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The decay in time of polariton luminescence (PL) excited by picosecond laser pulses in CdS and
CdSe has been studied both experimentally and theoretically. The time dependence of the PL is
measured with a time-resolved photon counting system with subnanosecond resolution. The decays
of the PL are found to be approximately single exponentials at low (<2 K) and high (> 20 K) tem-
peratures. At intermediate temperatures the decays are better approximated by a sum of two ex-
ponentials. These experimental results are found to be well reproduced by theoretical calculations
based on a two-branch polariton model. Pekar’s additional boundary condition is adopted in calcu-
lating the time-resolved PL spectra. A comparison between theory and experiment enabled the po-
lariton bottleneck to be identified. Furthermore, it is shown that at finite temperatures the polariton
bottleneck enables a quasithermal equilibrium to be established among polaritons.

I. INTRODUCTION

Polaritons result from the coupling of light to polariza-
tion modes, such as phonons and excitons, in a medium.!
In the present paper we are only interested in exciton-
polaritons which determine the optical properties of many
semiconductors. As a result the term polariton will be un-
derstood to mean exciton-polaritons unless otherwise stat-
ed.

During the past several decades the properties of polari-
tons in various semiconductors have been studied exten-
sively by techniques such as transmissivity,? reflectivity,’
photoluminescence,* and resonant light scattering.” As a
result of these investigations a large amount of very de-
tailed and precise information has been accumulated
about polariton dispersion in semiconductors. However,
there are still several outstanding unresolved questions
concerning polaritons. One of these is the question of
which additional boundary conditions (ABC’s), out of the
many that have been proposed, is the appropriate one to
use in interpreting the experimental results.® Another un-
resolved question is the quantitative interpretation of po-
lariton emission spectra.” In 1959, based on theoretical
arguments, Toyozawa® proposed that the polariton life-
time should reach a maximum at energies close to the
transverse exciton energies (this is generally referred to as
the polariton bottleneck). So far there has been no con-
clusive demonstration of this polariton bottleneck® and
the role it plays in the relaxation of polariton has not been
elucidated.

In the present article we present the results of an experi-
mental and theoretical investigation in the dynamical
properties of polaritons in CdS and CdSe, using the time-
resolved photoluminescence technique.!” Although the
same technique had been applied by Heim and Wiesner’
about ten years ago to CdS, these authors only qualitative-
ly interpreted their results based on the theory of polari-
tons and they could not identify the polariton bottleneck
from their results. By developing a simple two-branch
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polariton model from which we can calculate both the
time-resolved and steady-state polariton emission spectra,
we are able to quantitatively explain our polariton emis-
sion spectra and furthermore to demonstrate the role of
the polariton bottleneck in the thermalization of polari-
tons.!! By so doing we have established beyond any
reasonable doubt the existence of the polariton bottleneck.

In Sec. II we will present our model calculation of the
steady-state and time-resolved polariton emission spectra.
In Sec. III we present the experimental setup for obtaining
the time-resolved emission spectra in CdS and CdSe and
also our experimental results. In Sec. IV we compare
these results with the theoretical calculations and with the
earlier results of Heim and Weisner. Finally our discus-
sions and conclusions are presented in Sec. V.

II. THEORY AND MODEL

A. Polariton dispersion

To simplify our calculations, we will make the follow-
ing assumptions. The semiconductor we are considering
has only one electric dipole active exciton band (the 1s
state) which is relevant to our calculation. The dispersion
of this exciton is isotropic. The energy of the transverse
exciton Er(k) is given by

#k?

>
m*

Et(k)=E1(0)+

(1)

where k is the crystal momentum of the exciton and m*
its effective mass. The dispersion curve of Er(k) is
shown as the dashed curve in Fig. 1. Since the transverse
exciton is dipole active, it can couple to electromagnetic
waves (photons), whose dispersion is given by

ck

where ¢ is the speed of light in vacuo and €, is the back-
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FIG. 1. Dispersion of the A exciton polariton of CdS. Solid
curve, polaritons; — — —, transverse exciton; @, longitudinal
exciton; —-—-, photon. Parameters used in this calculation are
given in Table L. '

ground dielectric constant of the medium excluding the
contribution of the exciton. The photon dispersion curve
is shown by the dotted-dashed line in Fig. 1. As a result
of the coupling of the photons and the transverse excitons,
polaritons are formed. It has been shown that under the
above assumptions the polariton dispersion can be deter-
mined from the implicit equation:®

wK 4mBET (k)
E? T B2 (k) —E?’

