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The frequencies of the transverse N-point phonons in Nb and Mo have been calculated using the first-
principles frozen-phonon method. The ordering of the modes is reversed in these metals in agreement with
experiment. Similar calculations for the L and T, N-point phonons in the high-temperature bcc phase of Zr
agree with recent measurements, while the results for the 7, phonon of Zr indicate an instability toward

the formation of the hcp phase.

I. INTRODUCTION

The transverse 7; phonon branches along the [110] direc-
tion of the high-temperature bcc phases of La and Zr have
recently been measured.! These branches have a very low
frequency, reaching at the zone-boundary N point only 1.0
THz for Zr and 0.4 THz for La. At the zone center this
branch is associated with the (c;;— cj2)/2 elastic constant,
and it was the small value of this elastic constant that led
Zener? more than 30 years ago to suggest that the whole T}
branch was low and was the source of the large vibrational
entropy needed to stabilize the bcc phase at high tempera-
tures. The 77 mode at the zone-boundary N point is partic-
ularly interesting since the displacements for this mode take
the bce lattice in the direction, of the hcp phase (with only
an additional small shear required to complete the transfor-
mation).?> Both La and Zr do in fact have low-temperature
hexagonal close-packed phases. This particular mode in bcc
La and Zr has also been observed to have a relatively high
intensity from incoherent elastic scattering, and is expected
to have a large phonon population at ~—1200 K (e.g.,
kg T/kw ~ 60 for the T, branch of La), both of which sug-
gest that anharmonic effects may play a role in stabilizing
the bcc phase and causing the phase transition. The
transverse modes at the N point are also unusual in Nb and
Mo, the bcc metals following Zr in the periodic table. For
Nb, the T, and T, frequencies are 3.9 and 5.1 THz, respec-
tively, while for Mo this ordering is reversed with the T,
frequency at 4.6 THz and the T; at 5.7 THz.

In this Brief Report, we apply the first-principles frozen-
phonon method to study the N-point vibrational modes in
Mo, Nb, and bcc Zr. We have previously studied, with
some success, the H point and the q=L(%, %, +)2n/a
modes in these metals using the same methods.* The pro-
cedure is to calculate the total energy of the distorted crystal
with atomic displacements corresponding to a particular pho-
non. The total energy for different magnitudes of the lattice
distortion is precisely evaluated using modern self-consistent
band-theoretical techniques (in this case a first-principles

31

pseudopotential method with a mixed basis of Gaussian and
plane-wave functions®). The only approximations entering
the calculations are the standard exchange-correlation po-
tential from local density functional theory,® the frozen-core
approximation, and the Born-Oppenheimer approximation,’
which provides the justification for ‘‘freezing’® the phonon.
From the total energy versus distortion curves, the harmon-
ic phonon frequency can be obtained, along with informa-
tion about anharmonicity and lattice stability.*

II. CALCULATIONS AND RESULTS

Before performing extensive calculations on distorted lat-
tices to obtained phonon frequencies, we tested the pro-
grams, the adequacy of the basis, and the potential for each
element, by first evaluating the total energy for several dif-
ferent bcc unit-cell volumes. These calculations yield the
equilibrium lattice constant, bulk modulus, and cohesive en-
ergy of the crystal. The results for Nb and Mo have been
reported previously® and we include those in Table I along
with new results for bcc and hep Zr, which show excellent
agreement with experiment for the hcp phase and reason-
able agreement for the high-temperature bcc phase (note
that thermal expansion effects were not included in the
theoretical treatment). The calculational procedures used
for Zr were the same as those used for Nb and Mo,? except
that there were two sets of Gaussian functions. We used
one set to aid convergence of the 4d orbitals, and another
for the rather extended 4p core orbitals, which in these cal-
culations were treated as valence states. With the 4p orbi-
tals as valence states, the equilibrium lattice constant was
expanded by 2% over that obtained when the 4p orbitals
were treated as core states. For the zone-boundary phonon
calculations, where local changes in volume during distor-
tion are less important, the 4p orbitals were treated as core
states and the phonon frequencies were evaluated at the
smaller equilibrium volume. This results in a small shift
( < 5%) in the calculated frequencies.
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TABLE 1. Comparison of calculated and measured values for the static bulk properties of Mo, Nb,
and Zr.
Lattice gonstant Bulk modulus Cohesive energy
(A) (Mbars) (eV/atom)
Mo
Calculated 3.142 2.85 6.64
Experiment 3.14b 2.62¢ 6.824
Nb
Calculated 3.26 1.82 7.55
Experiment 3.29b 1.735¢ 7.574
bee Zr
Calculated 3.54f 1.05 6.93
Experiment 3.61f cee S
hep Zr ’ a c
Calculated 3.20 5.13 1.01 '6.98
Experiment 3.238 5.148 0.95h 6.254

#Reference 8.
bReference 9.
°Reference 10.

