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A series of channeling-radiation experiments for incident electrons of 16.9, 30.5, and 54.5 MeV
has been performed, using a type IIa natural diamond 23 pm thick. Channeling-radiation transition
energies calculated with the standard (Hartree-Fock) potential are in good agreement with the ob-
served results for the (100) and (110) planes as well as for the (100) axis at all energies, but are in
error for the (111)plane. Corrections to the (111)potential due to anisotropic electron distributions
which are based upon x-ray-diffraction data result in calculated transition energies that are in better
agreement with the observed data; an empirical (111) potential yields calculated transition energies
which are in even better agreement with the data. Calculated linewidths are considerably narrower
than the observed values; this disagreement probably results from incoherent scattering by crystal
defects having an average spacing of approximately 1 pm. The transition energies are shown to
scale as y for transitions involving states that are localized close to the atomic planes and as y
for those localized close to the midplane regions. Free-state populations are shown to increase rela-
tive to bound-state populations with incident electron-beam energy. Channeling radiation has been
shown to constitute a practical source of x-ray photons utilizable at many existing accelerators.

I. INTRODUCTION

In this paper we report observations of channeling radi-
ation from electrons incident along the axes and planes of
a diamond crystal at electron energies of 16.9, 30.5, and
54.5 MeV. In addition, the experimental and calculational
methods used by our group are described in some detail.
Finally, an analysis of the suitability of channeling radia-
tion from such a crystal as a useful source of x rays is car-
ried oui.

Channeling radiation is produced when relativistic
charged particles such as electrons or positrons enter a
crystal along a direction that is very close to one of high
symmetry (an axis or a plane), and are channeled along
that direction. Quantum mechanically, the charged parti-
cle can be considered to be bound by the transverse elec-
trostatic potential of the crystal axis or plane, and chan-
neling radiation occurs as spontaneous transitions between
eigenstates of this potential. In the longitudinal rest
frame of the electron, these transitions have energies on
the order of hundreds of electron volts, but in the labora-
tory frame there is a relativistic (Doppler) increase in the
emitted photon energy by a factor of 2y, where y is the
ratio of particle energy to rest energy. For the electron
energies of our experiments, channeling radiation is ob-
served in the energy region from tends to hundreds of
keV.

Channeling radiation has several interesting and poten-
tially very useful characteristics: it is bright often more
than an order of magnitude brighter than bremsstrahlung;
it is of narrow linewidth in the spectral peaks; and it is
forward directed with an angle of emission 8( 1/y. Also,
the channeling radiation from planar-channeled electrons
is linearly polarized in the direction perpendicular to the
channeling plane, while that from axially channeled elec-
trons has a component of linear polarization when the in-
cident beam is directed at a nonzero angle with respect to
the channeling axis. In addition, because the channeling
radiation has the same time structure as the incident elec-
tron beam, which can be bunched in pulses as narrow as
several picoseconds, the pulse of radiation can be of ex-
tremely short duration. These qualities make channeling
radiation a unique photon source in much of the x-ray
spectral region.

Diamond is an eminently suitable crystal to use for
channeling-radiation experimental studies because of its
low Z and because its very high Debye temperature
( -2000 K) results in a small one-dimensional rms
thermal-vibration amplitude (0.042 A), about one-half
that of silicon (0.075 A). This latter property is impor-
tant because channeling-radiation linewidths are strongly
dependent upon the lifetimes of the initial and final eigen-
states, which are shortened by thermal incoherent scatter-
ing. Diamond does, however, suffer from the drawback
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that typical crystal quality is much poorer than that of
silicon, for example, for which essentially perfect crystals
are readily available. Observations of electron-channeling
radiation for diamond have been reported previously for
electrons of a few MeV, ' =54 MeV, and in the GeV
energy region. '

A„=u, ,
(for n&m) (6)

When the above expressions are substituted into Eq. (1),
the problem of solving for the energy eigenvalues and
wave functions reduces to finding the eigenvalues of a
(sometimes large) matrix A, whose components for the ax-
ial case are

II. THEORETICAL CALCULATIONS

A. Energy levels

and

A„„=
~
k, +g„~ +uo2' p

Channeling-radiation transition energies are computed
by solving a many-beam formulation of the Schrodinger

" equation

[ / p /
/2my+V(r)]X(r)=&X(r),

where p and m are the momentum and rest mass of the
particle, E is its energy, P(r) is the wave function associ-
ated with the particle, and V(r) is the potential function
in the laboratory frame. The Schrodinger equation (rather
than the Dirac equation) is used here for describing the
motion of the electron along the transverse coordinate r
because the transverse motion is nonrelativistic; that is,
the depth of the potential well in the rest frame of the
electron (yV) is much smaller than its rest mass. Of
course it can be shown that the Dirac equation reduces to
the Schrodinger equation under these conditions. The
many-beam formulation was first utilized with reference
to channeling phenomena by Andersen et al. (This ap-
proach is similar to the plane-wave expansion for elec-
tronic energy levels in crystals. ) In this formulation it is
recognized that the lattice potential is.periodic and can be
expanded as a Fourier series, so that in the axial case

V(r)= g u e
gn

n

where the g„'s represent transverse reciprocal-lattice vec-
tors and the summation is over all of these vectors. In the
planar case, the above equation simplifies because r —+x
always is taken to be normal to the plane and g —+g is the
reciprocal-lattice vector normal to the plane, so that the
planar potential can be written as

V(x) = g u„e'"s" (n =. . . , —1,0, 1,2, . . . ) .

In both cases, the sums are truncated after a finite number
of terms ("beams") for computational purposes.

The eigenfunctions are two-dimensional (axial case) or
one-dimensional (planar case) Bloch functions of the form

X(r)= e ' g c e " (axial)S ~n

or

X(x)= e' g c„e'"s (planar),
L

and for the planar case are

A„~ =v~„~ (for n&m)

and

A« —— (k+ng) +vo .
2771 p

The Fourier components u or un can be computed
~n

conveniently from tabulated electron scattering factors
f, (s) which are proportional to the Fourier transforms of
the potential. These scattering factors are defined as

2me "
z

( )
sin(4n. sr) d

4@sr
(10)

where V(r) is the atomic potential and 4ms is the change
in the magnitude of the wave vector of the electron in a
scattering event. Analysis shows that the Fourier com-
ponents can be written for the axial case as

2mm
' 4m.

and for the planar case as

S„A
un fe

27TNl
(12)

Here S or S„ is the structure factor for the particular
gn

reciprocal-lattice vector, defined for a single-element crys-
tal as

1S = pe
J

(13)

where V, is the volume of the unit cell and rj are the
coordinates of the atoms in the unit cell.

Near r=0, the potential is smeared out by the ther=rrial

vibrations of the lattice. As is customary in the analysis
of x-ray-diffraction data, we assume that this thermal
smearing can be described by a convolution of the static
potential with a Gaussian having a width equal to the
thermal-vibration amplitude. However, since the calcula-
tions are performed in reciprocal space, the convolution is
much more easily accomplished: It consists of multiply-
ing the Fourier coefficients by a Debye-Wailer factor, de-
fined for the axial case as

where S and L are the respective normalization area and
length, and k, and k are momentum vectors lying in the
first Brillouin zone.

D, = exp[ ——,
'

(
~ g„~ u, )z]

and for the planar case as

(14)
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D~ = exp[ ——,
' (ngu)2] . (15)

Here u, is the two-dimensional rms vibrational amplitude,
generally taken to be V 2u, where u is the one-dimensional
vibrational amplitude.

Clearly, the axial and planar calculations are very simi-
lar; with the identification ng —+g„ they are almost identi-
cal. However, for actual computation the planar case is
much simpler, because it is only a 'one-dimensional prob-
lem, with just one transverse reciprocal-lattice vector (and,
of course, its multiples), thereby avoiding vector calcula-
tions.

The precision of these many-beam computations de-

pends largely upon the number of reciprocal-lattice vec-
tors that one uses. For example, the simplest meaningful
calculation for the axial case involves three reciprocal-
lattice vectors: the two basic reciprocal-lattice vectors

(gio and goi) and the zero vector. We refer to this as a
3X3-beam calculation; as can be seen from Fig. 1(a), there
are only nine linear combinations of these vectors, result-

ing in a 9&9 matrix to be solved.
For the planar case, by contrast, a 9)&9 matrix, which

we refer to as a 9-beam planar calculation, allows one to
use vectors which reach considerably further into the re-

ciprocal lattice, as can be seen from Fig. 1(b). Moreover,
the potentials and eigenvalues converge much more slowly
for the axial case than for the planar one, although the
magnitudes of the Fourier coefficients decrease with the

magnitude of g at about the same rate for both cases.
This is because increasing the number of beams adds
many more reciprocal-lattice points (although with small-
er Fourier coefficients) for the axial case than it does for
the planar one. Hence for the axial case the high-
magnitude reciprocal-lattice points have a much larger ef-
fect than they do for the planar case, and the calculations
converge much more slowly for the former than for the
latter. This is purely a consequence of the one dimen-
sionality of the planar problem in contrast with the two
dimensionality of the axial problem, but it does mean that
for a given amount of computing power the planar case
can be calculated with considerably more precision. As
an illustration, Fig. 2 shows how the potential converges
with matrix size for the diamond (100) axis [Fig. 2(a)]
and (100) plane [Fig. 2(b)]. The (100) planar potential is
very well described by the 13-beam calculation (requiring
the solution of only a 13X 13 matrix), whereas the (100)
axial potential still has not yet converged in the 11X11-
beam calculation (already requiring the solution of a
121 X 121 matrix).
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FICx. 1. (a) Reciprocal-lattice vectors used in a 3&(3-beam
(100) calculation. (b) Reciprocal-lattice vectors used in a 9-
beam (100) calculation, illustrating how the reciprocal-lattice
vectors of the planar calculation reach much farther into the re-

ciprocal lattice than those of an axia1 calculation equivalent in
size.

