28

X3

(%)

8.00
10.97
13.62
20.86

X4
(%)

8.27
11.50
14.42
22.76
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ments on at least two thicknesses are then linearly interpo-
lated to zero with respect to the multiple scattering ratio.
A negative aspect is the fact that in the case of rather
thick samples the extrapolation may get very inaccurate.
This is indeed the case for the present measurements, as
can be seen from Table I, where the results of the multiple
scattering parameter from the Monte Carlo computer
simulations discussed below are listed. Even for the thin-
nest sample the multiple scattering amounts to about 10%
and one finds that the extrapolation is very sensitive to
slight modificatioris of the experimental profiles, reflected
by an increase of the statistical error which is intolerable
for the present purposes.

The strategy proposed and applied here should also be
understood as being semiempirical. Although the ab initio
Monte Carlo method is used to correct individual profiles,
we do not rely completely on the absolute correctness of
the assumptions for the scattering cross section and the
input parameter settings. The justification for the final
results is based instead on the agreement of corrected pro-
files which' have originally been affected by different
amounts of multiple scattering. This approach also pro-
vides for an estimate of the systematic errors introduced
by the correction procedure, which turn out to be much
larger than the statistical error here. The only parameter
presently available to vary the amount of multiple scatter-
ing is the sample thickness. A second independent handle
on the problem of the verification of the multiple scatter-
ing correction is the availability of a tunable wavelength
source, as could be provided by the hard radiation from
the wiggler magnet at a synchrotron. In the meantime a
Compton spectrometer with a second radioactive source at
a significantly different energy than the 412-keV line used
here should prove to be very valuable.

The Monte Carlo computer program is described in
Ref. 23 and has been made available to us by J. Felsteiner.

The cross section employed takes into account elastic
scattering, photoelectric absorption, and Compton scatter-
ing, where the latter is treated in the impulse approxima-
tion, , for which it is necessary to provide the program
with an input Compton profile. It is possible to use the
experimental profile to this aim, which requires an itera-
tion to self-consistency, however. The spherical average
of the copper valence-electron Compton profile for which
high-quality band-structure calculations are available, "
augmented by the core profiles from Ref. 24, has been em-
ployed instead. Up to three scattering processes have been
traced for each incoming photon, since the triple, scatter-
ing turned out to be rather significant (see Table I). For
each run about 3 million photons have been generated,
which took 4 h of CPU time on a Fujitsu FACOM IV
computer. The final results are displayed in Fig. 2, again
as a difference plot with respect to the band-structure cal-
culations. " Note the change of scale compared to Fig. 1,
which makes a periodic modulation visible, which is inter-
preted as the nonlocal correlation effect to be discussed in
Sec. IV. The four profiles in Fig. 2 are again averaged to
improve the counting statistics to better than 0.1% at the
profile peak, which is more than three times smaller than
the differences between the profiles in Fig. 2, which reflect
the systematic error est'imated to be 0.3%.

B. Nonmonochromaticity of the source radiation

The Compton source is a cylindrical piece of gold with
4-mm length and 3.5-mm diameter. After activation it
has been transferred into the source holder of the HMI y-
ray diffractometer ' such that the cylinder was aligned
parallel to the beam direction. The energy spectrum could
then be recorded directly by an intrinsic germanium
solid-state detector and is plotted in Fig. 3, normalized to
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FICz. 2. Difference between the theoretical (Ref. 11) {see
Table II) and the experimental Compton profiles for the (110)
direction for samples as in Fig. 1 after the multiple scattering
correction. The systematic error estimated from the scatter of
the different profiles is clearly larger than the statistical error in
the individual curves.

-'tO I I

350 400
ta„(keV)

FIG. 3. Comparison of the pulse-height spectra of the direct

Compton source radiation (upper curve) and those reflected at
the 222 and 333 Bragg reflections of a copper single crystal.
The background is subtracted, and the maximum intensity is

normalized to 10 counts/channel.
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10 counts at the peak. It can be seen that the main line is
affected by a low-energy contamination, which is partly
due to the inelastic scattering in the source itself which we
want to determine, but also due to the incomplete charge
collection in the detector which results in an asymmetric
resolution function. The resolution function equals the
measured spectrum for a point source of 412-keV radia-
tion. Alternatively we can use the diffractometer facility
to select a monochromatic beam of 412-keV y radiation
which is then used to determine the detector resolution
function for this energy. The resolving power of a crystal
spectrometer increases with the order of the Bragg refiec-
tion which is used. From the good agreement of the spec-
tral distribution for the 412-keV beam reflected at 222 and
333 shown in Fig. 3, one can conclude that the remaining
tail is not influenced by the source contamination
anymore, but represents a genuine detector property. The
deconvolution of the direct-beam measurement with the
detector resolution determines the contamination, and is
approximately equal to the difference between the counts
in the tail region in Fig. 3. To be more precise the final
experimental result for the relative intensity of the con-
tamination as a function of energy ( (412 keV) is
described by the linear relationship [0.08 —0.0001(412
—co)]%/keV with an estimated error of +0.01%%uo/keV.