€(k,E)= (3)

where € is the dielectric function of the medium including
the polariton contribution, E is the polariton energy, and
B is the polarizability of the exciton. The second term on
the right-hand side of Eq. (3) is the contribution of the ex-
citon to the dielectric function. In general, for a given
value of k, Eq. (3) has two solutions for E and these are
shown as the solid curves in Fig. 1. These two solutions
which represent the two propagating modes inside the
medium are known as- the upper and lower polariton
branches. The energy of the dipole inactive longitudinal
exciton E; is given by definition as

e(k,E1)=0. 4)

From Eq. (3) we obtain therefore the longitudinal exciton
dispersion:

EL(k):gET(k)—i—z:—ﬁET(O) . (5)
b

Thus the exciton polarizability 3 can be determined exper-
imentally from the energy splitting AE;  of the longitudi-
nal and transverse exciton at k=0. In many previous
works a phenomenological damping constant T is often
introduced in Eq. (3) to account for the finite lifetime of
the exciton. We will not adopt this approach here because
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we will explicitly include in our model the decay mecha-
nisms which contribute to I'. This point will be elaborat-
ed further when we consider these decay mechanisms.

B. Additional boundary conditions (ABC’s)
and generalized transmission and reflection
coefficients of polaritons

The existence of two polariton branches means that for
a given frequency there can exist as many as two propaga-
ting waves inside the medium with the same polarization
but with different wave vectors. The existence of this ad-
ditional transmitted wave means that the Maxwell’s equa-
tions when applied to the fields at the surface of the medi-
um are insufficient for determining uniquely the transmit-
ted and reflected wave amplitudes. Under such cir-
cumstances an additional boundary condition (known as
an ABC) is needed. Extensive theoretical and experimen-
tal investigations of ABC’s have already been documented
in the literature.'> However, the situation is far from be-
ing clear. Experimental results obtained by different tech-
niques on the same sample seem to require different
ABC'’s.

In connection with this work we have performed reflec-
tivity and steady-state photoluminescence measurements
on the same CdS and CdSe samples under identical condi-
tions as the time-resolved emission studies. In interpret-
ing these reflectivity and photoluminescence spectra we
have considered these two ABC’s. The first one was pro-
posed by Pekar (to be referred to as ABC1) and has the
form!?

37

where P; represents the polarization of the exciton com-
ponents of the ith polariton branch and the sample is as-
sumed to occupy the half space Z>0. The second ABC
we have considered (ABC2) was proposed by Ting et al.'*
and can be considered almost the opposite extreme of
ABCI1:

( dP;

=0, (6)

z=0"

=0. (7N

z=0%

2dz

i

If the polariton is regarded as a wave traveling along a
string towards the surface, the ABC1 is equivalent to as-
suming the the string is tied down at the surface, while in
case of ABC2 the string is completely free at the surface.
Many generalized froms of ABC, including ABC1 and
ABC2 as limiting cases, have been proposed also.'” In
previous work® on the reflectivity of CdS it has already
been shown that ABC1 with allowance of an exciton-free
“dead layer” on the surface can account quite satisfactori-
1y for reflectivity spectra of polaritons in CdS. In a previ-
ous paper'! we have shown that ABC1 can also explain
the steady-state emission spectra of CdS more satisfactori-
ly than ABC2. As a consequence we will exclusively con-
sider only ABC1 in the present work. We expect that
many of the qualitative results we deduce from our model
calculation about the polariton relaxation are independent
of the ABC chosen.

After the ABC is chosen, it is necessary to consider its
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effect on the time-resolved polariton emission curves. The
ABC affects the time-resolved emission curves in two
respects. Firstly, the ABC affects the transmission and
reflection coefficients of the polaritons at the sample sur-
faces. Since in the experiment only the transmitted polar-
iton energy are detected, this transmission coefficient has
to be calculated in order to relate the emission curve to
the polariton population. Secondly, the polariton popula-
tion inside the medium as a function of time is deter-
mined by its rate of generation and loss from the medium.
The transmission of the polariton out of the medium and
conversion of polaritons from one branch to another after
reflection at the surface all affect the time evolution of the
polariton population and these processes are all dependent
on the ABC.

In order to calculate the transmission and reflection
coefficients of the polaritons we will introduce the follow-
ing notation. The amplitude of electric field associated
with a polariton mode will be denoted by &, &,, &, or
&1 where the subscripts 0, u, /, and L denote the field in
vacuum, the field associated with the upper polariton
branch, the lower polariton branch, and the longitudinal
branch respectively. A generalized Fresnel coefficient
x,w, where m,m’'=0, u, I, or L will be used to denote the
field amplitude ratio, is

XN =&, /& . ()

The subscript m in x,;7 represents the incident field while
the superscript m’ indicates the reflected or transmitted
field. Thus if m'=m, x, represents a reflection coeffi-
cient while x,; (m's£m) represents a transmission coeffi-
cient. From Eq. (3) we can obtain the following simple
expression for the Poynting vector for the polaritons and
for ‘the longitudinal exciton (details of the derivation are
given in the Appendix):

