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Localization and energy transfer of quasi-two-dimensional excitons
in GaAs-A1As quantum-well heterostructures
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A theory of energy transfer of the quasi-two-dimensional excitons in GaAs-A1As quantum-well
heterostructures is developed, and the recently observed slow and nonexponential energy relaxation
of excitons is explained quantitatively in terms of the one-phonon-assisted transfer of localized exci-
tons among islandlike structures within a quantum well. The nonexponential behavior of energy re-
laxation is clarified as a general feature to be observed in the low-energy tail of the density of states.
The dependence of the energy relaxation rate on the quantum-well thickness is discussed along with
the same dependence of the absorption bandwidth. The correlation between the energy relaxation
rate and the absorption bandwidth is explained qualitatively on the basis of the scaling property of
the rate equation for the exciton distribution function.

I. INTRODUCTION

Recently, semiconductor quantum-well (QW) hetero-
structures have been extensively investigated because of
interest in their fundamental physical properties as well as
in their potential device applications. Optical techniques
such as time-resolved photoluminescence' and resonant
Raman and Rayleigh scattering, are quite promising to
elucidate the salient features of the quasi-two-dimensional
excitons in QW structures. Recently, Masumoto et al.
studied the time-resolved photolumineseence of 1s exei-
tons (n= 1, e-hh) in GaAs-A1As multiple-quantum-well
structures and f'ound the anomalously slow relaxation of
the average energy of luminescence, which shows a nonex-
ponential decay for about several hundred picoseconds
after photoexcitation. In addition, the decreasing rate of
the average energy of luminescence is too small to be ac-
counted for in terms of the kinetic-energy relaxation on
the dispersion curve of the quasi-two-dimensional exciton
accompanied by emission of acoustic phonons. In the ex-
periments of Masumoto et ah. the GaAs layers are selec-
tively excited by choosing the laser energy suitably and
ensuring that the AlAs barrier layers are sufficiently thick
to rule out the possibility of interlayer migration of exci-
tons. On the other hand, it is we11 known that the topo-
logical disorder of the interface produces sizable optical
effects. From the linewidth analysis of the luminescence
and excitation spectra, and from transmission electron mi-
croscopy, an islandlike structure of the QW interface
measuring one monolayer high and about 300 A laterally
was proposed. On the basis of this model, a theory is
developed to explain the experimental results of photo-
luminescence in terms of the intralayer migration of local-
ized excitons among islandlike structures with different
well thicknesses.

After photoexcitation, the generated electron-hole pairs
quickly lose their energy and form excitons with emission
of a number of phonons. At the next stage, the kinetic-
energy relaxation on the dispersion curve of the quasi-

two-dimensional exciton takes place with a relaxation rate
that is 1 order of magnitude faster than the observed rate.
After these processes are completed, the anomalously slow
energy relaxation begins showing nonexponential
behavior. In this stage the lowest 1s exciton in the GaAs
layer can be considered to be localized at some islandlike
structure since the Bohr radius of the quasi-two-
dimensional exciton in the sample of Ref. 3 is estimated
to be about 100 A according to recent theories' ' and is
less than the average lateral size of the islandlike struc-
tures in a QW. Furthermore, the fluctuation of the well
thickness of one monolayer produces the fluctuation of
the exciton energy of about several meV. This amount of
energy fluctuation is sufficient to localize the excitons at
the energetically local minimum sites. The 1ocalized exei-
tons will then migrate among the local minimum sites in
search of the lower-energy sites with emission of acoustic
phonons. This intralayer migration of localized exeitons
is the key idea for explaining the anomalously slow energy
relaxation. In fact, our theory explains the salient features
of the experimental results quantitatively or qualitatively.