This contamination could be diminished by smaller
sources which would imply a loss of intensity, however.

0.015

0.0')0—

0.005—

A '(q)

-0.005-

—0.010 I I I I

0 t 2 3 4 5
q (a.u. )

FIG. 4. Correction term for the experimental profile due to
the spectral contamination of the HMI gold source for copper
(see text).

The calculation. of the source scattering effect by Monte
Carlo computer simulation gives good agreement with the
experimental result, but its description will be given else-
where 25

TABLE II. Jth '(q) is the sum of the valence-electron Compton profile of the LCAO band-structure
calculation (Ref. 11) and the free atomic Hartree-Fock core Compton profile (Ref. 26) convoluted by the
experimental resolution function, which is a Gaussian with full width at half maximum of 0.41 a.u.
(&ef. 7). J'"p'(q) is the average of the corrected experimental Compton profiles in Fig. 2 after correction
for the nonmonochromaticity of the source radiation (Fig. 4).

q
(a.u. )

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5

Jtheol
(q )

(a.u. -')
5.289
5.268
5.204
5.104
4.969
4.803
4.614
4.418
4.229
4.057
3.901
3.757
3.616
3.473
3.324
3.169
3.010
2.850
2.693
2.543
2.405
2.282
2.173
2.075
1.983
1.893

JexPt(q)

(a.u. -')
5.248
5.225
5.160
5.060
4.925
4.762
4.578
4.388
4.206
4.038
3.886
3.744
3.605
3.460
3.308
3.157
3.005
2.847
2.697
2.557
2.424
2.302
2.189
2.082
1.982
1.886

q
(a.u. )

2.6
2.7
2.8
2.9
3.0
3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1

4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
5.0

Jtheor(
q )

(a.u.-')
1.804
1.713
1.623

. 1.536
1.451
1.371
1.297
1.229
1.168
1.116
1.070
1.029
0.990
0.952
0.914
0.876
0.840
0.805
0.771
0.740
0.711
0.685
0.663
0.642
0.622

JexPt(q )

(a.u. ')

1.792
1.703
1.616
1.533
1.454
1.382
1.311
1.245
1.187
1.132
1.084
1.040
0.996
0.956
0.918
0.882
0.848
0.814
0.783
0.755
0.728
0.703
0.681
0.660
0.640
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In the present context the most important question is
the estimation of the effect of the y-line contamination on
the measured profiles. It can be shown that the cross
section for the contaminated beam can be described by a
convolution of the cross section of monochromatic pho-
tons by a function consisting of a 5 function and a linear
low-energy tail. This is equivalent to a convolution of the
actual Compton profile by [0.86+0.005qe( —q)
+1005(q)] a.u. ', where the step function e( —q) is zero
for q & 0 and unity elsewhere.

It thus turns out that a sizable asymmetry is introduced
by the nonmonochromaticity of the incident beam, which,
however, is partly compensated again by the routine
analysis of the raw data. ' To find out how our final ex-
perimental profiles are affected we proceeded as follows.
An atomic Compton profile of copper has been convolut-
ed first by the experimental resolution function at the
Compton energy (-160 keV), i.e., Gaussian with a full
width at half maximum of 0.41 a.u. This profile is folded
by the source contamination profile and subsequently fed
through the conventional data processing, where the pro-
file peak is determined by a parabola fitting routine. '.
The difference between the output and the originally sym-
metric profile gives the actual error in the atomic profile
introduced by the spectral contamination. This difference
can also be used as a correction. term for experimental pro-
files and is plotted in Fig. 4. By comparison with Fig. 2 it
becomes clear that the correction is not very significant
compared to the experimental error. Its importance in-
creases, however, with the nuclear charge of the atoms in
the sample and will be larger than 1% in the profile peak
for, e.g., cerium. The final experimental result, includ-
ing the correction term for the source contamination is
listed in Table II and will be used in the following.