C2 Xu 2
Su=73— I—Xz ]|$§,,| Re(k,) , 9
S, = > X | ;| Re(k;) (10)
87 Xy ’
c? 167*Dw? .,
el &1 | Re(ky) . 11
L™ 87w Q:cz XL | [ &0 ] Relky) b

k,, k;, and k; denote the wave vector of the upper branch
polariton, lower branch polariton, and longitudinal exci-
ton, respectively. The definition of the other quantities
can be found in the Appendix. Based on these Poynting
vectors, we can define generalized reflection and transmis-
sion coefficients X, :

X =280 /2Sm | , (12)

where m,m’'=0, u, I, or L again. Physically X
represents the fraction of energy normal to the surface of
the medium which is transferred from the incident waves
(branch m) to the reflected (m’'=m) or transmitted
(m's#£m) wave at the surface. We note that classical rela-
tionships such as

X7=|xm|? (13)

are valid only when m’'=m, but in general X" - |x,’,,” |2
when m's£m.

Using ABC1 one can show that for a polariton wave j
incident at the surface at angle 6 to the normal, energy is
conserved for both the s and p polarizations:

1=X)(0)+X}(0)+X](6), s polarization (14)
1=X(6)+X}(6)+X/(0)+X/(0), p polarization . (15)

This is not true for all ABC’s and care must be exercised
in using the ABC which results in energy being lost or
gained at the surface.

C. Rate equation for polariton population

Sumi’ was the first to perform a quantitative calcula-
tion of the polariton emission curve using a rate equation
for the polariton population. However, Sumi neglected
the existence of the upper polariton branch and therefore
avoided the problem of the ABC. As a result his calculat-
ed polariton emission spectra of CdS revealed only the
lower energy peak and not the higher energy shoulder or
peak as observed in experimental spectra.

In our work we have used Sumi’s calculation as the
starting point but extended his model to include the upper
polariton branch also. As in Sumi’s model we assume, for
example, that the polariton distribution is spatially homo-
geneous in a slab of thickness L, is isotropic in momen-
tum space, and is independent of polarization. The latter
two assumptions can be justified on the condition that the
polaritons are excited well above the bottleneck region so
that by the time the polaritons relax down to the region of
interest their distributions are already randomized, both in
real space and in momentum space, by scattering with
phonons. As a result of these assumptions, the polariton
distribution function depends only on its energy E. For
simplicity we will neglect the longitudinal exciton so that
we need to solve only the rate equations for the upper and
lower branch polariton populations p, (E) and p;(E):

dp;(E) dp;(E) dp;(E) .
dt ‘| ar |, | Tar |, T (16
where
dt in, dt out

represent, respectively, the rate of generation and the rate
of loss of polaritons.

Polaritons with energy E are generated via two possible
mechanisms. Polaritons can be excited directly via exter-
nal radiation fields (with rate S;) or by scattering in of po-
laritons from other states (j) via phonons (with rate
denoted by I;_,;). The polariton loss rate will be assumed
to be the sum of these three dominant processes: (i) radia-
tive loss due to escape of polaritons from the sample sur-
face (P;), (ii) scattering into other states j due to interac-
tion of acoustic phonons (Q;_,;), and (iii) trapping by im-
purities (R;).

For the generation rate S; we will assume that the exci-
tation source is monochromatic with frequency w, =E, /#
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such that E; lies between E; and E; plus one optical
phonon energy. For such E; the upper polariton branch
is almost entirely photonlike, while the lower branch is ex-
citonlike so we obtain

S,(E)«8(E —E,)
and (17)
S;(E)=0

The polanton—phonon scattering rates Q;_,; and I;_,;
have been calculated in the same way as reported by
Sumi.” Suppose a polariton belonging to branch i with
energy E;, momentum k;, and polarization A is scattered
into another branch j with energy E;, momentum k;, and
polarization A via scattering with a longitudinal acoustic
(LA) phonon of momentum q=k;—k; and energy
#iw="%qu (where u is the phonon velocity). The rate for
this scattering process can be shown to be given by
Wk(ki,kj) With7

217

Wk k)=

5 | V@®E,E)sind(A.k)) |

X {[n(#iug)+118(E; — E; —fiuq)