The good results for the calculated bulk properties with
the undistorted lattice allowed us to proceed with the pho-
non calculations with some confidence. With distortions of
the crystal corresponding to the N-point phonon displace-
ments, the original cubic symmetry of the bcc lattice is re-
duced to D,, (8 group operations), and the real-space unit
cell is doubled. For some of the calculations, the energy for
the distortion converged slowly with respect to the number
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FIG. 1. The total energy vs displacement for lattice distortions
corresponding to the two transverse-phonon modes at the N point.
Because of symmetry, the curves are symmetric about zero displace-
ment, so only positive displacements are shown for Mo, and nega-
tive for Nb.

dReference 11.
®Reference 12.
fReference 13.

8Reference 14.
hReference 15.

of k points sampled, and as many as 612 k points in the ir-
reducible -};—th Brillouin zone were employed. This difficulty
in converging some of the phonons at the N point is prob-
ably related to the observation made by Varma and
Weber,'¢ who found that strong interband electron-phonon
matrix elements for these modes occur in a rather small re-
gion in the Brillouin zone. A more complete account of the
calculational details will be published in a longer paper (for
details of the method see Ref. 4).

The calculated total energy versus displacement curves for
the Ty (polarization, &,(110)) and T, (&,(001)) modes
are shown in Fig. 1 for Nb and Mo. For small displace-
ments, the quadratic part of the curves may be used to ob-
tain (via E= {-mmzﬁz) the harmonic frequencies in Table
II. The calculated frequencies are in reasonably good agree-
ment with experiment, and display the same reversal of the
T, and T, modes found experimentally. This reversal was
previously shown by Varma and Weber!® to arise from de-

TABLE II. Comparison of the calculated and measured values
for the frequencies of the N point, (1, 1, 0)@/a, transverse vibra-
tional modes in Mo, Nb, and the high-temperature bcc phase of Zr.
The theoretical values are converged to +0.1 Thz.

Ty, (&, (110)) T,, (&,(001))

(THz) (THz)

Mo

Calculated 5.8 4.0

Experiment 5.73 £0.062 4.56 £0.062
Nb

Calculated 4.3 5.1

Experiment 3.93 £0.06% 5.07 £0.102
bec Zr

Calculated Unstable 3.6

Experiment 1.00 £0.05° 3.94 £0.07°

8Reference 17.
bReference 1.

‘Reference 18.
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FIG. 2. Similar to Fig. 1 for the bcc phase of Zr.

tails of the electronic structure. The corresponding total en-
ergy curves for bcc Zr are shown in Fig. 2. The negative
curvature for the 7 curve indicates the bcc phase (at 7=0
K) is unstable for displacements associated with the T}
mode, while the phonon frequency of the T, mode is again
in reasonable agreement with experiment. The longitudinal
N-point phonon frequency for bcc Zr was also calculated
(3.9 THz) and found to be in good agreement with the ex-
perimental value (4.2 THz). The large temperature (1340
K) at which the phonon frequencies were measured for bcc
Zr would normally lead to a softening of the lattice and
measured frequencies somewhat below the calculated
values. However, the T; curve for Zr indicates that the sit-
uation is more complex.
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III. DISCUSSION

The total energy calculations showing the instability of bcc
Zr for displacements corresponding to the zone-boundary T,
mode (Fig. 2) represent a significant step in understanding
the bcc-to-hcp phase transition in this class of materials.!®
In the past, the transition to the high-temperature bcc phase
was frequently explained by the nearly tautologous remark
that the entropy of the bcc phase was higher. Zener? and
Friedel?® have speculated on the source of the required ex-
cess vibrational entropy (over that of the lower temperature
phase), but there has been little progress toward a detailed
microscopic understanding of the phase transition. lizumi
has used neutron scattering to look for soft-mode behavior
of the low-lying N-point T; mode in the high-temperature
bee phase of thallium, which also exhibits a hcp-to-bec tran-
sition, but he did not detect any discernible temperature
dependence of the phonon frequency, or any conspicuous
change of the elastic scattering.2! Based on the calculations
presented above, and the available experimental data, we
may speculate a bit further than lizumi as to the nature of
the transition. For those metals possessing a low 7; branch
in a high-temperature bcc phase, we believe the situation is
similar to the case of solid helium, where the crystal struc-
ture is unstable within the harmonic approximation, but be-
cause of large displacements and attendant anharmonic ef-
fects, the lattice is stabilized. Calculations for the vibration-
al modes of the bcc phase would then require some form of
renormalized or self-consistent phonon theory.?? The in-
gredients required to implement such theories are the
anharmonic mode coupling strengths which are extractable,
in principle, from frozen phonon calculations, and will be
the subject of a future publication.
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