III. INTERPRETATION OF
THE EXPERIMENTAL RESULT

As mentioned in the Introduction, we believe that the
present results should be useful in the process of improv-
ing the understanding of the electronic ground state. The
Compton profiles of copper as obtained by band-structure
calculations can be considered to be well understood
and this point will be discussed here only briefly. Qf spe-
cial interest are the deviations of the measurements from
the predictions of the one-particle model, i.e., the so-called
correlation effect.

The present chapter is split into three parts. It is shown
first that the observed correlation effect can be character-
ized by a single number. The comparison with band-
structure calculations is then carried out in the second
part with special emphasis on density-functional
theory. ' ' In the third part the nonlocal correlation ef-
fect' is described which is not explained by present
theories.

A. Magnitude of the correlation effect

It is possible to reduce the information content of the
experimental Compton profile to achieve a measure of the
magnitude of the correlation effect without resorting to
high-quality band-structure calculations at alI. To this

end consider the following function:zs

Z(k ) =gn(k+G ),

where the sum is over all reciprocal-lattice vectors G.
Z(k ) is periodic in momentum space, so that one can re-
strict attention to the wave vectors k inside the first Bril-
louin zone. Integration of (2) over the first Brillouin zone
must yield the number of particles. In the one-electron
model the momentum density reads

OCC

n(p)=g 1&Pl kv& I' ~ (3)

In Eq. (3) only those Bloch states
~

k v) with crystal
momentum k and band index v contribute to the density,
whose energy is smaller than the chemical potential p,
which in the case of a metal coincides with the Fermi en-
ergy. By substitution of (3) into (2) one finds

Z(k)=g Q ( &k+G
~

k'v)
(

= g 5
G k'v k 'v

(4)

In Eq. (3) the number of occupied bands v for a specified
crystal momentum k are counted. In the one-electron
model Z(k ) is thus a constant for insulators and depends
only on the shape of the Fermi surface in the case of a
metal. This property becomes very useful to map a Fermi
surface out of the measured angular correlation of posi-
tron annihilation radiation, which in this context is usu-
ally referred to as the "Lock-Crisp-West" theorem.

Equation (3) can be generalized for a many-body system
in different ways. We prefer to proceed, via the Green-
function formalism, which has the advantage that
Compton scattering is incorporated into a large body of
different experimental techniques, which probe one-
particle excitation properties like the electronic band
structure (see Sec. IVB). The momentum density is ex-
pressed as the energy integral over the diagonal elements
of the spectral density function in momentum space,
A(p, p;co), which is equal to the imaginary part of the
Green function Im[G(p, p;co)]/m (Ref. 30):

n(p)= f A (p, p;co)de

=(1/n. )f Im[G(p, p;co)]de . (6)

The spectral density function can be diagonalized for each
energy e by a set of energy-dependent Bloch-type orbitals

~
k v(co) ), so that

n(p)=f g i&pikv(co)) i A„(co). (7)
k v

Substitution of (7) into (2) now yields
OCC

Z(k)= gZ, 5-„-„,, (8)
k 'v

where the last expression follows from the normalization
condition for the Bloch states:

X I &k+G~ k
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8(r )=fe'si '
i J-„(q)dq= fe'i' 'n(p )dp, (10)

where r is parallel to h. 8(R) is equal to the Fourier
coefficients of Z(k ) where R is a direct lattice vector.
The limited resolution of present Compton scattering ex-
periments prevents the determination of the finer struc-
tures of the Fermi surface, i.e., the higher Fourier coeffi-
cients cannot be measured. This is reflected by the fact
that the experimental profiles do not show any evidence
about the Fermi surface "neck" of copper. This in con-
trast to the results from the positron-annihilation tech-
nique, which can achieve a four-times-better resolution
in momentum space than the'Compton experiment report-
ed here. It is essentially only the first Fourier coefficient
8 (R ) with R=(1,1,0)a/v 2 which can be determined re-
liably. This quantity turns out to be insensitive to the de-
viation of the actual copper Fermi surface from the free-
electron sphere (see Table III). Since the theoretical Fer-
mi surfaces agree well with the measured ones, obtained
for example from the de Haas —van Alphen effect, one can
only conclude that an electron correlation effect must ex-
ist such that the occupation numbers Z- are not all uni-

k v

ty anymore.
We define the electron correlation effect here as the de- '

viation of the experiment from the predictions of the in-
dependent electron picture, which is

12 for k inside the Fermi surface,
Znoll( k )

10 for k outside the Fermi surface,

for the valence electrons of copper. The effect can be
quantified in terms of a parameter of a simple model. As-

where

Z =f A-„(co)dc@ .