+n (#iqu)d(E; —E; +fiug)} , (18)
where V(q) is the matrix element of exciton—acoustic-
phonon interaction. Similar to Sumi’s approach, we will
assume that the exciton interacts with the LA phonon via
the deformation potential interaction only. This neglect
of the piezoelectric exciton-phonon interaction and of the
interaction with the transverse acoustic (TA) phonon
greatly simplifies the calculation but, unfortunately, at the
same time, it makes the calculation incapable of reproduc-
ing detailed features in the polariton population which are
necessary for understanding the resonant Brillouin spec-
tra.> However, this approximation has been found to be
adequate in reproducing the experimental steady-state po-
lariton luminescence spectra. The definition of the other
quantities in Eq. (18) are as follows: n is the occupation
number for the acoustic phonon, 0%, k;) is the angle be-
tween k; and polarization A, and <I>(E,,E )is the overlap
in the exciton wave functions of polariton branches i and
J. ®(E;,E;) can be expressed in terms of the coefficients
C i introduced by Hopfield.'® For example for i =/ and

J
=u we have

D(ELE,)=[Cp(ENT Cpu(E,)+[Cia(EDI*Cu(E,) ,
(19)

and with the definition of W, (k;, j) the generation rates

I;_,; and decay rates Q;_,; can be expressed as

I_(E)= o [ d*k; Wik, K )p,(E)) (20)
and

Qi (E; [ @*k; Wik, k) p,(E)) , (21)

2)3

where V, is the volume of the crystal.
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The polariton trapping rate R; by defects and impuri-
ties is also calculated in the same way as Sumi:’

R,(E;)=R |C,(E)|?, 22)

where R is a parameter assumed to be energy independent

‘and represents the exciton trapping rate.

Finally our calculation of the polariton radiative rate P;
differs from Sumi’s’ since we have taken into account the
existence of the upper branch and the ABC. To calculate
P; we utilized the generalized coefficients X,; defined in
Eq. (12) and in the Appendix. Since X/(w,8) represents
the fraction of the incident energy contained in polariton
branch i, of frequency w and incident at the surface at an-
gle 6, that is reflected back into the same branch.
1— X{(w,0) represents the fraction of energy lost (either as
a result of transmission or of reflection into the other
branches). Thus for a uniform distribution of polaritons
belonging to branch i in a slab of thickness L, the radia-
tive loss rate P; can be expressed as

Ve E;) pmr2 .
PAE)=~% fo sinf cosO[ 1 — { X}(;,0)),,1d0 ,

(23)

where (X, ,-"(w,-,e) ).y is the coefficient X, ! averaged over the
s and p polarizations, V, is the polariton group velocity
defined by

1 dE;

24
ﬁdk’ @4

V(E;)=

and finally the factor of 2 accounts for the fact that only
polaritons traveling towards the surface will escape. In
our model we have neglected the polaritons that travel
into the bulk of the sample.

D. Solutions of the rate equations

For the case of continuous-wave excitation, the polari-
ton rate equation can be solved readily as
S{E)+1; _,(E)+1; 4(E)
P(E)+Q; . ,(E)+Q; (E)+R;(E) ’

i=Lu (25)

pi(E)=

and from the calculated p; the luminescence spectra mea-
sured outside the sample can be computed. Results ob-
tained this way for different semiconductors both as a
function of temperature and impurity trapping rate have
already been presented elsewhere,!! so they will not be re-
peated here. Instead we will concentrate on the time-
dependent solutions to the rate equation.

For the time-dependent solutions we impose the initial
boundary conditions that the polaritons are excited at
t=0 with a monoenergetic distribution, i.e.,

pUE,1)=pod(E —E;)8(1) . / (26)

Although these boundary conditions violate the uncertain-
ty principle, this is not significant since we are not in-
terested in solutions of p near E; or very close to t=0.
Figure 2 shows the results of numerical solutions of
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FIG. 2. The lower branch polariton population plotted as functions of time and energy obtained by numerical solution of the rate
equation. The coordinate axes are, respectively, as follows: x, energy (cm™!); y, time (nsec); z, population (arbitrary units). The four
plots correspond to these four temperatures: (a) 0 K, (b) 1.6 K, (c) 4 K, and (d) 25 K.

pi(E,t) at several different temperatures. The parameters
used in the calculation of Fig. 2 are listed in Table I and
have been chosen to represent those of the 4 exciton po-
lariton in CdS. In Fig. 3 the results in Fig. 2 have been
replotted on a semilog scale with the peak intensity of all
the curves normalized. The purpose of this figure is to
show more clearly the time dependence of the lower

branch population for comparison with experiment. In
Ref. 11 we have already found that the upper branch pop-
ulation p,(E,t) is insignificant when compared with the
lower branch population so the upper branch population
is not shown. In Fig. 4 the time dependence of p;(E,T) is
plotted on both linear and semilog scales for two different
values of impurity trapping rate R at 6 K.