FIG. 2. (a) The (100) potential calculated for several dif-
ferent numbers of beams. (b) The (100) potential calculated for
several different numbers of beams. Note that the (100) poten-
tial can be determined accurately using only 13 terms, while the
(100) potential requires more than 121 terms.
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B. Selection rules and transition strengths

Channeling-radiation results when a channeled electron
makes a transition between an initial eigenstate

I
i ) and a

final eigenstate
I f); the emitted photon has energy

Ef;=(Ef E—;) .For a given spectral resonance, the in-
tegrated intensity is proportional to the transition
strength. In the dipole approxiination, the strength of a
transition is proportional to the transition energy Ef; and
to

I (p) I
(see, e.g., Ref. 8), where (p) =(f

I p I
i). The

conditions on
I f ) and

I
i ), in order that (f I p I

i )+0,
are the selection rules of the system.

In the diainond crystal, a proper choice of origin leads
to potentials which are symmetric with respect to a dis-
placement coordinate r; that is, V(r)= V( —r). This in
turn implies that each of the eigenfunctions

I
i ) and

I f )
has a definite parity, odd or even.

For the planar case, the transverse potential is one di-
mensional, and eigenfunctions can be characterized by a
single quantum number n (plus the transverse wave vector
k). As is shown in Fig. 3, the parity of the eigenfunctions
(for k=O) alternates from even to odd (n=O has even
parity). (For k&0 the states do not have definite parity,
but when there is no band structure they do, and this is
very nearly the case for all tightly bound states. ) There-
fore, the matrix element (f I p I

i ) is equal to zero unless
the initial and final eigenstates have opposite parity —in
other words, unless hn (between

I f) and
I
i)) is odd.

Normally, the En=1 transitions dominate the spectrum,
but hn =3 transitions have been seen as well.

For the axial case, the potential acting upon the more
tightly bound electrons is almost cylindrically symmetric,

g (cf )*c'-, Ig. I

n

for the axial case or

g(cf)*c„'(ng)

(16)

(17)

for the planar case. For the axial case the matrix element
is usually different along the orthogonal x and y direc-
tions, so that it is customary to choose the x direction to
lie along one of the basic transverse reciprocal-lattice vec-
tors, compute ( p„) and ( p„), and then define
(p)'—= (p. )'+(p„)'.

and the eigenfunctions have an angular-momentum quan-
tum number 1 in addition to the principal quantum num-
ber n. Following common spectrographic notation, we la-
bel the angular-momentum states with l =-0, 1,2,3, . . . ,
as s, p, 1, f, etc. The two-dimensional angular-
momentum eigenstates are doubly degenerate, except for
the nondegenerate 1=0 state. As a consequence of this
symmetry, the selection rule for transitions between deep-
ly bound levels in such a potential is hl =+1. However,
because this symmetry is broken (usually weakly) by the
neighboring strings, the weakly bound states near the top
of the potential well can undergo El=2 transitions, al-
though with much lower probability. These considera-
tions are borne out by our many-beam analysis.

The matrix elements, and hence the transition
strengths, are computed readily with the many-beam for-
mulation. Since p is proportional to g, which has the
periodicity of the lattice (as do the many-beam representa-
tions of the channeling wave functions), we can write the
matrix element as

C. X.inewidth calculations
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FIG. 3. ~ave functions g(x)=(g g)' with k=0 for the
first three bound states of (110)diamond for an incident electron
energy of 16.9 MeV. Note the alternating parity of the wave
functions.

The present calculation of channeling-radiation
linewidths takes into account several effects, and the total
linewidth is obtained from the quadrature sum of the in-
dividual factors. ' " The elements of our linewidth calcu-
lations are discussed here in their approximate order of
importance.

1. Limited coherence length

Even in a perfect crystal, an energetic charged particle
will be scattered by collisions which have small impact
parameters with the vibrating atomic nuclei. From the
channeling-radiation viewpoint, these collisions have a
probability of causing a nonradiative transition of the
channeled (radiating) particle either to other bound states
or to the unbound continuum; in the latter case, the chan-
neling radiation ceases.

The coherence length of a state is defined as the dis-
tance at which the occupation probability of that state de-
creases to I/e of its initial value. If the transition is from
state 2 to state 1, then the total effective coherence length

' is defined by

1 1 1+ (18)
I li 12

where I i and 12 are the coherence lengths of the individu-
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al eigenstates.
The full-width-at-half-maximum (FWHM) linewidth

I b resulting from this mechanism is then

2y Ac
coh l

(19)

and the resulting line shape is Lorentzian.
In order to compute coherence lengths the calculations

used here employ a complex potential, the imaginary part
of which causes scattering to other states, free or bound.
The coherence length of a given state j is given by

I, f(f s i)f(/ s —gf)
C

—m~ —m —m&X(e ' —e ' ' '')s ds

(21)

(originally derived by Radi' ). Here, V' is the Fourier
8

coefficient of the optical potential for the reciprocal-
lattice vector g and m, =u s /2 is the Debye-Wailer fac-
tor. The area of integration is the plane normal to the
beam direction.

If Gaussian approximations to the electron scattering
factors are used, then the integral can be evaluated in
closed form. ' However, Gaussian parametrizations are
not accurate for large values of s, and this fact, although
insignificant for eigenvalue calculations, is important here
because the high-s Fourier coefficients describe the poten-
tial very close to the nucleus ( &0.04 A), where most of
the scattering occurs. This is especially important for dia-
mond, because the details of the potential very close to the
origin are not as obscured as for other crystal species, ow-
ing to its very low thermal-vibration amplitude. In order
to take into account the high-s correction to the Gaussian
scattering factors, we have performed the integrations nu-
merically. The shift which results from the use of the
more accurate potential (about a 15—20% increase in the
FWHM linewidth from this source) is significant.

(20)
2(V,'&

'

where ( VJ ) is the expectation value for the energy of the
jth state of the imaginary part of the potential. The imag-
inary parts of the individual Fourier coefficients are writ-
ten (see Ref. 10) as

(23)

where E, is the beam energy, Zo is the crystal thickness,
and I. is the radiation length. For the 23-pm diamond
crystal of the present experiment, these average multiple-
scattering angles range from 2.0 mrad (at 54.5 MeV) to
6.6 mrad (at 16.9 MeV).

This scattering angle applies only for the case of planar
channeling, where the electrons are free to scatter in the
planar direction while still being channeled between
planes. For the case of axial channeling, the channeled
particles are constrained in both transverse dimensions,
and no broadening from multiple scattering results.

A significant aspect of the line broadening from multi-
ple scattering is that (unlike broadening from coherence-
length effects) it is asymmetric, and occurs only on the
low-energy side of the calculated (0') transition energy.
This asymmetry results from the fact that the observed
transition energy is highest when the channeled particle is
moving directly towards the detector when it radiates, and
a deflection in any direction will produce the frequency
reduction [of (yh8) ] noted above. Therefore, we should
observe low-energy "tails" for some channeling-radiation
transitions, which in fact we do.

Another source of Doppler broadening would be
present if the crystal had an appreciable mosaic spread. If
the mosaic spread. is characterized by an angle 8, the
electrons would be deflected by a constant 8, and a
broadening of hco/co=(y8 ) would result. The angle 8
is fixed, so that he@/to from this mechanism would in-
crease as y and become dominant at high beam energies.
Because this is not observed in our data, we conclude that
the diamond crystal that we used has negligible mosaic
spread.

Other sources of Doppler broadening might be (a)
nonzero crystal and beam size and (b) nonzero detector
aperture. In our system, however, these sources are elim-
inated by two collimators located between the detector
and the target which allow the detector to view only a
very small portion of the target.

Nonzero beam divergence also is a factor, but because it
was only 0.3—0.6 mrad for the present experiments, it is
negligible in comparison with multiple scattering. Multi-
ple scattering contributes about 5% (hco/co) to the
linewidth. Unlike the coherence-length effect, this effect
is almost independent of y, since yh8 is nearly constant.

2. Doppler effects

A spread in the linewidth of the radiation from planar-
channeled particles arises from the fact that not every
particle that radiates is moving directly towards the detec-
tor when it does so. This could result from multiple
scattering parallel to the channeling planes in the crystal,
from nonzero beam divergence, and from other effects as
well.

The average scattering, angle 58 resulting from multiple
scattering in the crystal can be approximated as'

ZL8=(14/E~)(ZO/L) [1+ 9 logio(ZO/L)], ' (22)

3. Sloch-auave broadening

In the many-beam analysis the eigenfunctions are Bloch
functions, and the eigenvalues are dependent upon the
values of k, or k used in Eqs. (7) or (9). For the lower-
lying states, this broadening is completely negligible; how-
ever, for states lying near the top of the potential well,
this effect can cause considerable broadening, as is illus-
trated below in the figures of planar potentials.

4. Detector resolution

The resolution of the photon detector has the effect of
spreading a monoenergetic line to 2 keV FWHM [for the
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Ge(Li) detector used for the runs at 16.9 and 54.5 MeV]
or to 1 keV FWHM (for the intrinsic Ge detector used for
the run at 30.5 MeV). In general, this effect is not as im-
portant as the coherence length or Doppler effects.