The paper is organized as follows. The two-
dimensional aspects of the localized excitons and their in-
teraction with acoustic phonons are essentially new and
have not yet been investigated fully. In Sec. II the in-
teraction Hamiltonian of the quasi-two-dimensional exci-
ton with the acoustic phonons is derived microscopical1y
for the first time. In Sec. III the kinetic-energy relaxation
rate of the quasi-two-dimensional excitons is estimated on
the basis of the result obtained in Sec. II and is shown to
be 1 order of magnitude larger than the observed value.
Thus the kinetic-energy relaxation is ruled out as the can-
didate which can explain the slow energy relaxation. In
Sec. IV the one-phonon-assisted exciton transfer between
localized sites is formulated from the microscopic point of
view, making use of the perturbation theory with respect
to the exciton-phonon interaction Hamiltonian and the in-
tersite transfer Hamiltonian. In Sec. V the matrix element
of the intersite transfer Hamiltonian of the localized exci-
tons is calculated microscopically. In Sec. VI the exciton
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citon transfer rate is estimated explicitly for both the
deformation-potential coupling and the piezoelectric cou-
pling, and for various cases of the localization form and
the type of intersite transfer. In Sec. VII the rate equation
for the distribution function of localized excitons is de-
rived, neglecting the interlayer transfer, of excitons and
thus reducing the problem to that of a single QW. By in-
tegrating the rate equation numerically, the average ener-

gy of luminescence is calculated and compared with the
experimental data. From the comparison between theory
and experiment the constant of the exciton transfer in-
tegral is determined and found to be in good agreement
with the theoretically estimated value. The experimental-
ly observed nonexponential behavior of energy relaxation
is clarified theoretically from a general point of view. Fi-
nally, in Sec. VIII the dependence of the energy relaxation
rate on the QW thickness is discussed on the basis of the
scaling property of the rate equation, and the observed
correlation between the energy relaxation rate and the ab-
sorption bandwidth is explained in a qualitative way.

II. INTERACTION OF QUASI- TWO-DIMENSIONAL
EXCITONS WITH ACOUSTIC PHONONS

In this section the interaction Hamiltonian of the
quasi-two-dimensional exciton with acoustic phonons is
derived for both the deformation-potential and piezoelec-
tric coupling. In the case of GaAs-A1As QW structures,
the electron and hole of the excitons are considered to be
well confined within a QW since the band-gap discon-
tinuity is quite large. On the other hand, the lattice prop-
erties of GaAs and A1As, for example, the lattice constant
and elastic moduli, are in close proximity. ' Thus the
acoustic phonons which interact with the quasi-two-
dimensional exciton in a GaAs layer can be considered to
have three-dimensional character. One can derive the in-
teraction Hamiltonian of the quasi-two-dimensional exci-
ton with acoustic phonons starting from the three-
dimensional exciton-phonon interaction Hamiltonian.

R=(m, r, +m„rh )/(m, +m„), (2.2)

with the electron (hole) effective mass m, (m/, ). The en-
velope function for the A,th electron-hole internal motion
is denoted by F/. In the following any position vector or
wave vector will be decomposed into components parallel
and perpendicular to the QW interface as r=(r~~, z) or
k=( k~~, k, ).. Then, rewriting the operators in the Wannier

representation with those in the Bloch representation by a
well-known relation

ik r„
avn = 8 a~g,

N
(2.3)

where X is the number of unit cells related to L by¹o——L, and transforming the discrete sum over the lat-
tice sites into a spatial integral by

(2.4)

one obtains

I

~ K(~&=

nfl�

«k'K~~+k k „a.ka k'
I
o&

"ll "tl "ll
(2.5)

with

Let us now consider the quasi-two-dimensional exciton
state with a total wave vector Kll and represent it as

F/. (re(( r—
h(( ze z/ )ac au „ I

0&
o 'K.

ll Rll

re r

(2.1)

where Uo and L are, respectively, the volume of the unit
cell and the linear dimension of the quantization volume,
a ", ( a, ) the creation (annihilation) operator of the ath-
(conduction- or valence-) band electron in the Wannier
representation,

I
0& the crystal ground state, and R the

coordinate of the exciton center of mass defined by

fl(k, k';K~~)= d r~~ f dz, f dzhFl(r~~, z„zk) exp[i(a, K~~
—

k~~) r~~ ik,z, +—ik,'zk],I 2

where a, and a/, are defined by

a, =m, /( m, +m/, ) and a/, ——m/, /(me +m/, ) .