FIG. 3. Same curves as in Fig. 2 except the z axis is now logarithmic and the peaks of all the curves have been normalized.
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FIG. 4. Plots of polariton population as functions of energy and time showing the effects of impurity trapping rate. The x and y
axes are identical to those in Figs. 2 and 3. The z axis in (a) and (b) is linear but logarithmic in (c) and (d). The trapping rate R is
equal to 3 10% sec™! in (a) and (b) and equal to 9X 10® sec™! in (c) and (d). The sample temperature is assumed to be 6 K.

III. EXPERIMENTAL SETUP AND RESULTS

Time-resolved polariton luminescence (TRPL) spectra
of CdS and CdSe samples at liquid-He temperature were
obtained with a delayed-coincidence photon-counting sys-
tem in combination with a mode-locked Ar™ or dye laser
as the excitation source. Figure 5 is a schematic represen-
tation showing the setup. The apparatus is basically simi-
lar to the one used by Wiesner and Heim, except our time
resolution is better by about a factor of 2. For CdS the
4578-A line of the mode-locked Art laser was used in the
excitation source, while for CdSe the output of a synchro-
nously pumped DCM dye layer was used. Details of the

TABLE 1. Parameters used in the calculation of PL spectra
of CdS.

Transverse exciton energy (Er) 20589.5 cm—!?
Longitudinal exciton energy (Er) 20605.0 cm~!2
Background dielectric constant (e,) 9.1°
Exciton effective mass (m*) 0.94m,°
Longitudinal acoustic phonon
velocity (u)

Density 4.8 g/cm*°
Exciton deformation potential 2.5 eV°
Thickness of sample (L) 1 um
Angle of observation outside

the crystal (0) 35°

*Determined from experimental reflectivity and steady-state PL
spectra.

®Reference 12.

“Reference 7.

4.4x%10° cm/sec®

equipment have already been presented elsewhere so will
not be elaborated on here.!’

The samples were selected by first examining the PL
spectra of several CdS and CdSe samples obtained from
various sources. Only samples showing relatively strong
PL compared to bound-exciton emission peaks are chosen
for TRPL study. In the case of CdS about 4—5 samples
satisfy this requirement. However, for CdSe most sam-
ples show stronger bound-exciton background. A few
samples were found to be inhomogeneous with regard to
the strength of the bound-exciton emission peaks. One
end of a CdSe sample from the Wright-Patterson Avionic
Laboratories was found to have the most prominent PL
compared to the bound-exciton emission. Also the loca-
tion of the bound-exciton and PL peaks in CdSe shows

Actively Mode-locked Argon Laser < 200 psec

Mode~ N
locker

sample < <10 psec
Liquid
He

Anplifier

Dye Laser

Dewar
Inverter

Photo-
diode

+ Photomultiplier
be

Spectrometer

Microprocessor PHA start

i 31

FIG. 5. Schematic representation of the delayed-coincidence
photon-counting system. The notations are as follows: CFD,
constant fraction discriminator; PHA, pulse-height analyzer;
TPHC, time—to—pulse-height converter. :




31 -EXCITON-POLARITON BOTTLENECK AND THE . . .

variation from sample to sample in a way that is still not
understood.

The measured time-integrated PL spectra in one of our
CdS samples and the CdSe sample mentioned above are
shown in Figs. 6(a) and 7(a), respectively. A typical
TRPL spectra (solid curve) obtained from CdS at ~6 K is
shown in Fig. 8(a). For comparison the laser pulse mea-
sured with the same system is shown as the dashed line.
In Fig. 8(b) these two curves have been plotted on a semi-
log scale after subtraction of a constant background
denoted by B. .

To determine the polariton lifetime we have convoluted
the laser pulse curve in Fig. 8(b) (regarded as the instru-
ment response curve) with an exponential function of the
form exp(— t/7), where the polariton lifetime is adjusted
until the convolution curves fits the experimental PL de-
cay curve within noise level. For low temperature (T <2
K) the PL decay curves can be fitted satisfactorily by a
single exponential decay. However, at higher tempera-
tures, such as T ~6 K, we found marked discrepancy be-
tween the convoluted curve and the experimental curve.
This fact was noted also by Wiesner and Heim® but they
have nevertheless proceeded to extract a single decay time
from the experimental curves. In such cases we have in-
stead convoluted the instrumental response with a sum of
two exponentials:

2
f)=3 aexp(—t/7;) .

i=1

(27)
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FIG. 6. Summary of the experimental results for CdS at 6 K.
(a) Time-integrated luminescence intensity for both Elc and
E||c. (b) The fast (7;) and slow (7;) decay times determined
from the TRPL spectra as described in the text. The circles
represent the fractional amplitude of the slow decay component.
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FIG. 7. Summary of the corresponding results in CdSe. No-
tations are same as in Fig. 6.
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FIG. 8. Typical experimental TRPL spectra plotted on (a)
linear scales or in (b) semilog scales after subtraction of a con-
stant background B. The dashed curves in both cases are the in-
strument response. '
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FIG. 9. TRPL spectra of CdS obtained at 6 K for three po-
lariton emission frequencies: (a) and (d), 20581 cm™!; (b) and
(e), 20583 cm™}; (c) and (f), 20610 cm~!. The dashed curves are
fits to the experimental curves (solid curves) by convoluting the
instrument response with a sum of two exponential decays. The
resultant fast and slow decay times and the fractional amplitude
of the slow decay component are displayed in Fig. 6(b).