E —Eoy (24)

where ED and a are constants, with a ranging typically
from 1.5 to 2.0 (see below). Taking a=1.6 and noting
that the energy spread of the beam for the present experi-
ments was only 0.25%, we observe that a spread in
linewidth of only 0.4% is produced by this mechanism.
This is negligible in comparison with the other line-
broadening mechanisms discussed above.

6. Finite crystal thickness

Another line-broadening mechanism results from the
finite thickness of the crystal. This mechanism is similar
but not precisely analogous to coherence-length broaden-
ing because when the channeled electrons reach the exit
face of the crystal, the occupation probability of any given
state does not continue to decrease exponentially as before,
but instead drops abruptly to zero. The linewidth from
this finite-thickness effect I n is then given by

I D
——4my Rc/D, (25)

where D is the thickness of the crystal.
This mechanism is important when the crystal thick-

ness is comparable to the coherence lengths of the indivi-

5. Energy spread of the electron beam

The dependence of the channeling-radiation transition
energies on beam energy (ytrtc ) is often described as a
power law, ' i.e.,

dual eigenstates. For the present case, D (=23 pm) is
much larger than the coherence lengths, which we calcu-
late to be less than 4 pm for almost all of the states in-
volved. Therefore, this mechanism was neglected in our
linewidth computations here.

III. EXPERIMENT

A. Experimental apparatus and techniques

Although earlier accounts of the experimental ap-
paratus and techniques used for the present measurements
have been given in Refs. 11, 14, and 15, a more complete
and up-to-date description is presented here.

The Lawrence Livermore National Laboratory (LLNL)
Electron-Positron Linear Accelerator is a high-current,
five-section, S-band linac, capable of operating between 5
and 170 MeV. When fully loaded (at -70 MeV), its aver-

age electron beam current can reach 700 pA. Its max-
imum (short-) pulse repetition frequency for normal
operation is 1440 sec ', which is used for channeling-
radiation (or other) experiments for which the counting
rates are limited by pileup considerations. Positrons are
produced by pair production in a thick, water-cooled,
tungsten-rhenium converter positioned several meters
downstream from the accelerator, upon which a 120-MeV,
180-p,A (average) electron beam is directed and focused
(by steering coils and a quadrupole triplet). The positron
or electron beam is energy-analyzed with a bending mag-
net and slit to &&,/E, =0.1—0.2% for electrons or to
0.2—0.4% for positrons. Its angular divergence is then
limited by directing it through a thick copper collimator
of diameter 2.4 mm for electrons or 4.9 mm for positrons.
The resulting beam current is limited further with the
linac gun to a level which results in a counting rate (in the
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FIG. 4. Schematic diagram (not to scale) of the experimental arrangement at the Livermore linac for the measurement of
channeling-radiation spectra from positrons or electrons (see text).
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photon detector) which is sufficiently low so that pileup is
not significant. The final beam current ranges from a few
picoamperes to a few tens of picoamperes, depending
upon the species of crystal under study, its diameter,
thickness, and orientation, and the beam energy and po-
larity. References 16 give further details.

Figure 4 shows a schematic diagram of the experimen-
tal arrangement used for radiation measurements. After
the energy-analyzed and collimated beam of positrons or
electrons is transported through a heavy shielding wall
into the experimental cave, it is defocused by an asymme-
trically split quadrupole triplet to give a low-divergence
(nearly parallel) beam incident upon the crystal in its
goniometer. After it has passed through the crystal, the
charged-particle beam is swept by a magnet into a 5-m
deep hole in the floor, through a large paddle-shaped plas-
tic scintillator which serves as a beam current monitor.
(The paddle was calibrated against a Faraday cup. ) A
thick, 4.9-mm-diam tantalum collimator positioned ap-
proximately one-third of the way from the crystal to the
photon detector limits the angular divergence of the for-
ward photon beam and also prevents the photon spec-
trometer [a large Ge(Li) or intrinsic-germanium detector]
from viewing the crystal holder and other potential
sources of background. Another, larger, brass collimator
(19 mm in diameter, not shown in Fig. 4) is positioned
just upstream of the photon detector, and additional lead
shielding surrounds the detector. With this arrangement,
background counting rates taken with no crystal in place
are negligible.

A critical factor in performing channeling-radiation ex-
periments is the divergence of the incident beam. Since
the characteristic angle for the process is 1/y, an angular
resolution at least an order of magnitude smaller is re-
quired in order to obtain data of sufficient precision to

compare with the results of theoretical calculations; for
y=100, for exainple, a beam divergence larger than 1

mrad is inadequate. Moreover, the critical angle for chan-
neling is a few mrad for electrons of a few tens of MeV,
and varies as y '~; therefore, in order that a large frac-
tion of the beam be channeled, a beam divergence &1
mrad is required. The experimental arrangeinent used for
obtaining a very-low-divergence beam is shown in Fig. 5;
this arrangement is used as well for measurements of the
transmission of positrons or electrons through crystals. A
CsI scintillator, ruled with grid lines, is placed at the exit
window of the vacuum pipe and viewed (through a mir-
ror) with a television camera equipped with an image in-
tensifier for high gain. The television signal is processed
by a color quantizer, which assigns a different color to
each of ten intervals of intensity; this greatly facilitates
beam tuning. The beam is tuned for minimum divergence
through a removable collimator 9.6 mm in diameter posi-
tioned just upstream of the goniometer. The actual beam
size and shape are measured subsequently with a small
plastic scintillator button positioned at the end of the
beam pipe. With this scintillator button, the beam is
scanned both horizontally and vertically (in the transverse
plane), with the Csl scintillator removed. By scanning the
beam both with and without the collimator in place, the
beam divergence (or convergence) is measured directly.
For recent experimental runs, the beam divergence, both
for positrons and for electrons, has been measured to be at
the limit of sensitivity of this apparatus ( & 0.1 mrad), and
hence is no longer a factor in considerations of angular or
energy resolution.

The arrangement of Fig. 5 can be used to make
positron- or electron-transmission measurements. The
crystal mapping is achieved most quickly and easily with
positron-transmission scans, an example of which is
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FIG. 5. Schematic diagram (not to scale) of the experimental arrangement at the Livermore linac for the measurement of the
transmission of positrons or electrons through a crystal (see text).
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shown in Fig. 6(a). The transmission peaks corresponding
to planar channeling of the positrons enable one to con-
struct a map of the crystal, such as the one shown in Fig.
7.

Once the crystal is mapped, the locations of the axes
can be determiried from the intersections of the planes.
When transmission scans are made through an axis, the
channel-to-random signal ratios are much larger than for
a plane, as shown in Fig. 8. Figure 8(a) shows a positron
scan, with its characteristic prominent compensation
shoulders (because of the conservation of the number of
charged particles) just astride the large channeling peak.
Figure 8(b) shows the characteristic "flying-W" pattern
for an electron scan; the central peak results from the cap-
ture of incident electrons into bound (channeling) states of
the deep axial string potential.
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Once a crystal has been mapped, photon spectra can be
obtained (with the experimental arrangement shown in
Fig. 4). Prior to this, however, it is important to scan the
crystal orientation using the photon detector itself, in or-
der to verify that the direction of the crystal plane or axis
under study is truly along the beam line, since the posi-
tron (or electron} beam might have been deflected slightly
by residual magnetic fields during the mapping scans.
Figure 6(b) shows the results of such a photon scan for
the (110) plane in silicon, where the detected photons be-
tween 20 and 130 keV (for incident 54-MeV electrons) are
plotted against the crystal tilt angle on a greatly expanded
scale. In favorable cases, the crystal can be mapped en-
tirely by means of photon scans, with no need for
transmission scans.

channeling-radiation photons were incident upon this
detector after passing through a total of 0.4 mm of alumi-
num (in the detector and beam line windows). The detec-
tor efficiency for this system is constant for photon ener-
gies between approximately 30 and 120 keV, and decreases
for photons above and below this energy range. The de-
crease in system efficiency on the low-energy side results
mainly from absorption in the aluminum windows.

For the 30.5-MeV run, an intrinsic Ge detector with an
energy resolution of —1 keV FWHM was used. The pho-
tons incident upon this detector passed through a total of
1.0 mm of beryllium in the detector and beam-line win-
dows. This use of beryllium windows greatly enhances
the detector-system efficiency in the 30—10-keV energy
range.

B. Experimental parameters

The diamond used for all of the experimental runs re-
ported here is a type-IIa natural diamond, free from
nitrogen-platelet defects. It is 23 pm thick and is cut nor-
mal to the (100) axis.

Three different electron beam energies were used: 54.5,
30.5, and 16.9 MeV. For all energies, the beam was
energy-analyzed to less than 0.25%. For the 54.5- and
30.5-MeV runs the angular divergence of the beam in-
cident upon the crystal was (0.3 mrad FWHM. At 16.9
MeV, the beam divergence was approximately 0.6 mrad
FWHM horizontally and 0.4 mrad FWHM vertically (an
elliptical beam}.