We see that the energy-dependent diagonalizing orbitals
do not appear anymore in Z(k ), so that the many-body
effect is reflected only by a renormalization of the band
occupation numbers from unity to a number 0(Z (1kv
(Ref. 30). In the pole approximation Eq. (8) can be under-
stood as a sum over the residues Z of the poles below

k v
the Fermi energy of the analytical continuation of A (co)

k v
(or the Green function) in the complex energy plane.

Information about Z(k ) from the experimental Comp-
ton profiles is most conveniently obtained via its Fourier
transform

12

sume that the renormalization effect reduces Z(k ), the
sum over the occupation numbers, by a constant amount
2z inside the Fermi surface, which corresponds to a con-
stant incr'ease of 2z outside the Fermi surface (see Fig. 5).
The factor of 2 is included to take account of the spin de-
generacy. For this model Eq. (5) becomes

8'"'(R)= f e'"' (12—2z)dk
k EFs

f e'"' (10+2z)dk,
k QFS

(12)

=(1—2z)8"'"(R),

where 8" " is the Fourier transform of Eq. (11). z can be
determined from Eq. (13) and Table III to be 0.12+0.02.
This result is rather surprising, since the corresponding
quantity of the homogeneous electron gas, i.e., the average
value of the occupation numbers within the Fermi sphere
is for the valence electron density of copper only about
half as large, as can be seen in Fig. 5. This rather pro-
found increase is expected to correspond to a reduction of

10
2x' -kF 0 kF 2m'
a a

FIG. 5. Plot of Z(k ) of the valence electrons of copper for
the X direction of the fcc Brillouin zone. The dashed area indi-
cates the renormalization due to the electron correlation as
resolved by the experiment. Also indicated are the occupation
numbers for the homogeneous electron gas for
r, = +(3/4lr)p=2 {Ref. 32). (The average density for the 4s
electron corresponds to r, =2.7, the total density r, does not
exceed 1.9, however. )

TABLE III. Fourier transform B(R ) of theoretical and experimental Compton profiles of copper
for R= (a/W2)( I, 1,0). The experimental resolution is treated by a factor of exp[ —{ i

R
i
/8. 12)2].

Without resolution
Resolution included

Free electron

0.212
0.149

Ref. 11

0.208
0.146

Ref. 12

0.206
0.145

Experiment

0.112+0.007



31 ELECTRON CORRELATION EFFECT IN THE MOMENTUM. . . 687

the weight of the Landau quasiparticle, which must be
due to a correlation of the free electrons with the 3d shell.
This should have significant consequences for the Landau
parameters which are of importance for the theory of, e.g.,
transport properties or the spin susceptibility.

0.04 t

Cu &110&

where V,„, is the external potential, VH is the Hartree po-
tential of the electronic charge density, and V„, is the
exchange-correlation (XC) potential, i.e., the functional
derivative of the XC energy E„,[p]:

V„,[p](r )=5E„,[p]/5p(r ) . (15)

For the calculation of ground-state properties 0 (other
than charge density or total energy) as a functional of the
charge density the following formula applies

B. Density-functional theory

The only first-principles theory which to our knowledge
has been applied to the calculation of the Compton pro-
files of transition metals is the density-functional theory
of Hohenberg, Kohn, and Sham. ' ' This formalism
gives an algorithm which, in principle, allows for an exact
calculation of the total energy and the charge density of
the many-body system via the self-consistent solution of a
set of band-structure equations ("Kohn-Sham equations"):

as (q)

0.02

0

-0.02-

-0.04-

000 /0
Oo

0 00 0
0

Oo

0 1 2 3 4 5
q (a.u. )

FICx. 6. Copper (110) Compton profiles. (a) Difference be-
tween the Kohn-Sham local density-functional band-structure
theory (Ref. 11}augmented by Hartree-Pock free atomic core
Compton profiles (Ref. 24) and the experiment (open circles). (b)
Correction term obtained from —hn" Eq. (18} (continuous
curve). (c) Difference between the Kohn-Sham local density-
functional theory (Ref. 11) and the Chodorow-potential band-
structure theory (Ref. 12) (dashed curve). The theoretical results
are convoluted by a Gaussian with a full width at half max-
imum of 0.41 a.u. of momentum to account for the experimental
resolution smearing (Ref. 3).

0[p]=Oo [p]+bO [p], (16)

bO[p]=(B/BA. )E„,[p](A)
~ i o . (17)

For the calculation of the momentum density the operator
(in second quantization) a -a has to be substituted for o.