The three-dimensional electron-phonon ( e-ph) interaction for the deformation-potential (DF) coupling is written as'

(2.6)

(2.7)

1/2
DFH, h

——g (Dcac, k+qack+Duau, k~qauk)( bq +b —q )
2pu V

(2.8)

g [ c(q) c,k+q ck+ u('q)au, k+q uk)(bq+ —q)
k, q

(2.9)

where D, (D„),p, and u are the deformation potential for the conduction (valence) band, the mass density, and the sound
velocity of the longitudinal-acoustic (LA-) phonon mode, respectively, and the coupling functions =, and:-„are intro-
duced by (2.9) for later use. The interaction Hamiltonian of the quasi-two-dimensional exciton with acoustic phonons
for the deformation-potential coupling is obtained by calculating the matrix element of H, ~q between two exciton states

I

A,, K~~ & and
I

A., K~~ &, where for simplicity, the change of the electron-hole internal motion is not taken into account.
The result is given as
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(A, , KjI IHe-Pa I
~ KII&= g g:-,(1—k)fh(l, l';KjI)~h(k k'KII)5I

g

—g g:-,(k' —1')fh (1,1',KjI)fh ktk ~KII 5j I'—,
»'5 h —k', » 5k I

I I II II
'

ll II II' ll

Substituting expression (2.6) and converting the discrete sum over k into an integral by
r 3

(2.10)

(2.11)

one can reduce the first term as

g:-,(KII KII'q f d'riI f dz' f dzh f d rII f dz f dzhF& riI'z''zh Fh rtI'z 'z

(2.12)

&& 5' '(rII —rII)5(zh —zh )5(z, —z,
'

) exp[iq, z, —iah (KII —KjI ) rII]

= g:-,(Kj —KII,q, ) f d rII f dz, f dzh IFh(rII, z„zh)
I exp[iq, z, —iah(KII —KjI)'1II],

where the arguments of:-, are written explicitly; the first argument is the component of the phonon wave vector parallel
to the QW interface and the second is the perpendicular component. Similarly the second term in (2.10) can be reduced
as

—g:-„(KiI KII,q, ) f d'rII f dz, f dzh IFh(rII, z, zh) I'exp[iq. zh+i~ (KII KiI)'II] . (2.13)

Thus the quasi-two-dimensional exciton-phonon interaction Hamiltonian H„ph for the deformation-potential cou-
pling is given by

H h= „y [ (KjI KII q )Hh( h (KII KII ) q )
I

II, K.ll, q

—:-„(KII—KII,q, )HX(a, (KII —KII),q, )] ~ KiI & (A, , KII I (b»» +b»», ),
~II —

KII
—q.

(2.14)

with

Hh(@II",Q, )= f d rII f dz, f dzh IFX(rII z zh)
I

exp«Q. z, +iQII'rII) (2.15)

where the symmetry Fh(rII, z„zh)=Fh(rII, zh, z, ) is supposed to hold. This is a quite general expression for the
deformation-potential coupling. To obtain a more explicit expression, the envelope function Fh(rII, z„zh) must be speci-
fied. For the lowest (is) exciton state, a variational envelope function was assumed as"

FI,(rII,z„zh)=N„expI —[~'rII+13'(z, —z/, )']' 'I cos
STD

cos
L,

(2.16)

7TZQ

cos
Z

(2.17)

where K„ is the normalization constant and a and P are variational parameters to minimize the energy. Here the infinite
band-gap discontinuity is assumed and the envelope function is zero outside the region of

I
z,

I
(L,/2 and

I
zh

I
(L,/2.