For the 54.5- and 16.9-MeV runs, a Cxe(Li} detector was
used, with an energy resolution of -2 keV FWHM. The

IV. DATA PROCESSING

A. Data acquisition

Figure 9 shows a block diagram of the data-collection
electronics. The heart of the data collection and storage
system is a multichannel analyzer (MCA). The detector
pulses are amplified and shaped by a spectroscopic am-
plifier and presented to the MCA for pulse-height
analysis. A coincidence is required between the detector
pulse and a gate generated by the accelerator trigger pulse
so that a detector pulse is accepted only when the beam is
on. The length of an individual data run is preset by gat-
ing the electronics "on" until a fixed, predetermined
amount of beam flux has passed through the beam moni-
tor (and the crystal).
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FIG. 9. Block diagram of the data-collection electrons {see text).
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Current normalization is accomplished by measuring
the current from the photomultiplier tube of the beam-
monitor (paddle) scintillator in the beam dump with a pi-
coammeter having a voltage output. This output voltage
is converted into a series of pulses by a voltage-to-
frequency converter. When a preset number of these
pulses has been counted by a controller, the controller in-
hibits the flow of coincidence-gate pulses to the MCA, so
that data collection ceases. Using this approach, photon
spectra can be normalized properly to one another even
when the beam current fluctuates significantly during the
experimental runs.

B. Data reduction
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FICx. 10. Raw (100) data spectrum with random spectrum
below it for 54.5-MeV electrons. Both spectra are for the same
amount of beam flux.

The photon spectra collected by the MCA are calibrat-
ed in energy with the use of characteristic spectral lines of
several radioisotopes, usually 'Am and ' 7Cs. The spec-
tra are processed as follows: first, a smoothed back-
ground spectrum (obtained with the crystal oriented ran-
domly in a nonchanneling direction) is subtracted, channel

by channel, from the data spectrum. This background
spectrum usually is obtained for several crystal directions
which do not correspond to any axes or planes, and hence
it should have no channeling component. A raw data
spectrum is shown in Fig. 10, together with a random
spectrum below it. The two spectra merge above about
500 keV, where no channeling components (either bound-
to-bound or free-to-bound transitions) are expected for
this plane and energy; this is a good indication that the
current flux has been normalized properly.

After the background spectrum has been subtracted, the
remaining spectrum consists of channeling-radiation lines
and a "bump" resulting from the free-to-bound transi-
tions. A least-squares curve fit is performed, using
Lorentzian lines characterized by independent (and nonin-
terfering) energy, width, and amplitude parameters.
(Lorentzians are used because this is the resultant shape
when transition linewidths are dominated by coherence-
length effects. The use of Gaussian line shapes produces
essentially no shifts in the measured parameters. ) In addi-
tion, a second-order polynomial is used to simulate the
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100
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150 200
Photon energy (keV)

FIG. 11. Least-squares curve fit to the random-subtracted
(100) spectrum of Fig. 10. Lorentzian peaks and a second-order
polynomial background are fitted to the data (see text).

free-to-bound bump to aid the fit. These fits are not
unique; different choices for the polynomial sometimes
lead to equally good least-squares fits. However, the line
energies are always determined quite accurately. The
linewidth results also are satisfactory, although they are
characterized by uncertainties that are considerably
greater than those for the energies. The amplitude results,
however, sometimes vary considerably with the choice of
the fitting function. Figure 11 shows the background-
subtracted and fitted results for the data spectrum of Fig.
10. All of the spectral results presented in subsequent fig-
ures have been corrected for the random-direction back-
ground in this manner.

V. RESULTS

A. The (100) plane

It is of great interest to observe the qualitative changes
in the channeling-radiation spectra as the incident elec-
tron energy is varied. The (100) plane has the shallowest
potential well of the major planes, and at 16.9 MeV only
one state ( n =0) is bound (the n = 1 level is broadened into
the continuum), as is shown in Fig. 12(a). No clear transi-
tion is observed in the corresponding experimental spec-
trum, shown in Fig. 12(b), partly because the transition is
weak and its expected energy lies well below 20 keV,
where the detection system is quite inefficient. At 30.5
MeV, both the n=o and n=1 states are tightly bound
[Fig. 12(c)], and a single strong peak emerges, at 43 keV
[Fig. 12(d)]. At 54.5 MeV this 1~0 peak has increased in
energy to 120 keV [Fig. 12(f)] and has increased in width
as well, and a second, weaker peak has emerged at 65 keV,
corresponding to the 2—+1 transition. The width of this
latter peak is due almost entirely to the strong Bloch-wave
broadening of the n =2 state [Fig. 12(e)].

The measured (100) transition energies (given in Table
I) are very well predicted by the many-beam calculations
(represented by the vertical lines in Fig. 12 and also given
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in Table I). For all of the planar calculations, a one-
dimensional rms vibrational amplitude of 0.042 A was
used. The electron scattering factors f, (s) were obtained
from the Gaussian approximations of Doyle and Turner
(Ref. 17), using an appropriate correction for the values at
large s, where the approximations of Ref. 17 underesti-
mate the scattering factors.

The linewidths, however, are in general underestimated;
that is, the calculations predict considerably narrower
linewidths than are actually observed, most markedly for

the 1~0 spectral line for S4.S-MeV incident electrons.
This is discussed in detail in Sec. VI A.

B. The (110)plane

Because the interplanar spacing between (110) planes is
V 2 times larger than that for (100) planes, the potential
for the (110) plane is twice as deep as that for the (100}
plane, and has at least three bound states at 16.9 MeV
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TABLE I. Planar transition energies and Iinewidths.

Plane
and

beam energy

(100)

Transition

Observed
energy
(keV)

Calculated
energy
(keV)

Observed
linewidth

{keV)

Calculated
linewidth

(keV)

16.9 MeV

30.5 MeV

54.5 MeV

not observed

43.0+0.3

119.8+0.7
64.7+ 1.5

14.4

43.7

120.6
63.2

not observed

5.9+0.3

18.7+0.7
23.8+3.0

5.65

5.5

7.3
20.3

(110)

16.9 MeV

30.5 MeV

54.5 MeV'

1—+0
2~1
3~0

0
2—+1
3~2
3~0
1—+0
2—+1
3~2
4—+3
4—+1

23.310.4
not observed

41.6+0.7

60.1 +0.3
35.3+0.3
24.5%0.2

120.0+ 1.5

161.0+0.5
103.8+0.4
78.0+0.3
60.3+ 1.5

240.2+ 1.5

22.9
11.6
42.8

62.0
36.5
25.1

123.7

163.7
105.7
79.6
59.7

245.0

3.3+0.4
not observed

13.8+1.5

6.0+0.3
5.2+0.3
4.8+0.3
9.8+1.5

20.5+0.6
19.2+1.0
15.6+0.6
11.2+ 1.5
9.8+1.5

2.3
3.1
8.1

3.6
2.2
5.7 .

8.0

10.3
6.5
4.9
8.3

14.1

'These values supersede the ones given in Table 1 of Ref. 3.

[Fig. 13(a)]. The 1~0 transition is observed [Fig. 13(b}]
as a strong peak at 23 keV, but the 2~1 and 3—+2 transi-
tions are too low in energy to be observed. Surprisingly,
what appears to be a free-to-bound transition from the
almost-bound n=3 level to the n=0 state seems to be
present at about 42 keV. At 30.5 MeV, four levels are
bound [Fig. 13(c)], and all four allowed transitions be-
tween them are seen as spectral lines, the hn =3 transition
(also see Ref. 9) being at 120 keV [Fig. 13(d)]. At 54.5
MeV, the density of states is higher [Fig. 13(e)], and the
transition linewidths are so large that the transitions are
starting' to blur into one another [Fig. 13(f)] to form a
general enhancement. The 4~1 hn =3 transition is bare-
ly observable at -240 keV.

The measured (110) transition energies also are well
predicted by the many-beam calculations (Table I). This
indicates that the potential used here [and also for the
(100) case] are probably correct, together with the
thermal-vibration amplitude (assumed to be isotropic).
The linewidths, however, again are markedly underes-
timated by the calculations, particularly for the low-n
transitions. Also, the discrepancies between theory and
experiment seem to increase with increasing y. These
discrepancies also are discussed in detail in Sec. Vl A.

C. The (111)plane

As shown in Figs. 14(a) and 14(c), the potential for the
(111) plane in diamond has a double minimum, corre-
sponding to unequally spa&ed crystal planes. For this

case, several transitions combine to form a single strong
spectral peak. When the energy of the incident electrons
increases from 30.5 to 54.5 MeV, this peak loses much of
its strength relative to the free-to-bound bump, and also
becomes much broader. At 30.5 MeV [Fig. 14(b)] two
En=3 transitions are visible at approxiinately 70 and 89
keV, but at 54.5 MeV [Fig. 14(d)] they are virtually indis-
tinguishable from the continuum.

It is considerably more difficult to assign a calculated
peak energy for this plane because the main peak is a
composite of six (at 30.5 MeV) or nine (at 54.5 MeV) spec-
tral lines. For the 30.5-MeV case, the strength-weighted
mean energy of the six calculated transitions in the peak is
26.8 keV, more than 7% higher than the observed peak at
25.0+0.5 keV. As can be seen in Fig. 15(a), when
Lorentzian lines of the calculated widths are fitted to the
individual transitions to form a simulated spectrum (the
solid curve), it is evident that the calculated linewidths are
again much two narrow. According to theory, the large
peak should have easily resolvable structure; yet the indi-
vidual transitions are not observable in the spectrum, ex-
cept for the En=3 transitions and the 2~1 transition
(visible as a small peak at 35 keV). When each transition
is arbitrarily and equally broadened just enough (by 4 keV
for this case) to obscure the individual lines and produce a
single peak, the dashed-curve spectrum in Fig. 15(a) re-
sults. This reproduces the observed line shape quite well
(indicating a better linewidth estimate), but the discrepan-
cy in the mean peak energy persists, and is much larger
here than any discrepancy for either the (100}or the (110)
plane.
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At 54.5 MeV, the situation is similar, and the
discrepancy is even larger. As can be seen in Fig. 15(b),
the individual transitions are not observable, although' calee

culations predict that they should. be, showing again that
the calculated linewidths are too narrow. %'hen the nine
individual transitions again are broadened just enough (by
9 keV for this case) to produce a single peak, the observed
line shape again is reproduced well, but a very large
enough shift is evident: The calculated strength-weighted
mean energy is 68.4 keV, almost 15% higher than the ob-
served peak at 59.6+0.7 keV. In summary, then, unlike
the situation for the other major planes in diamond, the

many-beam calculation evidently cannot accurately
predict the channeling-radiation transition energies for the
(111) plane. This disagreement is discussed in detail in
Sec. VI B.