P P
Since b,O is a derivative of the XC energy, it reflects the
correction due. to exchange and correlation effects which
are not separable in a clear-cut way in density-functional
theory. Still it makes sense to call AO a correlation
correction in the case of the momentum density, since ex-
change effects are much smaller. In the homogeneous
electron gas, for example, the neglect of exchange terms in
the calculation of occupation numbers is inherent in the
random-phase approximation, which gives good results,
even for rather low densities.

In actual calculations E„has to be approximated and
errors are introduced, which will occur in the XC poten-
tial as well as for the correction term. Accurate experi-
mental Compton profiles should be helpful in the process
of analyzing if and where these approximations fail.

In Fig. 6 the final experimental result as listed in Table
II is compared with the result of a band-structure calcula-
tion with a local density-functional potential for the

where Oo[ ] is the ground state (in exceptional cases, ex-
cited state ) expectation value with respect to a N-particle
Slater determinant constructed from the self-consistent
solutions of the Kohn-Sham equations and b,O[p] is a
correction functional which can be expressed as a deriva-
tive of the XC energy functional which belongs to a Ham-
iltonian containing the operator o via a scalar coupling
constant A, (Ref. 16):

valence electrons, " augmented by the atomic Compton
profile of the argon configuration core of copper. The
linear combination of Gaussian orbitals method with a
large basis set has been used in Ref. 11, which has the ad-
vantage that no shape approxi'mations of the potential
have to be introduced and that the (pseudo) wave func-
tions are available in analytic form. The achievement of
a band-structure calculation of the Compton profile for
the semiempirical Chodorow potential can also be de-
duced from Fig. 6. It has been taken from Ref. 12 where
the modified augmented plane-wave method has been em-
ployed. The same Hartree-Fock core Compton profiles
have been adopted here. The result of the Kohn-Sham
equations in Fig. 6 is significantly different from that for
the Chodorow potential, in contrast to the anisotropies,
which are almost identical. It is difficult to separate the
effects of the different potentials from those which ori-
ginate from the specific numerical methods, because the
calculation of total Compton profiles is (just like the mea-
surement) significantly more difficult than for the aniso-
tropies. ' The constant difference at higher momenta
could, for example, be indicative for a not completely con-
verged high-momentum integration limit in the calcula-
tion of the Compton profile from the momentum density
in Eq.(1). Nevertheless, in the small momentum region
the Chodorow potential seems to work somewhat better
than the first-principles result, which agrees with the gen-
eral experience.

On the other hand it is evident from Fig. 6 that the
achievement of density-functional theory is improved
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beyond the Chodorow potential mlculation, if the correla-
tion correction functional (17) is considered. The correc-
tion term in the local density approximation (LDA):

«[p]=fp(r )[no[p](r ) n—~p[p](r )]dr, (18)

where no[p](r ) —n~&&[p](r ) is the difference between the
occupation numbers of the interacting and noninteracting
homogeneous electron gas of density p, has been calculat-
ed from the occupation numbers of Ref. 32, which are
sufficiently accurate for the preserit purposes. ' The8, 36

correction term takes into account the effect that in the
homogeneous electron gas the Coulomb correlation excites
electrons from occupied plane-wave states with wave vec-
tors inside the Fermi surface into the unoccupied states
outside the Fermi surface (see Fig. 5), which corresponds
to a high-momentum tail in the Compton profiles. This
effect is observed also for copper, since the agreement be-
tween theory and experiment is clearly improved by the
incorporation of An" . However, discrepancies remain
in the form of a periodic modulation which per definition
is a- nonlocal correlation effect. This problem also occurs
with respect to the results from the Chodorow potential.

At this point we would like to mention recent work on
beryllium metal where thorough experimental ' and
theoretical studies of the momentum density have
been carried out. Of special interest in the present context
are the local density-functional calculations of the Comp-
ton profiles of beryllium '"' which yield an almost perfect
agreement with experiment for the anisotropies. As far as
the total profiles are concerned, the agreement is signifi-
cantly improved if the correlation correction (18) is con-
sidered ' and the remaining discrepancies are very
small. This result is consistent with the present work on
copper, since nonlocal correlation effects are indeed ex-
pected to be much smaller for a simple metal such as
beryllium with a relatively slowly varying charge density.
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FIG. 7. Upper part: Difference between the local density-
functional theory and the experiment (see,text). Lower part: XY
plane of the Brillouin zone and the Fermi surface of copper in
the repeated zone scheme. The error bar of the experiment in
Fig. 6 affects the general shape of the profile only. The oscilla-
tions shown here are much more significant.