With a sum of two exponentials we can fit satisfactorily
the experimental PL decay curves in all cases. Figure 9
shows some typical two exponential fits (dashed curves) to
the experimental spectra (solid curves) for CdS, and Fig.
10 shows the corresponding spectra for CdSe. The decay
times 71,7;, and the relative weight of the 7; (slow) com-
ponent as measured by «;7/(a;71+a,7m,) are shown in
Figs. 6(b) and 7(b) for CdS and CdSe, respectively. We
have therefore concluded that our results in CdS are basi-
cally similar to those observed by Wiesner and Heim with
the exception that their CdS sample has a longer polariton
lifetime and that we have analyzed our time decays in
terms of two exponential decay times.

IV. COMPARISON BETWEEN THEORY AND
) EXPERIMENT

In this section we will try to interpret both our experi-
mental TRPL results and those of Wiesner and Heim® in

Imax = B

imax -8
10

COUNTS PER CHANNEL

lmax"8
100

‘max B [}
1000 170 290 410

CHANNEL NUMBER (4Opsec/channel)

FIG. 10. TRPL spectra of CdSe obtained at 6 K for three po-
lariton emission frequencies: (a) and (d), 14704 cm~!; (b) and
(e), 14709.5 cm~%; (c) and (f), 14722 cm~!. The corresponding
results obtained by analyzing these decay curves with two ex-
ponential decays are summarized in Fig. 7(b).
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terms of our theoretical results. Since the experimental
results are strongly dependent on temperature we will
divide them roughly into three temperature ranges as
Wiesner and Heim® have also done: (a) low temperature,
T <2 K; (b) intermediate temperatures, 4 <T <15 K; and
(c) high temperatures, 7> 20 K.

At low temperatures Weisner and Heim® have noted
that the PL decays are exponential. Based on Toyozawa’s
theory,? they expected the decay time to show a maximum
which would demonstrate conclusively the existence of the
polariton bottleneck. But instead they found that 7
reached a plateau and did not decrease below the
bottleneck as expected. We found exactly the same
behavior in our theory. In Fig. 3(a) we note that the decay
of the theoretical TRPL curves is exponential. Further-
more, the slope of the decay («1/7) gets progressively
less steep as the polariton frequency decreases. However,
for polariton frequencies below ~20590 cm~! the decay
rate remains more or less constant as observed experimen-
tally. This frequency dependence of 7 is shown more
clearly in Fig. 11(a). At first these results seem to contra-
dict the Toyozawa theory.® But if we plot the inverse of
the total decay rate of the polariton versus frequency [as
shown by the solid line in Fig. 11(a)] we find a well-
defined maximum as predicted by Toyozawa.® The
difference between the two results can be explained by a
correct interpretation of the TRPL curves. Suppose po-
laritons are scattered out of a state at the rate 4 and
created at the rate B. The time dependence of the polari-
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FIG. 11. The slow (triangles) and fast (crosses) decay time
constants determined from the theoretical decay curves in Fig. 3
at three different temperatures: (a) 0 K, (b) 6 K (R equal to
8 10% sec™! in this case), and (c) 25 K. In all three cases the
solid curves represent the reciprocal of the polariton total decay
rate.
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ton population p(t) is then given by

(e Bt_e—4ty (28)

p(t) 1B
Note that p is symmetric with respect to 4 and B. At
long times the decay rate of p is dominated by the smaller
of the two rates. For polaritons above the bottleneck, the
decay rates of the polaritons are smaller than the filling
rates so the measured decay times are equal to the inverse
decay rate as shown in Fig. 11(a). But for polaritons
below the bottleneck the opposite is true and the measured
decay times are determined by the filling rate. As a re-
sult, the decay times of these polaritons are given by the
lifetime of the polaritons at the bottleneck. From Fig.
11(a) we locate the polariton bottleneck in CdS at 20588
cm~!at0K.