D. The (100) axis

The potential for the (100) axis is much deeper than
any of the planar potentials, and has many bound states
[approximately 12 even at 16.9 MeV, as shown in Fig.
16(a)]. The number of bound states only can be approxi-
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mated, since many of the high-n states may be bound or
unbound depending upon the value of k„and Bloch-wave
broadening (not shown in Fig. 16) effectively produces a
continuum of states near the top of the well for all in-
cident electron energies.

With increasing electron energy, the same trend is'ob-
served for the (100) axis as for the planes. At the lower
energies, involving relatively few eigenstates, the transi-
tions are strong and fairly sharp; with increasing electron
energy, they increase in number, width, and energy, and
decrease in strength relative to the free-to-bound continu-
um [see Figs. 16(b) and 16(d)]. At 54.5 MeV, the number
of bound states exceeds 30 [Fig. 16(e)], and the measured
spectrum [Fig. 16(f)] is essentially featureless, although
still considerably enhanced over the continuum.

The calculated (100) axial transition energies (listed in
Table II) agree very well with the measured values. They
were obtained with a 13&13-beam calculation, using a
two-dimensional rms vibrational amplitude of 0.060 A. It
is difficult to assign a calculated energy which corre-
sponds with the lowest-energy transitions observed for ei-
ther 16.9 or 30.5 MeV because there are many transitions
which contribute to these peaks. Although the simple
strength-weighted average of these transitions yields a
reasonable result, it should be remembered that this is
only an approximation.

Despite the overall accuracy of these results, there are a

few anomalies which merit further discussion. For exam-
ple, while the energy of the 2@~is transition is very well
predicted for 16.9-MeV electrons, it is overestimated by
more than 4% for 30.5-MeV electrons. The reason for
this discrepancy is not yet clear. Possibly the detailed
shape of the potential very close to the atomic string
(where the ls state is localized) is not well described by
our model. The results are better for the lower electron
energy (16.9 MeV) because there the ls state is localized
further from the string.

Another curious feature is the fact that although both
the 3p —+2s and the 2s~2p transitions are shown by
many-beam calculations to be fairly strong [see Fig.
16(d)], they are barely (if at all) discernible in the data. A
possible contributing factor may be that the 2s state has a
very short coherence length because it is localized very
close to the atomic string. This would lead to a greatly
increased linewidth for any transition for which the 2s
level is either the initial or the final state, which in turn
would make such transitions difficult to distinguish from
the background.

Channeling-radiation spectra for the (110) axis were
obtained as well. However, the (110) potential well is so
deep ( —130 eV) that there are very many bound states
even at 16.9 MeV, and no discrete lines are visible at this
or higher energies (only a large general enhancement over
the bremsstrahlung background is seen).
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VI. DISCUSSION
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For channeling-radiation transition energies and
strengths, the agreement between the measured and calcu-
lated values is quite good for the (100) and (110) planes
and for the (100) axis. However, almost all of the calcu-
lations underestimate the observed linewidths. The (111)
transition energies also are not predicted accurately (the
discrepancy is —15% for the 54.5-MeV case). These ma-
jor discrepancies are discussed in more detail in Secs. VI A
and VIB. The subject of the scaling of channeling-
radiation energies is discussed in Sec. VIC, and that of
level populations in Sec. VI D.

A. Linewidths
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FIG. 15. The (111)spectra for (a) 30.5-MeV electrons and (b)
54.5-MeV electrons. The solid curves are spectra constructed
from the calculated -transition. energies, strengths, and
linewidths. The dashed curves are the same as the solid curves,
but with the linewidth of each spectral line arbitrarily increased
in order to smooth out the predicted spherical shape (see text).
Note the significant difference, for both cases, between the ener-

gy of the maximum value of the dashed curve and that of the
data.

The calculated linewidths are underestimated greatly in
almost every case. Roughly speaking, their agreement
with the measured values is better for transitions between
high-n states than for those between low-n states. These
high-n states are localized farther from the atoms thein-
selves, and their transition linewidths are dominanted by
Bloch-wave broadening. For the low-n states, Bloch-wave
broadening is negligible, and thermal incoherent scattering
is the most important broadening factor. These facts
might seem to suggest a deficiency in the calculations of
the lifetimes of states resulting from thermal incoherent
scattering. However, accurate calculations of the
linewidths for silicon and for LiF (Refs. 10 and 18,
respectively) have been made within the same theoretical
framework. Furtherinore, other data with 54-MeV elec-
trons, using a synthetic diamond, show much narrower
linewidths, and are in fair agreeinent with our calculated
values.

A possible explanation for these discrepancies is that
the increased linewidths result from electron scattering by
crystal defects. Anomalous incoherent scattering would
decrease the lifetimes and hence the coherence lengths of
the bound states, leading to increased linewidths, as shown
by Eq. (18). In a simple model with an avera'ge distance
(assumed to be isotropic) between defects l~, the coherence
length lj of a given state jwould decrease to ll', given by

TABLE II. ( 100) axial transition energies.

Beam
energy

16.9 MeV

Transition

3p~ls
2p ~1s
3d ~2p
several

Observed
energy
(keV)

101.5+ 1.0
58.3+0.5
35.0+0.5
21.9+ 1.0

Calculated
energy
(kev)

100.0
57.9
33.9
20.5'

30.5 MeV 2p ~1$
3d —+2p
4f~3d
4d —+3p

(Sg)~4f
several

161.6+2.0
110.4+1.0
71.2+ 1.0
52.3+ 1.5
47.4+ 1.5
34.1+1.0

168.4
111.4
72.0
51.0
46.7
35.0

'Strength-weighted mean of 12 closely-spaced transitions.
Strength-weighted mean of 10 closely-spaced transitions.
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However, there the individual transitions are in general
not observable. When a Lorentzian line of the corrected
width is fitted to each of the calculated lines and the indi-
vidual contributions are summed, the resultant calculated
spectra [shown below as the dashed curves in Figs. 17(b)
and 17(c), for the 30.5- and 54.5-MeV data, respectively]
have linewidths that are much closer to the observed data
than the original calculations. The energy shifts persist,
but the calculated line shapes are quite similar to those of
the data.

1 +
lJ ld

Assuming that the defects act equally upon all of the
eigenstates, one can calculate the effect on the transition
linewidths that a given l~- would produce. As can be seen
in Table III, the arbitrary assumption that l~ ——0.9 pm
yields "corrected" linewidths which are in much better
agreement with the data for the (110)and (100) planes.

The same technique can be applied to the (111)plane.

F1G. 16. (a) The (100}potential and eigenvalues for 16.9-MeV electrons. (b) The (100}spectrum for 16.9 MeV. (c) The (100}
potential and eigenvalues for 3p.5-MeV electrons. (d) The ( 100}spectrum for 30.5 MeV. (e) The ( 100}potential and eigenvalues for
54.5-MeV electrons. (f) The ( lpp} spectrum for 54.5 MeV. Bloch-wave broadening for the energy levels is not shown in (a), (c), and
(e3.
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TABLE III. Defect-corrected planar linewidths.

Plane
and

beam energy

(100)

30.5 MeV

54.5 MeV

Transition

1~0
2~1

Observed
energy
(keV)

43.0

119.8
64.7

Observed
line width

(keV)

5.910.3
18.7+0.7
23.8+3.0

Calculated'
linewidth 1

(keV)

5.5

7.3
20.3

Calculatedb
linewidth 2

O ev)

6.7

15.3
23.4

{110)
16.9 MeV

30.5 MeV

54.5 MeV

1—+0

1—+0
2~1
3~2
1~0
2~1
3~2
4~3

233

60.1

35.3
24.5

161.0
103.8
78.0
60.3

3.3+0.4

6.0+0.3
5.2+0.3
4.8+0.3

20.5+0.6
19.2+ 1.0
15.6+0.6
11.2+1.5

2.3

3.6
2.2
5.7

10.3
6.5
4.9
8.3

2.5

5.8
44
6.7

19.2
15.6
14.2
15.1

'Calculated linewidth 1 is the standard calculation {as in Sec. II).
Calculated linewidth 2 takes into account a 0.9-pm defect coherence length.

In summary, the observed linewidths for all planes are
much larger than the calculated linewidths as well as
those observed with a synthetic diamond. The assump-
tion of a model incorporating incoherent scattering by de-
fects with an average spacing of 0.9 pm yields corrected
linewidths which are in reasonable agreement with the ob-
served ones. Since there exists at present no nondestruc-
tive method for determining quantitatively the concentra-
tion of defects in diamond [or even by transmission elec-
tron microscopy (see, e.g., Ref. 19)], the use of channeling
radiation as a diagnostic tool might find useful applica-
tion along these lines.