With use of this envelope function, the function H&, (QII, Q, ) is calculated as
L /2 L /2

H&, (@II,Q, )= f d rII f dz, f dzh exp(iQ, z, +igII rII) IF&,(rII,z„zh)
I

z z

L /2 L /2
=X„f d "II z izdz, z i2dzh expIiQ, z, +iQII II

2[a rII+~ ( e L,

By making the variables nondimensional, this can be reduced to
2 2XzLz 2

1/2 1/2
2 2 2 2 1/2 2 2d rII dz, dzhe xpiIQ, Lz, +sg IIrII/a —2[rII+p L, (z, —z„) ] I cos (~z, )cos (~zh) . (2.18)

Introducing the two-dimensional polar coordinate for rll and making use of the decomposition formula'

e"'"e= g J„(z)exp[in (6I+ m /2)], (2.19)
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one can further reduce (2.18) to

2'„L, 1/2 1/2f dr rJO(br) f dz, f dzh expIiQ, L,z, 2—[r +p L, (z, —zh) ]' I cos (mz, )cos (rrzh), (2.20)

where b =
I Q~~ I

/a and Jo is the zeroth-order Bessel function. By use of the formula'

a I+(122+.b2)1/2f dxxJO(bx)exp[ —a(x +y )'/ ]=
0 (a 2+b 2)3/2 exp[ —y(a +b )'/ ],

the integral over r in (2.20) can be performed as

4~%„L, 1/2
dz, f dzh exp[1Q,L,'z, (4+—b ) pLz Iz, —z

a2(4+ b 2 )3/2 —1/2 —1/2

(2.21)

&&[1+(4+b )'/ pL, I
z, —zh I

]cos (r/z, ) cos (mzh)

4 XI
G((4+b )'/ PL„Q,L,), (2.22)

a2(4+ b 2)3/2

where the function G (y, 5) is defined by
1/2 1/2

G(y, 5)= f dz, f dzh exp(i5z —y Iz —zh
I
)(1+y Iz zh

I
) cos'(~z, )cos'(1rzh),

and the explicit expression of G is given in the Appendix. Consequently, one obtains

4 XL
,(Q„,Q, )=. .. , G(( + )' P „Q, ,),a2(4+ b 2)3/2

(2.23)

(2.24)

with b= Q„I /a.
Let us now determine the normalization constant N„ in (2.16). The quasi-two-dimensional exciton state given by (2.1)

is normalized as

2
Up 2Fh(r,

~~

—rh //, ze, zh )
IL 2

2d r, d rh IFh(r,
~~

rh~~, z„zh) I—
L 2 (2.25)

where the discrete sum is converted into an integral by (2.4). Substituting the variational envelope function (2.16), it is
calculated as

L /2 L /2
1=N„ f d r(( f / dz, f / dzh expI —2[a r((+p (z, zh) ]' I cos — cos

2 2

L /2 L /2
=2mN„ f dr r f dz, f dzh expt 2[a r +—p (z, —zh) ]'

J cos cos
0 L„ L,

(2.26)

By use of the partial integration, the r integration can be performed as

f dr r exp[ 2(a r +6 )'/ ]=e ~~ (1+2—
I
b,

I
)/4a2,

where b, is independent of r. Then the normalization condition is reduced to

mlV„L, 1/2 1/21= dz, dzh (1+2pL,
I
z, —zh

I
) exp( 2pL,

I
z, —zh

I
) c—os (vrz, ) cos (~zh ),—1/2 —1/2

(2.27)

(2.28)

where the variables are made nondimensional. Let us introduce an integral I (y ) defined by
1/2 1/2 —y Iz —z~ ~I(y)= —,

' dz, dzh(1+y Iz, —zh
I

)e ' " cos (mz, )cos (mzh),—1/2 —1/2

whose explicit expression is given in the'Appendix. Finally, ' the normalization condition becomes

1 =vrN„L, I(2PL, )/a

and the normalization constant N„ is determined as

(2.29)

(2.30)
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a
L,[nI(2PL, )]

(2.31)

Summarizing all the results, the quasi-two-dimensional exciton-phonon interaction for the deformation-potential cou-
pling is obtained as

