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Kohn-Sham exchange potential exact to first order in p(K)/p0
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The Kohn-Sham exchange potential may be written, exact to first order in p(K}/po,
V„s= —

2 (3/n) / pe XKp(K)F(K)e'x''. Here we evaluate the universal function F(K/kF) for all

K/kF and find large corrections to the local-density approximation which should result in much improved

values for semiconductor energy gaps.

We have recently' shown that the Kohn-Sham (KS)' ex-
change potential may be written exactly to first order in
p(K)/pe,

1i'3

yKS —2/3 g' (K)F (K ) ieK r

2 7r

where V„"s=SE„/Bp(K) and E„ is defined to be the Fock
energy of the eigenfunctions of the self-consistent density
functional potential which differs only negligibly from the
Hartree-Fock exchange energy. F(K) contains an integral
and was evaluated in two limits:

F(K ~)=, F(K 0) = —+8 kF' 2 2 K
27 K2 9 81 k'

The ~ in the K 0 limit is just the local density approxi-
mation (LDA) and the

2 K2

81 kF2

corresponds to a gradient term larger than that obtained by

F(K) = —W (K)I(K), (2)

~here

Sham by a factor of ~. We showed that this discrepancy
arises because the X 0 limit of screened exchange used by
Sham is not identical to unscreened exchange. In this Brief
Report we evaluate F(K) numerically for all K. That such
an exact universal curve exists and can be calculated is in-
teresting in and of itself. That it shows large deviations
from the LDA has important considerations for energy-band
calculations. For the (111), (200), and (220) Fourier coef-
ficients of potential which determine the energy gaps in dia-
mond and zinc-blende semiconductors, the magnitude of
the exchange potential is increased. This tends to increase
energy gaps so that it is quite likely that density functional
theory yields energy gaps in much better agreement with ex-
periment than heretofore believed, due to the inadequacy of
the LDA.

Because of the singular nature of this integral (whence
arose the gradient-expansion controversy), we deem it use-
ful to outline our evaluation procedure. From Eris. (5),
(12), and (1S) of Ref. 1,

fe

I(K) = d k d3k'~k —k'~ 2 1 ——
aJ 2 K'+2k K

1 K +2k K f(k+K) —f(k) f(k'+K) —f(k')
2 K +2k'. K 2K +k K 2K +k' K
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A(K)= 2+
9 2

2kF+ K
ln

2kF 2kF —K (4)

and f (k) is the Fermi function. A little manipulation yields

t
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2 K)f (k' —

2 K)
d kd k'

fs —k'l' (k K) 2(k' K) 2

Choosing cylindrical cordinates (d3k =
2 d&dkq2dk, ) results in integrals of the form

(k,'+k )'dede'
(k,'+k, ) +kq +kj —2kqki, cos()

which are easily evaluated to yield

I(K) = (rr/K)2J [(k, +k,') [(ki —kg)2+2(k, +k,') (kg +kg2)+ (k, +k,')4]

—(k,' —k, ) [(kg —k] ) +2(k, —k,') (kg +k] ) + (k, —k,') ] '/2]

xf(k ——,K)f(k' ——,'K)k, 'k, ' 'dkidkg'dk, dk,
'

Letting z= k, —~K, .
z'= k,

' —~K, and integrating over k) + kt2 and kj~ —kP between the limits 0& kf & kF2 —z2 and
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0 & k~ ( kp —z', one obtains after some effort
k~ z

I(K) = (m/K)'J „dz J dz'(z+ —,'K) '(z'+ —,'K)
F

2

x X ( —1)'a;[b; —a, +z +z' —2kF +2(kr, —z ) ln[(z —z' +a, + b;)/2a;]

+2(kF z' ) —in[2(kr~ —z' )/(z —z' —a;+ b;)]) (7)

where

a t ——(z —z')', az(z'+z+K)' (8)

b, = [ (a; + 2kF —z —z' ) —4(kF z) (k—r —z' ) ] ' (9)

We have evaluated Eq. (7) numerically, normalizing to
k~= 1. Note when either z or z'= —~E that a~ =a2 so that

the apparent second-order singularities are actually first or-
der. To obtain the principal value of the integral we
evaluated the integrand at mesh points z„and z„' = + n/1000
with n odd and required that ~K = m/1000 with m even.