C. Description of the correlation effect

In Fig. 7 the difference between local density-functional
theory and experiment is displayed, where the correction
term (18) has been included explicitly. The remaining
discrepancy is essentially a periodic oscillation, which also
corresponds to the difference observed between experimen-
tal and theoretical Compton profile anisotropies. The to-
tal correlation effect as far as resolved by the y-ray
Compton experiment consists then of an isotropic
homogeneous-electron-gas-type contribution near the ori-
gin and an anisotropic cos(R p ) modulation of the
Compton profiles with a wave vector R=(a /
M2)(+1, +1,0). It is the second term which is responsible
for the significant renormalization mentioned in Sec.
III A, which reduces the value of the Fourier transform of
the Compton profile at the lattice vector. To trace the
origin of the oscillations it is necessary to recall the reason
for the existence of the Compton profile anisotropies,
which might appear a bit surprising if one considers that
the charge density mn be described by the superposition
of spherically symmetric (but not free atomic) charge den-
sities centered on the nuclear positions. Originally this
anisotropy has been explained by the Seitz wave-function

model, but the underlying principles become clearer by
tight-binding model calculations. The latter model
proceeds from a minimal basis of atomic d orbitals and
plane waves, taking into account the mixing between these
states by empirically parametrized Hamiltonian matrix
elements. Because of the, hybridization between plane
waves and d orbitals the unoccupied band states carry a
small but signifimnt d-electron character. Consequently,
the occupied states with crystal momentum k outside the
Fermi surface contain "d holes, " which correspond to a
discontinuously smaller momentum density for momenta
which are equal to the wave vectors at the Fermi surface
or differ by a reciprocal-lattice vector (see Fig. 8). By
these discontinuities the hybridization projects images of
the Fermi surface onto the momentum density, not only at
the origin, but at all reciprocal-lattice vectors as indicated
in Fig. 7. . The Compton profiles (1) are derived from the
momentum density by integration over planes normal to
the scattering vector. The momentum density can in prin-
ciple be completely reconstructed from a sufficiently large
number of Compton profiles. However, the finer details
are lost in the experiment because of its resolution of 0.41
a.u. of momentum, which is almost one-third of the
copper Fermi-surface diameter (1.44 a.u.). Only if the
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a consequence of an improper description of the hybridi-
zation effect in the band-structure equations. This has
been achieved by showing that a reduction of the hybridi-
zation, which would improve the agreement for the
Compton profile anisotropies, is prohibited by the corre-
sponding deterioration of the results for the charge densi-

ty, which is the quantity where the Kohn-Sham equations
in principle aim at. The band structure and Fermi sur-
face resulted in being changed for the worse also. Since
the discrepancies between experimental and theoretical an-
isotropies are identified to originate from the (110) direc-
tional Compton profile, the above argument can be carried
over to the total profile.

The correlation effect in the homogeneous electron gas
(see Fig. 5) corresponds to a transfer of momentum densi-

ty from the occupied Fermi surface into the unoccupied
region as discussed above. The upper curve in Fig. 7 pro-
vides then for a strong indication that in the inhomogene
ous electron gas the same effect is observable not only for
the primary Fermi surface, but also for its im.ages cen-
tered at reciprocal-lattice vectors, i.e., a transfer of
momentum density into the interstitial regions where the
momentum density is small, thus washing out the contrast
predicted by the one-electron model. In principle a simi-
lar effect is expected also for simple metals, ' but as
mentioned above, it could not be observed for beryllium.

FIG. 8. Momentum density of copper in the (110) direction
as obtained by the augmented plane-wave method for the Cho-
dorow potential (Ref. 35). Capital letters indicate special points
of the Brillouin zones and k~ denotes the length of the Fermi
wave vector.

scattering vector is chosen normal to the planes relative to
which all secondary Fermi surfaces are well aligned can
one expect evidence of the hybridization effect. The lower
part of Fig. 7 depicts a cross section of the reciprocal
space and the intersections of some selected integration
planes normal to the (110) direction. By some considera-
tion of the three-dimensional structure of the reciprocal
lattice for the fcc unit cell, one can be convinced that this
direction is the only one which fulfills the above require-
ments. It has indeed been found that the Compton profile
anisotropies are clearly larger if the (110) direction is in-
volved, which show extrema when the integration plane
cut through reciprocal-lattice vectors, i.e., at
p =n (2m ~2/a ) a.u. , or just in between, i.e., at
p =(n + I/2)(2m~2/a) a.u. , where n is an integer.
4espite this the charge density is allowed to be essentially
spherically symmetric because the Fermi surface is, so
that hybridization involves the e~ and t2g atomic. states to
the same extent. This situation is somewhat different in
vanadium, where the charge density shows significant de-
viations from spherical symmetry (see, e.g., Ref. 43 and
references therein). In the Compton profiles " this
"wave-function anisotropy" is reflecte by a slowly vary-
ing modulation superimposed onto the more rapidly vary-
ing "occupation anisotropy" which was found in copper.