~DF (Q2D)
ex-ph 2

KII, KII, q

1 /2
A'[(K —K'„) +q, ]'

2pu V

D, G((4+ bI, ) pL„q,L, )
X [1+(bh/2)']' '

D„G((4+b, )
'~ PL„q,L, )

[1+(t /2)']'" I (2PL, )

ls, Kj) ) ( ls, K)( I
(b, +b, ),

&z
I I II qz

(2.32)

with

D,

[ 1 + (b /2)2]3/2

/

~DF (2D) l1m HDF (Q2D)
ex-ph 1m ex-ph

L ~0
"ii "ii

where a, and a), are defined in (2.7) and a and P are the variational parameters in (2.16). This expression is rather com-
plicated, and thus it is instructive to look into the expression under a few limiting situations. When the QW thickness L,
is zero, namely in the extremely two-dimensional case, H, „"phQ ' may be simplified to

1/2

[1+(4/2)']'"

&&
I

» Kj) &&» K)) I
(bK K +bK. K ) ~ (2.33)

where the component q, of the phonon wave vector is set equal to zero, the quantization volume V is replaced by the
quantization area S, and use is made of the relation

G (0,0)=2I (0)= —, (2.34)

Secondly, let us consider the three-dimensional limit where L, becomes infinite. Since in this case there is no preferential
spatial direction, q, is set equal to zero and the subscript

I I

on K is dropped. It is seen that

G(y, 0)=2I(y),
and the limiting form of (2.29) is given as

lim I(y)=3/4y .
P~ 00

Then, when the QW thickness L, is infinite, i.e., in the three-dimensional case, H,„"zh
' may be simplified to

1/2

IIDF (3D)
1 HDF (Q2D)

ex-ph = 1m ex-phI ~(x) K ~t 2pQ V

(2.35)

(2.36)

D,
X

[1+(bl /»'l' [1+(b, /2)']' I
ls, K') ( ls, K

I
(bK K+bK K ) . (2.37)

This is exactly the well-known result for the three-dimensional exciton. ' Comparing (2.33) and (2.37), it is found that
the most striking difference between the two- and three-dimensional cases consists in the power law in the second set of
large parentheses. For the long-wavelength phonons. , this difference may not be significant since the quantities in the
second sets of large parentheses of (2.33) and (2.37) are both essentially D, D„. On the other —hand, when the short-
wavelength phonons are concerned, the difference in the power law will lead to a significant difference in the optical and
transport properties.

So far, the deformation-potential coupling has been discussed exclusively. However, it is known that the contribution
from the piezoelectric coupling is not negligible in GaAs. The piezoelectric coupling arises from the longitudinal electric
field induced by the strain field associated with acoustic-phonon modes. The piezoelectric electron-phonon interaction
Hamiltonian for the zinc-blende type crystal with Td symmetry is given by'
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pz 8m.ee ~4
H, ph

——

k, q, cr

1/2

2pco q V (4qyqz+kyqxqz+kzqxqy )(uc, k+q ck+ u, k+q Uk)(bqn+b —q (2.38)

where e&&, eo, and g are the piezoelectric constant, the longitudinal dielectric constant without the piezoelectric contri-
bution, and the ath component of the phonon polarization vector, respectively, and the subscript o specifies the
longitudinal-acoustic (LA) or transverse-acoustic (TA) phonon mode. The Cartesian components in (2.38) are referred to
with respect to the cubic crystallographic axes of the zinc-blende type crystal. The derivation of the piezoelectric
exciton-phonon interaction for the quasi-two-dimensional exciton is straightforward. Repeating the same procedure as in
(2.10)—(2.1S), one obtains

PZ (Q2D) &4

~ex-ph
o ~ ~, 2pu V(

I KII —KII I +q, )

1/2

11 yq&+4 KII l[)~q~+4~(KII KII)x(KII KII)y]

G((4+ by, )
' PL„q,L, )

X
l 1+(4/2)']'"

G((4+b ) /3L, q L )

[1 + ( b /2 )
2

)
3/2 I (2/3L, )