At intermediate temperature we found the experimental
TRPL decay curves are no longer fitted well by single ex-
ponential decays. Instead they are better explained by a
sum of two exponential decays. Examination of Figs. 3(b)
and 3(c) shows that the theoretical TRPL are also better
approximated by two exponential decays. This is particu-
larly evident at T=4 K [Fig. 3(c)].

In Fig. 11(b) we plot the frequency dependence of the
two decay times determined from the theoretical TRPL
curves at 6 K. Note that the exciton trapping rate R has
been increased in Fig. 11(b) to allow direct comparison
with the experimental results in Fig. 6(b). We note that
the slow decay time (denoted by ) is approximately fre-
quency independent and is well reproduced by the theoret-
ical result. The fast decay time 7, depends on frequency,
and this frequency dependence is also reproduced by our
theory, although the calculated times are larger approxi-
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FIG. 12. A series of polariton emission spectra in CdS calcu-
lated with the model presented in the text, assuming 7=10 K
for various time delays after excitation by a delta-function pulse.

mately by a factor of 2. By examining the theoretical re-
sults we arrive at this interpretation of the two decay
times. Initially polaritons are excited by the picosecond
laser pulse at energies well above Er. These polaritons
scatter into lower energy states with the fast decay time
T,. As these higher energy polaritons relax, they pile up
at the bottleneck where the decay rate is smallest. These
polaritons in the bottleneck region can scatter back up to
higher energy states by absorption of phonons. This
“feedback” or up scattering of polaritons from the
bottleneck slows the decay of the higher energy polaritons.
This explains why the fast decay times 7, are different
from the inverse decay rates shown in Fig. 11(b) by the
solid curve.

If the lifetime of the polaritons at the bottleneck is long
compared to the phonon scattering times, a quasithermal
equilibrium among polaritons will be attained. When this
occurs all the polaritons, independent of energy, will de-
cay with the same lifetime, which is that of the polaritons
at the bottleneck. This accounts for the frequency-
independent slow decay time 7.

This picture of thermalization among polaritons ac-
counts also for the temperature dependence of the polari-
ton decay. At low temperatures phonon-absorption pro-
cesses are slow so quasithermal equilibrium is not
achieved within the polariton lifetime. At intermediate
temperatures these phonon processes are fast compared to
the polariton lifetime at the bottleneck so quasithermal
equilibrium are achieved typically after ~1 nsec. At still
higher temperatures quasithermal equilibrium is reached
almost instantaneously so the fast decay time 7, cannot be
measured, and only the frequency-independent decay time
71 is observed. This achievement of quasithermal equili-
brium by polaritons at 30 K was also noted by Wiesner
and Heim.’

Finally we observed experimentally essentially the same
behavior in CdSe as in CdS, showing that the thermaliza-
tion procedures described above is applicable to polaritons
in general.

V. DISCUSSIONS AND CONCLUSIONS

Once we are convinced of the correctness of our model
in explaining the experimental PL results, we can utilize
this model to examine other polariton properties. In par-
ticular we will use our model to determine the time for
the polaritons to reach quasiequilibrium (equilibration
time), the effect of impurity trapping on the relaxing pro-
cess, and the linewidth in Brillouin scattering.

To determine the equilibration time we will plot the PL
spectra as a function of time. This is accomplished in
Fig. 12 for T=10 K. These spectra show clearly that
within the first nanosecond polaritons above the
bottleneck at ~20 588 cm™! builds up due to decay of the
higher energy polaritons. In the next 2—3 nsec polaritons
start to pile up around the bottleneck at ~20588 cm™1.
About 4—5 nsec after excitation the polariton distribution
remains essentially unchanged in shape, indicating that a
quasithermal equilibrium has been reached. Beyond ~5
nsec the entire distribution decay with the lifetime of the
bottleneck. Thus the equilibration time for the polariton
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is ~4—5 nsec at 10 K, while the lifetime of polaritons at
the bottleneck is ~2 nsec.

The effect of impurity trapping on the thermalization
process can be easily visualized from the PL spectra in
Fig. 12. If the polariton lifetime is reduced by trapping to
say much less than the equilibration time, the PL spectra
will never attain the quasithermal equilibrium line shape.
In the nonthermalized line shape there are proportionally
larger populations at higher energies. These theoretical
spectra can be compared to experimental PL spectra ob-
tained by Travnikov and Krivolapchuk'® in CdS samples
of varying qualities. We note that the PL spectra in Fig.
1 of Ref. 18 are qualitatively reproduced by the theoreti-
cal spectra in Fig. 12 at various times. Thus our model
provides a quantitative demonstration of the theory pro-
posed in Ref. 18.