In Fig. I we plot the universal curve F(K=K/kF) for
~ ~ 4; in the inset we show dF/d K around x = 2 where
dF/dK appears to become infinite. For ~ ) 4 see Fig. 2,
where F(K) divided by its limiting value 8/27~ is plotted
against ~ ' for 4 ~ K ~ ~. In Fig. 3 we plot F (~) —

9 di-

vided by the ~ 0 limiting value we previously obtained, '

2K'/81, for 0.004~K~0.25. Note that as K 0 the calcu-
lation becomes numerically unstable because of both the
1/K in the ratio and the 1/»' in I (~ ) . There is a -huge
amount of cancellation within the integral I(K) that occurs
on a scale of order ~ so that the mesh used in the numerical
integration must be small compared to K. Besides our V, (K~ 0)/V„(K 0) = 1.609(1+21/r, ) (10)

standard 1000-point mesh with hz/kr = b, z'/kr = 0.002, we
used meshes twice and four times as fine. %e also used
Control Data Corporation (CDC) double precision (25 sig-
nificant figures) here. 4 Each ~ point with double precision
and 4000-point mesh required 1 h of CDC Cyber time. The
ratio takes the value 1.250 at K=0.12 and slowly increases
as K increases. Observing the three curves, it appears that if
an infinitely fine mesh and infinite number of significant
figures could be used in the calculation, the ratio would ap-
proach a value not much smaller than 1.24 as K 0 but
that ~ =0 is an essential singularity where the ratio is unde-
fined. Thus a unique value of y„, the gradient expansion
coefficient, cannot be obtained by expanding about ~=0
(explaining the discrepancy between the A. 0 screened ex-
change and unscreened exchange results) but may be ob-
tained by extrapolating the curves in Fig. 3 back toward
K = 0. In spite of this we agree that ysh, is the correct y„
to add to yMg, the Ma-Brueckner' correlation coefficient, to
obtain y„, whose expansion is unique.

We wish to emphasize that V„,(K) = V„(K)+ V, (K), i.e. ,
that although correlation screens exchange self-energy, it is
merely additive to the KS exchange potential. 7 Making the
small p(K)/po expansion of the Hedin-Lundqvists LDA
correlation potential one obtains
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FIG. 1. The dimensionless quantity F(~) appearing in Eq. (I) vs K=K/kz. Values of ~ equivalent to the (111), (200), (220), and (311)
reciprocal-lattice vectors in zinc blende are indicated. The horizontal line is the LDA result F(K) = 9. The inset shows dF/d~ in the region
it becomes infinite.
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FIG. 2. The ratio of F(r&) to 8/27K plotted against I/K for
4 ~~ K ~~~.

where r, = (4mpe/3) ' . For Si (r, =2), V, (K=O) is only
14% of V„(K=0). Since yMa indicates —V, decreases for
small K and it must vanish for K ~, we suspect it de-
creases monotonically and that the ratio V, /V„ takes its
maximum value at K=O. Because a linear expansion 'in

p(K)/pp is only marginal for semiconductors, we suggest
that Eq. (1), with F(X) replaced by F(K) —

9 and with

p(K) the valence-charge density, be added as a correction
to the LDA exchange potential. We note from Fig. 1 that
this correction is about 20%, 30%, and 85% of the LDA ex-
change for the (ill), (200), and (220) Fourier components.
On the average this potential (especially with the inclusion
of correlation) is similar to the Slater9 potential for the im-
portant Fourier components. The Slater exchange potential,
which is 50% larger than the KS for all- Fourier components,
is known to result in much better semiconductor energy
gaps. Thus is explained our observation of many years
ago' that Fock exchange results in Si band gaps about a
factor of 3 too large but the Slater exchange potential or
screened Pock exchange results in approximately correct
gaps. The large errors in energy gaps obtained from KS
eigenvalues (up to 83% too small" ) have recently been at-
tributed to"" a discontinuity in SE„,/Sp across the gap.
We conclude here that a large part of that error is due to
the use of the LDA and that the discontinuity in SE„,/Sp is
smaller than originally' ' suggested. Hybertsen and
Louie, '4 using the weighted density approximation, have

FIG. 3. The ratio of [F(~)—
9 j to 2~2/81 for 0.004~ K~0.25

calculated with 1000-point (Cl ), 2000-point (5), and 4000-point (0)
meshes.

reached the same conclusion.
After this work was completed, it was brought to our at-

tention that Sham' ' had published a curve essentially
identical to Fig. 1. Sham calculated

F(~) Xt(~)/Xt(0)
F(0) [Xe(K)/Xe(0) ]2

(11)

where g=go+X~+ . is an expansion of the Hartree-
Fock susceptibility in powers of e . We know of no proof
that this first order in e~, Hartree-Fock F(K), is identical to
our F(K) calculated for Pock exchange of Kohn-Sham
eigenfunctions. However, numerically they are almost so.
A numerical listing of our F(K), accurate to four decimal
places, is available from us. The Sham F(~), calculated
from Geldart and Taylor's'7 values of Xt(K) and Xe(K),
differs from ours by +0.2 lo which is slightly larger than one
would like to attribute to numerical error. ' We also note
that, even if the p's of Ref. 17 are exact, they do not con-
tain enough significant figures to obtain the ratio' plotted in
Fig. 3 of this paper.
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