X
I
is, KII)(ls, KII I

(b, +bt, ),
Kii —K~i, —Cf g (2.39)

where the functions G and I are the same as in (2.32), and b, and b~ are given under (2.32). In this case the factor
within the small square brackets of (2.39) gives rise to the anisotropic effect. If the extremely two-dimensional case is
considered and q, is set equal to zero, the anisotropic factor becomes g, (Kt[ —KII)„(KII—KII)», which simply implies that
the piezoelectric coupling is possible only with the TA-phonon mode having the polarization vector in the z direction.
On the other hand, in the limit L, = oo expression (2.39) exactly reproduces the well-known result' for the three-
dimensional exciton as

HPZ (3D)
1 IIPZ (Q2D) ~ &4

ex-ph = lm ex-ph
Lz ~ o') K,q, ~ GOq

1/2

2 V
(k.q, q. +kyq. q. +k.q.q, )

2pco q V

1

&1+(ah
I q I

/2a)'I' 2 z I
ls, K+q)(is, K

I
(bq +bt ) .[I+(a,

I q I
/2a) j

(2.40)

Th s, E . (2.32) for H,„"ph~ ' and Eq. (2.39) for H,„pg ' give quite general expressions of the exciton-phonon interac-
tion for the quasi-two-dimensional exciton that reduce smoothly (as L, +oo ) to those for the—three-dimensional exciton.

III. KINETIC-ENERGY RELAXATION
OF QUASI-TWO-DIMENSIONAL EXCITONS

vector Q defined by Q=(QII, Q, ). The increasing rate of
the number of phonons with wave vector (QII, Q, ) due to
phonon emission by excitons is given by

We now discuss the kinetic-energy relaxation on the
dispersion curve of the quasi-two-dimensional exciton,
adapting Conwell's argument, ' which was originally
developed for the three-dimensional case. It will be
shown that the kinetic-energy relaxation is too fast to ex-
plain the experimentally observed energy relaxation rate.
The quasi-two-dimensional exciton state with a total wave
vector KII is denoted by I KII), assuming the lowest ls
state for the electron-hole internal motion. The matrix
element of the exciton-phonon interaction derived in Sec.
II will be denoted by H,„ph(QII, Q, ) for the phonon wave

~ X I H--ph (QII, Q, ) (1+ Qn)f( KIIQ+)II
Kii

II+QII) II ~Q (3.1)

where n and f are the phonon occupation number and the
exciton distribution function, respectively, E (KII) the par-
abolic two-dimensional exciton energy, and ~Q the ener-
gy of acoustic phonon with wave vector Q. Similarly, the
decreasing rate of the number of phonons with wave vec-
tor (QII, Q, ) is given by
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ph(Qll Q )
I ngf (Kll)

II

where M is the exciton translational mass. The energy-
conservation condition leads to the condition that the
magnitude of exciton wave vector Kff must satisfy

Q 5(E (Kff ) —E(Kll +Qll ) +RcoQ) ~ (3 ~ 2)

The common argument of the 5 functions in (3.1) and
(3.2) can be written as

I Kll I
&

I
2M~Q +—

Qll I
/2

I Qll I
=&Q ~ (3.4)

E ( Kll+ Qll) —E (Kll) —iruoQ

2KII Qll+Qll M ~Q ~ (3.3)

where E~ is defined by the right-hand side. Then the to-
tal increasing rate of the number of phonons with wave
vector (Qll, Q, ) is calculated as

dXq oo M5(8 —8p)

dt fi I IIzzph(Qll Qz) I 2 fE d&ll All f d8'[(1 +ng )f (Kll+Qll) —ngf (Kll)]
ili

I Kll Qllsin8
I

(3.5)

where 8p is the angle between Kll and Qll satisfying the
energy-conservation condition and L is the linear dimen-
sion of quantization volume defined in Sec. II. In the fol-
lowing let us assume that

—P E
OO edE

Eg ~E(1—Eg/E)'"

one obtains

1/2

(3.11)