B. (111)planar transition energies

As shown in Sec. V C, the calculated (111)planar tran-
sition energies appear to be considerably higher than the
observed ones. This is surprising, since the calculated re-
sults for the (100) and (110) planes and for the (100}axis
agree quite well with the data obtained using the same
crystal and electron beam. The discrepancy, therefore,
must lie in some detail of the calculation (or of the chan-
neling physics) peculiar to the (111)plane.

In the framework of the many-beam formulation, when
the electron energy is taken as fixed, the following factors
have a direct influence upon the apparent position of a
peak which is composed of several transitions, as is the
case for the (111) plane: (a) the thermal-vibration ampli-
tude, (b) the individual level populations, and (c) the shape
and depth of the potential function.

Of these factors, a significant change in (a) is unlikely
because the (100) and (110) results using the same
thermal-vibration amplitude fit the data quite well. Im-
plicit in the derivation of the Debye-Wailer factor is the

Einstein approximation, which assumes the presence of
independently, isotropically vibrating atoms. In the tight
diamond lattice (at room temperature) this might not be
strictly the case, in our judgment, it is not an assumption
that can be abandoned easily.

As for factor (b), all of the calculated spectra contain
the implicit assumption that all of the eigenstates are pop-
ulated equally. If this were not the case, then the
strengths of each of the individual transitions would need
to be multiplied by the (norinalized) fractional population
of the initial state of the transition. If, for example, at
30.5 MeV the population of n= 3 level were only one-half
that of its neighbors, the apparent strength of the 3~2
transition at 30 keV would be reduced, and the calculated
location of the composite peak would be shifted down-
ward, closer to the location of the observed peak.

However, there are at least two reasons to doubt this
hypothesis. First, multiple scattering tends to equalize the
populations of all levels quickly, within a few microme-
ters of the entry face of the crystal. ' If this were not the
ease, anomalous strength distributions should be present
for some of the other planes as well, and this is not true.
Second, at 30.5 MeV, the 3~0 and 4~1 transitions are
visible, and they, too, are shifted in energy. Since an un-
equal population distribution would affect the strengths
but not the energies, it would have no effect upon the lo-
cation of an isolated peak. Therefore, an anomalous pop-
ulation distribution appears to be an unlikely mechanism
to explain the energy shifts.

Turning, therefore, to factor (c), we know that the
shape and depth of the potential function is the most im-
portant factor governing the energy eigenvalues and hence
the transition energies. The potentials used in our calcula-
tions are based upon Hartree-Fock calculations of isolated
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(spherical) atoms. These calculations are incorrect for this
case because the electron distributions in the crystal are
nonspherical.

Evidence for the effect of anisotropy of the electron dis-
tribution in diamond in (110) axial channeling-radiation
spectra has been presented in Ref. 1. Just as there is an
alternation of string spacings perpendicular to the (110)
axial direction, so is there an analogous alternation of pla-
nar spacings perpendicular to the (111) planar direction.
Therefore, one would expect any modification of the po-
tential by redistribution of the electrons to be discerned
most easily for this plane.

The measurement of the electron distribution in the co-
valent bond of diamond has been the object of consider-
able research effort. ' ' The most easily quantifiable re-
sults are those of x-ray-diffraction experiments (Ref. 20;
see also Ref. 21) where the experimentally determined in-
tensities of several x-ray Bragg reflections are found to be
considerably different from those which are predicted
from standard theory, which assumes a spherically sym-
metric charge distribution. These studies all conclude
that there is an enhanced electron density along the bond,
and that the charge density in the middle of the bond is
about 1.7—1.8 electrons/A . We should, therefore, be able
to use the results of some of these studies to determine an
experiinentally based potential for the (111)plane.

The intensity of x-ray reflections is proportional to the
square of the kinematic x-ray scattering factor f~(s),
where s =ng/4m. . This in turn is dependent upon the
charge distribution p(r) within the atom [just as f, (s) is
dependent upon the atomic potential, as shown in Eq.
(10)]:"

8&me. ~
2

( )
sin(4n. sr)

d4~sr. (27)

The x-ray scattering factor can be related to the elec-
tron scattering factor by

f, (s)= , [Z -f„(s)],
&p (4n.s)

(28)

where ao is the Bohr radius, R /me . Thus any change in
the x-ray scattering factor hf„(s) can be related to a cor-
responding change in the electron scattering factor hf, (s)
by

&f,(s)= — 2&f (s) .2 1

&0 (4m.s)
(29)

These changed electron scattering factors can then be used
to determine new Fourier coefficients of the planar poten-
tial [by Eq. (12)] which in turn are used in the standard
many-beam calculation.

The experimental data of Ref. 20 show considerable
shifts in f„(s) for the first two reflections along the (111)
line. They indicate that bf„=0.26 for the (111)reflection
and bf„=0.15 for the (222) reflection. It should be noted
that a measured f„(s) is influenced by the appropriate
structure factor (see Ref. 21 for details) and already in-
cludes thermal-vibration effects.

These changes in the scattering factors lead to changes
in the Fourier coefficients vi and vz. The resultant po-

tential, which we shall refer to as the (111A) potential, to-
gether with its eigenvalues for 30.5-MeV electrons, is
shown in Fig. 17(a) as a thin solid curve, along with the.
old potential shown as a dashed curve. The eigenvalues
for 54.5-MeV electrons are not shown because of the
many bound states involved. As can be seen, the (111A)
potential is considerably shallower in the region of the
planes themselves. This decreased depth can be under-
stood qualitatively by considering the enhanced density of
bonds between the two closely spaced planes of atoms. If
the electron concentration in the bonds is increased as ex-
pected, then the extra negative charge will raise the poten-
tial for incident electrons, which is indeed what is ob-
served.

The calculated spectra illustrated by the dashed curves
in Figs. 17(b) and 17(c) are obtained by fitting the defect-
corrected linewidths calculated by the methods outlined in
Sec. VIA to the transition energies and strengths comput-
ed using the "standard" potential [Figs. 14(a) and 14(c)].
The calculated spectra shown by the thin solid curves in
Figs. 17(b) and 17(c) are obtained by the same method, us-
ing the defect-corrected linewidths applied to the transi-
tion energies and strengths computed using the (111A) po-
tential. It can easily be seen that the results of the compu-
tations using the (111A) potential are in much better
agreement with the data than are those using the standard
potential, both for the peak energies and for the
linewidths.

For 30.5-MeV electrons, both the energy and width of
the main peak are predicted very well, and the energies of
the two An=3 transitions also are in better agreement:
73.6 keV calculated versus 72+1 keV observed for the
3~0 transition (at 2% discrepancy), and 92 keV calculat-
ed versus 89+1.5 keV observed for the 4~1 transition (a
3% discrepancy). Using the standard calculation, the en-
ergies for these transitions disagree with the data by 6%
and 10%, respectively.

However, the 2—+1 transition appears to disagree by
5% (36.3 keV calculated versus 34.5+1 keV observed). It
also is not clear why more structure is not observed in the
data, as would be suggested by either of the synthetic
spectra.

For 54.5-MeV electrons, considerable improvement
again is evident; both the width and the shape of the main
peak are predicted very well. The peak energy, however,
still is overestimated by 5% (62.8 keV calculated versus
59.8+1 keV observed), which is nevertheless a great im-
provement over the previous discrepancy of almost 15%.
Although it is very difficult to extract from the data, a
En=3 transition appears to be present at about 154+5
keV. This compares with a calculated value of 162 keV
for the 3~0 transition, a discrepancy of only 5%, com-
pared with one of 9% for the calculation based upon the
old potential.

This improvement in the calculated results indicates
that the corrected, experimentally based (111A) potential
is a better representation of the true (111)potential than is
the standard potential and thus shows that the electrons
are redistributed along the bond in a manner which prob-
ably is quite similar to that suggested in Refs. 20 and 21.
The authors of Ref. 1 have analyzed the radiation from
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—0.75exp[ —( ix i
—0.6) /O. l] . (30)

4-MeV electrons channeled along the (110) axis of dia-
mond to compute a bond-charge redistribution which also
is very similar to that of Ref. 20.

We now explore the effects of further modifying the
(111) potential. A hypothetical potential in coordinate
space can be posfulated, and Fourier transformed numeri-
cally. Then the Fourier coefficients u„can be extracted,
and the new energy eigenvalues and eigenvectors can be
computed as before, via the many-beam formulation.

We have used this technique to modify the standard
(111) potential, and have found a new potential, derived
on the basis of providing a best fit to the 30.5-MeV data.
This new potential V' is related to the standard (Hartree-
Fock) potential V by the empirical relation

V'(x) = V(x)+ 1.7 exp( —x 2/0. 1)

This empirical potential, which we shall refer to as the
(111B)potential, together with its (30.5-MeV) eigenvalues,
is shown in Fig. 18(a) as a thick solid curve, along with
the standard potential, shown as a dashed curve, and the
(111A) potential, shown as a thin solid curve. It can be
seen that the (111B) potential involves considerably less
change from the standard (111) potential than does the
(111A) potential. Interestingly, it dips below the standard
potential in the region around x =+0.6 A. This slight
dip turns out to be rather important in determining the
shape of the calculated spectra for this potential because it
alters the shape of the potential in the region where the
eigenstates that take part in the bulk of the transitions in
the major spectral peak are localized.