For an explanation of the effect one first has to exclude
the possibility that the observed discrepancies in Fig. 7 are

IV. DISCUSSION

In this section we want to investigate if and how the ob-
servations can be explained or calculated by the means
available today for the description of the properties of the
inhomogeneous electron gas. By elimination of unsuitable
approaches some conclusions can be drawn, although the
discussion must remain qualitative.

A. Nonlocal correlations
in density. -functional theory

We shall start this section by a discussion of the role of
nonlocal correlation effects in the density-functional
theory of Hohenberg, Kohn, and Sham and how the ob-
servations described above fit in the present understanding
of the subject.

A revealing contribution to density-functional theory is
the adiabatic connection approach according to which
the XC energy functional may be written as

E„,[p]=fdrp(r )fdr 'p„,[p](r, r ')/[ r —r ' ~, (19)

where

p-[pl(r r')= f, dgp..[p](r, r', g) (20)

p„,(g) is the XC hole of an electron in a hypothetical sys-
tem where the electron-electron interaction coupling con-
stant g Inay vary between 0 and the physical value of 1,
and where the charge density is kept constant for all g by
an additional effective one-particle potential. It follows
from (14) that it is not necessary to know the XC hole in
complete detail for a calculation of the energy. Gnly the
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spherical average, i.e., the average over angular coordi-
nates r ',

p„(r,
I
r '

I )= (I/4~) f dp 'p„,( r, r ') (21)

contributes to the integral over r ' in (19). The local
density approximation corresponds to replacing p„, by the
isotropic XC hole of the homogeneous electron gas. By
model calculations it has been shown that in strongly in-
homogeneous systems p„", is different from the real XC
hole, but since only the spherical average is of importance,
the errors cancel to a large extent in the calculation of the
energy and the result is still quite satisfactory. The XC
hole is not an observable but it will be shown now that by
a transformation into momentum space the argument is
directly supported by the experimental result presented
here. At zero pressure the virial theorem reads

E[p]=—T[p] . (22)

ELDA[ LDA] TLDA[ LDA]

Neglecting the small difference between p and p
~LDA ENL TNL

XC XC

(24)

(25)

E„",'= fdqq [J" (q) J'-""'—(q)] . (26)

The term in square brackets in the integral of (26) is plot-
ted in Fig. 7. The measured profile is unfortunately not
accurate enough to provide for a reliable estimate of the
nonlocal kinetic energy. However, the striking oscillations
in the (110) profile, which reflect the anisotropic correla-
tion effect, cancel in the integration and do not contribute
to the energy. Thus despite significant anisotropic nonlo-
cal effects we can expect that the local density approxima-
tion provides for an appropriate representation of the total
energy functional and eventually also for the charge densi-
ty, which is obtained by minimizing this functional. Vice
versa, the rather small errors in the energy functional are
amplified in its derivative. This finding can be compared
with the results of Ref. 49, where in spite of a reasonable
accuracy of E„, for small atoms, the XC potential
5E„,/5p resulted to be less satisfactorily reproduced by
the LDA.

Several proposals exist of how nonlocal effects can be
incorporated to improve upon the local density approxi-
mation. As examples we mention here the self-interaction
correction in different implementations, the weighted
and/or average density approach and an effective gra-
dient expansion. All these approaches essentially lean on
an isotropic behavior of the electron correlation and at-
tempt an improvement of the spherical average of the XC
hole only. In the present form all these proposals do not
seem to provide a satisfactory description of the anisotro-

The kinetic energy T can be expressed in terms of the
momentum density and Compton profiles:

T[pl= fdip'~l p](p )=fdqq'Ja[p](q»

where h is arbitrary here. It has been proven recently
that the virial theorem also holds for the locally approxi-
mated functionals:

pic correlation effects which cancel in the energy calcula-
tion. In Ref. 55 it has been argued that the anisotropies in
the electron correlation are quenched by the gradient ex-
pansion from which the interpretation as a many-body
quantum interference term derives.