In principle our model can be used to calculate the
linewidth of Brillouin peaks observed in resonant Bril-
louin scattering of polaritons.*!° However, we do not ex-
pect to find quantitative agreement with experimental re-
sults for the following reasons. In our model we have
neglected the piezoelectric interaction between excitons
and phonons and also the anisotropic exciton dispersion in
CdS. The damping of the polariton includes contributions
from elastic scatterings. Since these elastic scatterings do
not alter the polariton distribution in energy, they have
not been included in our calculation. Despite the many
simplifying assumptions in our model; we can still use it
to estimate the contribution of elastic and inelastic
scattering to the Brillouin linewidth in CdS. For 7=0 K
we obtain from Fig. 11(a) a Brillouin linewidth y=2/7 of
~0.05 cm~! at the frequency of 20605 cm~!. This value
is smaller than the experimental value of ~0.3 cm™!
(Ref. 19) by a factor of 6.

We have found the theoretical fast decay time 7, to be
larger than our experimental value by a factor of 2, so if
we have included also the piezoelectric exciton-phonon in-
teraction we should obtain a Brillouin linewidth of ~0.1
cm~! due to inelastic scattering of polaritons. This esti-
mate suggests that the elastic scattering contribution to
the ei(perimental Brillouin linewidth is 0.2 cm~! at 20 605
cm™ .

Finally we like to point out the application of our
model to interpret other experimental results on polari-
tons. Using our model we have calculated theoretical re-
flectivity and transmission spectra in CdS.2° Our results
differ little from previous calculations because these spec-
tra are more sensitive to the ABC than to the polariton
population. However, in explaining the anomalous wave
interference spectra in thin CuCl spectra, Cho?! has pro-
posed a phenomenological, frequency-dependent polariton
damping of the form

0.02 meV, E <Eq

T(E)= (29)
0.02+0.04E —E1)/AErr, E>Er’

This form of T" can be easily explained in our model by
the phonon scattering rate of the lower branch polaritons.

In conclusion we have developed a two-branch polari-
ton model using the Pekar additional boundary condition.
Using this model we have been able to quantitatively or
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qualitatively account for these polariton properties in
CdS: the steady-state luminescence spectra, the frequency
and temperature dependence of the luminescence decay
time, the reflection and transmission spectra, and the
linewidth of resonant Brillouin scattering. With the help
of this model we have demonstrated how polaritons can
attain quasithermal equilibrium and have elucidated the
role of the polariton bottleneck in the thermalization pro-
cess.
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APPENDIX: POYNTING VECTORS FOR EXCITON
POLARITONS

We will obtain expressions for the Poynting vectors as-
sociated with the polaritons and the longitudinal exciton
using a classical model described by Tait.?? In this model
we will assume an isotropic medium with a single dipole
resonance. The polarization of the medium P is decom-
posed into the sum of a background term P, and a term
P, due to the exciton. The equation of motion neglecting

damping for the exciton polarization is written
phenomenologically as
Pex+w%,Pex—Dv2Pex=—N:l E, (A1)

where w, is the resonance frequency, N is the density of
the dipoles, and the term DV?P,, is introduced to allow
for coupling between the dipoles. One can derive the
dielectric function of this spatially dispersive medium as

Q, /4T

' , (A2)
w3+ Dk?—w?—iol

e(k,0)=€p+

where Q; =47Ne?/m. Equation (A2) is basically the
same as Eq. (3) with D=wy/m, #fiwo=Er(0), and
47BE%(0) ﬁzﬂ /(41) except for the absence of the term
proportional to k*in Eq. (A2).

Using the Maxwell’s equations, one can show that the
Poynting theorem is satisfied for this spatially dispersive
medium if one defines a Poynting vector by

=—(ExH)+Sy , (A3)
4ar
where S, is the mechanical part of the energy flow given
by

Sy =— 4gf[P>< VXP)+P(V-P)] . (A%)
P
For transverse plane waves E;(x,t)=& e’ kit ond

i(k;x—ot)

H;(x, t)——-k X & e »

where the index i =u,/ denotes the upper and lower polar-
iton branches, we obtain the Poynting vectors:
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s, = |1 X, | &, | Re(k,) (A5)
= — e ’ .
7 8mw X “ “
_ < X1 2
Sl_ 87 1— Xu ] | gl | Re(k,) s (A6)

where 47X, =e(k (E,),E,)—¢€, and similarly for X;.
For the longitudinal exciton where e(k(wp),wp)=0,
there are no magnetic fields and the term involving VX P

in Eq. (A3) vanishes. The Poynting vector is then given
by

c? (41)*Dow?

— 2 2
%o | 0o X} | &y |? |Re(ky) (A7)

Sy

where 47Xy =€(k(Ey),E1L)—€,=—e€,. Expression (A7)
provides the energy flow rate for the longitudinal com-
ponent which is entirely mechanical (since it is propor-
tional to D) as expected.
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