These calculated spectra [which were obtained using the
same methods as were used for the calculated spectra of
Figs. 17(b) and 17(c)] are shown as the thick solid curves
in Figs. 18(b) and 18(c) (for 30.5- and 54.5-MeV electrons,
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respectively) .For comparison purposes, the calculated
spectra obtained from the use of the (111A) potential are
shown as the thin solid curves. It is seen that the (1118}
potential is slightly better than the (111A) potential for
30.5-MeV electrons, particularly with respo:t to the width
of the main peak and the energy of the 3~0 transition.
Moreover, the prediction of the (1118}potential for the
energy of the main peak of the 54.5-MeV spectruin results
in a discrepancy of less than 2%%uo, considerably smaller
than the 5% discrepancy for the (111A}potential. This is
very gratifying because the (1118)potential was deduced
solely from a fit to the 30.5-MeV data.

It is not certain whether the (1118) potential is con-
sistent with the other data pertinent to the electron distri-
bution along the (111) bond. However, the higher-order
x-ray scattering factors are weak and difficult to deter-
mine from diffraction measurements; therefore, this
channeling-radiation technique may provide us with a
valuable means of investigating these higher-order terms
In any case it is clear that either of the two shallower po-
tentials discussed here would produce predictions that are
in better agreement with the positron channeling-radiation
data of Ref. 3. Finally, it is encouraging that these poten-
tials work well for electrons at two well separated ener-
gies; but certainly more theoretical and experimental re-
sults (especially at lower energies, where the hn = 1 transi-
tions should be individually resolvable) would be very il-
luminating.

C. Energy scaling

10

10

10

Diamond
e
(11Q}
(a) 16.9 MeV

~ ~~ F 0 ' /

(b) 3Q.5 MeV

j

l
l,;l

~ ip.

~0
~ ~ o ~

The electron-bemn energies of our experiments ranged
from 16.9 to 54.5 MeV, and other data for diamond ex-
tend this range both to higher [80.2 and 110.2 MeV (Ref.
22)] and to lower [4.0 MeV (Ref. 1)] energies Therefore. ,
we can observe how channeling-radiation energies scale
over a very wide range of incident electron-beam energies
(8.8 &y &217).

When a one-dimensional potential is described by a
power law, i.e., V(x)=ax, where x is measured from the
midpoint between the planes in the direction normal to
them, then the eigenvalues in the rest frame will scale as
y

~i + ~ (Ref. 18}. The transition energies will scale as
Ace, =ay, where a=2/(m+2). Multiplying these rest-
frame energies by 2y to obtain the observed photon ener-
gies in the laboratory frame, we should observe photon en-
ergies scaling as flcoc 2Eoy('+ ~' + '}, wh——ere Eo is a
constant. '

Qualitatively, most electron planar potentials appear to
be "V-shaped" around the origin (at the plane), except
very close to it, and flatten out gradually as x approaches
dz/2, where dz is the interplanar spacing. Thus m=1 for
eigenstates which are localized relatively close to the
planes, and m=0 for eigenstates which 'are localized far-
ther away from them.

Figure 19 shows how the eigenstates are localized for a
typical plane at the three energies of our experiment. As
expected, the low-n eigenstates are localized close to the
planes and the higher-n ones farther away. For the plane
shown, the highest eigenstate is not even localized to a
single plane. Therefore, we expect the 1~0 transition to
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FIG. 19. Probability densities g(x) g(x) for the bound states
of the (110) planar potential for aH three incident electron ener-
gies, with k=0.5. Note that the wave functions draw in closer
to the planes as the electron-beam energy increases.

scae approximately m A / ~ y5/i, ~d h gh-8 tr~sitiom
such as the 3~2 or 4~3 transitions to scale approxi-
mately as %col ~ y2.

Assuming that the transition energies scale as
flcoi =byN, we obtain values for a by taking the photon
energies at two different values for y. Figure 20 shows
the plot of logio(Aco) versus logio(y) for all of the avail-
able planar transitions.
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FIG. 20. Scaling of photon energy vs electron-beam energy,
the latter plotted in units of y. 3 denotes the (110) 1~0 transi-
tion (average' a=1.67); 8, - the (100} 1~0 transition (average
a=1.73); C, the (110) 2—+1 transition (average a=1.83); D, the
(110) 3~2 transition (average a=1.92); E, the (100) 2~1 tran-
sition (average a=1.98); and F, the (110) 4—+3 transition (aver-
age a= 1.93).

We see that, as expected, a is higher for the high-n
transitions than for the low-n transitions. For example,
for the 1~0 transition for the (110) plane, the average
value for a is 1.67; for the 2~1 transition it is 1.83; and
for the 3~2 transition it is 1.92. From the simple theory
one would expect a to increase from —,

' to 2 with increas-
ing n, and indeed this is the case.

All of the numerical results of this analysis are listed in
Table IV. We observe that for any transition other than
the 1~0 transition a tends to decrease with increasing y.
This is entirely consistent with the above model, for as the
beam energy (y) increases, the energy of an eigenstate de-
creases (it moves down in the potential well) as its wave
function becomes increasingly localized near the atomic
plane. Thus, transitions which are effectively high-n
transitions at a low beam energy eventually become low-n
transitions at higher beam energies, with a concomitant
decrease in a. This effect can be seen clearly here for the
case of the (110) 2—+1 and 3~2 transitions. '

D. Bound-state versus free-state populations

A decrease of channeling-radiation line strengths
[bound-to-bound (8-8) transitions] relative to the back-

ground bump [which consists of both free-to-bound (F-8)
and free-to-free (F-F) transitions] as the incident
electron-beam energy increases is a common feature for
all of the planes and axes in the energy range of our exper-
iment. (This is also true for the data of Ref. 22.) This is
puzzling because we know that the strength of a spectral
line is proportional to its energy (see Sec. II 8), which al-
ways increases with electron-beam energy (as is discussed
in Sec. VIC). Therefore, the overall intensity of the F-8
and. F-F components must increase with beam energy at
some rate faster than that of the 8-8 component (the
"random" bremsstrahlung spectrum, which increases
linearly with incident beam energy, has already been sub-
tracted from the data).

A possible reason for this phenomenon is that the
strengths of the individual F-8 and F-F transitions in-
crease with beam energy faster than those of the 8-8 tran-
sitions. However, an extension of our many-beam calcula-
tion to the first several free states show that this increase
does not occur. Therefore, it must be the case that the
overall population of the free states increases significantly
relative to that of the bound states as the beam energy in-
creases.

This occurs for two reasons: the first is that as the
beam energy increases, the critical angle for channeling
becomes smaller, and fewer electrons are initially captured
into bound states. A calculation shows, if we assume a
constant beam divergence of 0.3 mrad, that the percentage
of electrons captured initially into the bound states of
(110) diamond varies from about 99% at 16.9 MeV to
about 70% at 54.5 MeV. However, it is important to
remember that these values are for the initial population
only, and that the populations are redistributed by in-
coherent scattering mechanisms (discussed in Sec. IIC)
well before the electrons have traversed a significant por-
tion of the crystal. In our calculations of relative line
strengths, we always assume the initial populations of the
bound states to be equal, and this assumption always has
yielded good results. This population redistribution by in-
coherent scattering is the most iinportant reason for the
increase of the free-state population, because as the
electron-beam energy increases, the channeling wave func-
tions draw closer to the planes or strings, and incoherent
scattering to other states is strongly enhanced. [Figure 19
illustrates graphically this drawing together of the
(squares of the) wave functions. ] Some of these states
may be bound; however, the total number of available un-
bound states is much greater than the number of bound
states, so that the net effect is a depopulation of the bound
states with respect to the free states. As an example of
this effect, the coherence length of the n= 1 state of (110)
diamond at 16.9 MeV is 4.0 pm, whereas the coherence
length of the same state at 54.5 MeV is only 2.2 p,m.

VII. THE APPLICABILITY
OF CHANNELING RADIATION

AS A PHOTON SOURCE

The ratios of the intensities of channeling radiation and
bremsstrahlung for some of the diamond axes and planes
at 16.9 and 30.5 MeV are among the highest that we have
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observed for any crystal or energy. It is therefore of great
interest to estimate the amount of channeling radiation
obtainable from. such a crystal in order to investigate its
applicability as a photon source. To do this, the amount
of bremsstrahlung produced in the crystal for a given elec-
tron flux is calculated, and an estimate of the channeling-
radiation intensity is made using the observed intensity ra-
tios.

Assuming complete screening of the nuclear charge
(valid for the frequency interval of those photo'ns for
which fico &&E„where E, is the electron-beam energy),
one obtains for the doubly differential radiation cross sec-
tion for relativistic bremsstrahlung:

No phoions =1.47X10 27% y 2Z2

electron cm

=N„ohZ, (32)

where N„ is the number of atoms per unit volume, o is
the cascade displacement cross section, AZ is the sample
thickness, b,N is the number of knack-ons, and N, is the
total number of electrons. Therefore the fraction of dis-
placed atoms is

the electrons as they pass through the crystal. Both of
these depend upon beam energy and current, which we
will take as 100 pA in a 5-mm-diam beam at 30.5 MeV
(the figures for 16.9 MeV will be more favorable).

The high-energy electron beam passing through the
crystal will damage the crystal by knocking atoms out of
their lattice sites. The fraction of electrons producing
such knock-ons is

233
X 1/3Z

1+y4g4

(1+y'&')'
AN ~ Neo'

N„1V„AhZ
(33)

(31)

where iV„ is the number of atoms per cm, Z is the atomic
number, P= [(y —1)/y ]'~ =U/c, fico is the photon ener-

gy, Q is the solid angle, and 8 is the angle between the
electron beam line and the observation point.