S. Relation to spectral properties

The electronic momentum density is intimately related
to the spectral properties of the system via the diagonal
elements of the spectral density function A in the momen-
tum representation by Eq. (6). A(co) can be measured by
photoemission experiments as a function of energy. If
the samples are single crystals and the photoelectrons are
detected as a function of emission angle, it is possible to
determine the k-space dispersion of the peaks in the spec-
trum, which is the quasiparticle band structure. Recently
there has been a lot of interest in the appearance of satel-
lite structures to the main signals which usually occur at
higher binding energies and which cannot be explained by
a one-electron picture. We believe that our experiments
have to be explained also by satellite structures. The ab-
sence of any limiting Fermi vector allows for an increased
momentum density in the interstitial regions in Fig. 7,
while also a reduction of the spectral strength from the
quasiparticle close to the Fermi surface will be implied.

In nickel a valence-band satellite is clearly observed and
explained by predominantly atomiclike correlations of the
d electrons. In the homogeneous electron gas, resonance
structures are expected as a direct consequence of the
plasmon singularity in the dielectric function. These ex-
citations have been called plasmarons, which stresses its
origin from a collective effect. In silver, collective excita-
tions are revealed by uv reflectance spectra. Copper is
more or less intermediate between nickel and silver. In
copper the d bands are closer to the Fermi energy than in
silver with the result that the plasmons decay very quickly
due to interband transitions. On the other hand, the d
bands are too far from the Fermi energy to allow for an
appreciable atomic correlation effect as in nickel. This
conclusion can be drawn from photoemission experi-
ments, where only a very weak atomic multiplet struc-
ture is observed, which can be hardly responsible for our
observations. The elusiveness of the supposed resonances
for photoemission experiments does not mean that they do
not exist, but only that they do not appear as well-defined
peaks, but as broader structures, which is equivalent to a
short lifetime. It is thus perhaps better to speak about dis-
sipative processes instead of resonances or satellites. The
broadness of the features, however, is of no concern for
the results of Compton-scattering experiments as long as
the energy integral is large enough. This is a distinct ad-
vantage of this technique which makes it truly comple-
mentary to photoemission, where, on the other hand, sig-
nals can be resolved which do not have to contribute
much to the integral as long as they are sufficiently
peaked.

A first computational approach could be the solution of
the quasiparticle equations with a local approximation to
the electronic self-energy, explicitly taking into account
the plasmaron pole. Qualitatively, the agreement with
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the experiment is expected to improve, although for quan-
titative agreement a.more sophisticated approach is need-
ed, because as outlined in Sec. III A, the observed effect is
larger than in the homogeneous electron gas, by which a
locally approximated self-energy would have to be
parametrized.

C. Momentum density-functional theory

As an alternative to the Hohenberg-Kohn-Sham charge
density-functional theory there exists an energy functional
of the momentum density, ' which is minimal and equal
to the ground-state energy for the ground-state momen-
tum density. If analogously to the derivation of the
Kohn-Sham equations a set of self-consistent single-
particle equations could be found by minimization of this
functional, an algorithm would be available for the calcu-
lation of Compton profiles without the a posteriori correc-
tion term which causes the difficulties here. Unfortunate-
ly this program cannot be carried out for a fundamental
reason. To show this we recall that the Kohn-Sham equa-
tion relies on the (unproven) assumption of the so-called
noninteracting wave function V representability, which
means that the charge density of the many-body ground
state must be representable by a one-determinant wave
function, where the orbitals are eigenfunctions of a
single-particle Hamiltonian with an effective potential
which is local in the sense that it is a multiplicative opera-
tor in position space. The corresponding set of one-

particle equations in momentum space can be derived if a
noninteracting wave fuiiction "T representability" is as-
sumed, which means that the many-body ground-state
momentum density can be represented by the wave func-
tions coming from a single-particle Hamiltonian with an
effective kinetic energy operator which has to be local in
momentum space. The solutions of these single-particle
equations must be Bloch waves, and the corresponding
momentum density is topologically identical to that de-
rived from the Kohn-Sham equations. But the occupation
number effect discussed above cannot be represented by a
single determinant of Bloch waves. This T representabili-
ty this breaks down for the description of the momentum
density, and we have to reject this idea for our present
purposes.

V. CONCLUSIONS

Compton-scattering experiments on copper single crys-
tals have revealed an electron correlation effect which is
clearly enhanced compared to simple metals. It can be
described qualitatively, but cannot be calculated quantita-
tively by the methods which are usually applied for a
first-principles treatment of the inhomogeneous electron
gas. We hope that our experiment will motivate new
theoretical efforts directed at an improved description of
the ground-state properties and the one-particle valence-
band excitation spectrum of copper.
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