The maximuin allowable value for 8 for a bandwidth
hco/co=10% is computed from the relativistic Doppler
shift from which one obtains 8=5.5 mrad for 30.5-MeV
electrons. Integrating the 8-dependent part of Eq. (31)
numerically and solving for a beam energy of 30.5 MeV,
one obtains an intensity of 1.3)& 10 photons/electron cm
in a 10% bandwidth, out to an angle of 5.5 mrad. Our
crystal is 23 pm thick, so we can expect 3X10 brems-
strahlung photons/electron in this frequency range.

A reasonable estimate for the maximum average
current readily attainable from the LLNL linac is —100
pA in a 5-mm-diam beam. For this current, we obtain
-2)& 10 bremsstrahlung photons/sec.

The highest ratio of channeling radiation to brems-
strahlung that we have observed is for the 58-keV line of
the (100) axial spectrum for 16.9-MeV electrons, which
is 9.5:1. However, this is not an isolated line, but is sur-
rounded by other transitions as well as by a large free-to-
bound component. By contrast, the ratio for the 1~0
transition in the (100) planar spectrum for 30.5-MeV elec-
trons is 7.1:1 (at 43 keV) and the ratio for the 1~0 transi-
tion in the (110) planar spectrum for 16.9-MeV electrons
is 6.3:1 (at 23 keV), and these spectral lines are well isolat-
ed. These latter, therefore, should be more suitable for
use as a monochromatic -photon source, and are linearly
polarized as well.

Thus, for 16.9-MeV electrons channeled along the (110)
plane, we compute 1.15&& 10' photons/sec in a 10%
bandwidth at 23 keV. For 30.5-MeV electrons channeled
along the (100) plane, we compute 1.3X10' photons/sec
in a 10% bandwidth at 43 keV.

It also is necessary to calculate the expected crystal
damage in order to ascertain whether it is feasible to run
at such a high beam current. Crystal damage falls into
two categories: radiation damage from the high-energy
electron beam and heating from collisional energy loss of

where N„ is the total number of atoms being irradiated
and A is the area of the beam.

Assuming a mean displacement energy of 24 eV to re-
move a diamond atom from its lattice site, we obtain
o =72 b. For the previously specified beam parameters,
we then can expect that hN/N„=8. 2)& 10 for 1 h; i.e.,
about one atom in 1200 is displaced in 1 h of operation.
This is not a large fraction, and it would seem that
knock-ons would not limit operation, at least for many
hours.

The collisional energy deposited by the electrons as they
pass through the crystal can be written as

E«& ——2pC(mc) ln
ir (mc )

[(1 P2)3~2]l i(Z)
(34)

where C=0.15Z/A, p is the density in g/cin, and I is
the ionization potential [about 60 eV for Z=6 (carbon)].
Allowing for the density effect, this leads to an energy
dissipation of approximately 8.8 MeV/cm per electron
passing through the crystal. This means that a 23-pm di-
amond crystal will have to dissipate -2.0 W. Assuming
only radiative cooling, this implies that the crystal will
heat up to approximately 800'C. The crystal still will
remain intact at this temperature, but the rms vibrational
amplitude of the atoms will be increased. Diamond has a
very high Debye temperature (-2000 K), so that increas-
ing the crystal temperature from room temperature to
810 C increases the one-dimensional thermal-vibration
amplitude from 0.042 A only to 0.060 A. The effect of
this increase is to make the potential somewhat shallower
in the center, so that the transition energies are reduced
slightly. However, 800'C is approximately the tempera-
ture needed to anneal out light radiation damage from di-
amond crystals, sa that the above computation of the
number of knock-on defects is an overestimate, and the
crystal might in fact be self-annealing.

The calculated spectrum for 30.5-MeV electrons chan-
neled along the (100) plane in diamond at 810'C (neglect-
ing random and free-to-bound components) is shown, to-
gether with the spectrum for 25'C, in Fig. 21. It can be
seen that the calculated spectrum for the higher tempera-
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ture shows slightly increased linewidths and decreased in-
tensity. Based upon these results, we compute (as before)
approximately 1.1 &( 10' photons/sec in a 10% bandwidth
at 40.6 keV.

In comparison, the Stanford Synchrotron Radiation
Laboratory 8-pole wiggler, operated at 18 kG with a 3-
GeV electron beam will produce approximately 5&(IO'
photons/secmAmrad at 40 keV. This is broadband radi-
ation, however, and therefore a monochromator usually
has to be used. Thus, channeling radiation is not as bright
(at this relatively low energy) as a high-energy
synchrotron-radiation source at high current. However,
the intensity of synchrotron radiation drops precipitously
with photon energy while that of channeling radiation in-
creases, so that for photon energies of the order of 100
keV or higher channeling radiation from certain crystals,
such as diamond, becomes the more intense source. In
any case, even at low energies, it can be seen that channel-
ing radiation from diamond can serve well as an intense,
narrow-band, polarized source of x rays which can be uti-
lized at many existing smaller accelerators.

VIII. SUMMARY AND CONCLUSIONS

A series of electron channeling-radiation experiments
has been performed using a type-IIa natural diamond as
target. Spectra were collected for electron beams from the
Lawrence Livermore National Laboratory Electron-
Positron Linear Accelerator of energies 16.9, 30.5, and
54.5 MeV incident along the (100) and (110) planes and
the (100) axis, and of energies 30.5 and 54.5 MeV along
the (111) plane. Detailed expositions of both the experi-
mental techniques and the theoretical calculations used by
our group have been given (Figs. 1—11).

The channeling-radiation spectra contain sharp and
prominent structure. For the (100) and (110) planes and
for the (100) axis, one- and two-dimensional (respective-
ly) many-beam calculations yield transition energies in
generally good agreement with the locations of the spec-

Photon energy (keV)

FIG. 21. Calculated synthetic spectra for channeling radia-
tion from 30.S-MeV electrons along the (100) direction in dia-
mond at room temperature (solid curve) and at 810 C (dashed
curve).

tral peaks (Tables I and II, Figs. 12, 13, and 16). This
good agreement indicates that the standard (Hartree-Fock)
potential and thermal-vibration amplitudes used as input
for these calculations are nearly correct, and that the
theory is basically sound. However, calculations using the
standard potential overestimate significantly the energy of
the main peak of the (111) spectra, which is a composite
of several individual transitions (Fig. 14).

The linewidths observed for the spectra collected using
54.5-MeV electrons are approximately twice as large as
those observed by the authors of Ref. 2 who used an
unusually perfect region of a synthetic diamond. They
also are considerably broader at all energies than predicted
by calculations. Since accurate linewidth calculations for
Si and LiF were made using the same theory (Refs. 10 and
18), it is concluded that the above discrepancies result
from the properties of the particular diamond crystal used
for these experiments. Calculations using a simple model
which postulates increased incoherent scattering by crys-
tal defects of a constant average spacing yield increased
linewidths, in reasonable agreement with the observed
data (Table III, Fig. 15). An average defect spacing of 0.9
pm was deduced using this method. This technique may
provide a quantitative assessment of the defect density in
diamond crystals. When defect-corrected linewidths are
fitted to the calculated transition energies for the (111)
plane, the major discrepancies in the location of the main
spectral peak can be quantified (7% for 30.5-MeV elec-
trons and 15% for 54.5-MeV electrons).

Using a potential basal upon x-ray-diffraction data for
diamond [the (111A) potential] yields calculated results
which are in much better agreement with the data (Fig.
17). The energy of the main (composite) spectral peak is
predicted almost prcmsely for the 30.5-MeV spectrum and
within 5% for the 54.5-MeV spectrum. Furthermore, an
empirical potential [the (111B)potential] was derived on
the basis of providing a best fit to the 30.5-MeV data.
The calculated results for the (111B)potential are slightly
better than for the (111A) potential at 30.5 MeV (especial-
ly for the location of the En=3 transitions), and more-
over, the position of the spectral peak in the 54.5-MeV
data is much better predicted [2% error for the (111B)po-
tential versus 5% for .(111A) potential] as well (Fig. 18).
In this way, channeling-radiation data may provide a
means for quantifying higher-order x-ray scattering fac-
tors, which cannot be done with x-ray-diffraction data
alone.

The transition energies have been shown to scale as a
power-law function of the electron-beam energy. Those
transitions involving states which are localized close to
atomic planes scale as fuu cc y ~, while the scaling of tran-
sitions involving states thy, t are localized closer to the
midplane regions approaches %co cx y (Table IV, Figs. 19
and 20). This is consistent with a qualitative description
of the planar potential as a power law; i.e., V(x) =ax
with m=1 near the plane and m=0 at midplane.

Random-subtracted spectra obtained from the same
plane at different beam energies show that the strengths
of the bound-to-bound transitions relative to the back-
ground bump (consisting of free-to-bound and free-to-free
transitions) consistently decrease as the incident beam en-
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ergy increases (see, e.g, , Figs. 12—14 and 16). Since
many-beam calculations do not indicate an increase in the
strengths of the free-to-bound transitions relative to the
bound-to-bound transi. tions with increasing beam energy,
it is concluded that the populations of the free states in-
crease with respect to the bound-state populations as the
incident electron-beam energy increases. This occurs for
two reasons: first, it is likely that somewhat fewer elec-
trons are trapped into bound states at higher beam ener-
gies because of the decrease in the critical angle; and
second, incoherent scattering is strongly enhanced at
higher energies, leading to a more rapid depopulation of
the bound states, which results in a lower average popula-
tion in these states.

Thus, we have seen that the channeling-radiation spec-
tra from diamond presented here contain a wealth of in-
formation and shed light on a variety of channeling phe-
nomena and crystal properties. Finally, we have demon-
strated quantitatively the potential usefulness of channel-
ing radiation as an intense source of narrow-band, sharply
focused, polarized x rays.
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