Mu/A ((
I Qll f

/2, (3.6)

where u is the sound velocity of acoustic-phonon modes
and rewrite the integral over Kll in (3.5) with that over the
energy defined by E =A'~Kll/2M. Then it is calculated as

ding
dt

2
4~ I.' M Av'~

(2ir) iit (2MP, )'
f ~--ph(Qll Q. )

f

'

d&q 4m 1.2 M
dt iil (2~)2

I Hex-ph(Qll Qz)
I

'
I Qll I

v'2M

nQf (E)]/m/
I
sin8p

I

dE[(1+nQ)f (E+ficoQ)
Q

(3.7)

'I

&&fpe
' g[(1+nQ) exp( p, ficoQ) —nQ] . (3.—12)

The average energy relaxation rate of excitons is given
by

(3.13)

with

Eg ——iit' KQ /2M =—A' Q ll
/SM .

By the inequality (3.6), one may approximate as

os p=( ~Q/ —Qll)/2 f Kll Qll I

—= —
I Qll I

/2
I Kll I

(3.&)

and one has

where X is the total number of excitons defined by

fpML%= gf(E(Kll))=
2mP, A'

The explicit expression of (3.13) is written as

(3.14)

I
sin8p

I
=(1 Eg/E~)'~— (3.9)

where E~ is defined by fi Kll/2M. Equation (3.7) is the
general expression for the increasing rate of phonon num-
bers. In the fallowing, the exciton distribution function is
assumed to follow the Boltzmann statistics, namely

with

f (E)=fp exp( —13,E), (3.10)

I3, = 1/kii T, ,

where T, is the effective temperature of excitons and fp is
some constant. In fact, the experimentally determined ex-
citon distribution functian can be described by the
Boltzmann statistics fairly well, as will be shown in Sec.
VII. This situation may be attained by frequent collisions
among excitons. Then, calculating the integral

~ I~--ph Qll Q, I'

&&e
' [(1+nQ)exp( —p, ficoQ) —nQ] .

—P EQ

(3.15)

To obtain a more explicit result, the deformation-potential
coupling derived in Sec. II will be substituted for the
exciton-phonon interaction H„zh. Since the function G
in (2.32) is a slowly varying function with respect to

I Qll I

and Q, for the physically important range of pa-
rameters, one may safely set Q, =0 & e.

I Qll I

=
I Q I

&n

6 to obtain
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&IQI
H--ph(Q() Q. ) -=

2pu V

&
I Q I

2pu V

1/2

V

[1+( ~ I Q I
/2 )']'"

(D, D, —), (3.16)

D,
[1+(~

f Q f

/2~)2]3/2

as distributed among the energetically local minimum
sites which are induced by the well-thickness fluctuation
in the lateral direction of a QW. Under such a situation
the energy relaxation occurs through the exciton migra-
tion in search of the lower-energy sites, and the exciton
system eventually approaches the energetically global
minimum state. This process of energy relaxation is.con-
sidered slow compared to the kinetic-energy relaxation
and, in fact, explains quantitatively the experimental ener-

gy relaxation rate.
where to simplify the algebraic manipulations, it is sup-
posed that bb and b, in (2.32) are small, and that
(4+ bb)' and (4+b, )' are nearly equal to 2. Substi-
tuting this expression into (3.15), one obtains

~f dQQ e

)& [(1+nq)exp( —p, fuuq) nq],

(3.17)

with

=20& 10 eV/s .
(

dE
dt

(3.18)

This value is 1 order of magnitude larger than the ob-
served value of (2—3)X10 eV/s. Furthermore, it can be
shown that the effective temperature of excitons decreases
from 20 to 4.2 K within several tens of picoseconds.
Since there is an additional relaxation mechanism due to
the piezoelectric coupling, the theoretical value of the en-

ergy relaxation rate becomes larger and the discrepancy
increases. Thus it is concluded that the observed slow en-
ergy relaxation cannot be explained by the kinetic-energy
relaxation on the dispersion curve of the quasi-two-
dimensional exciton. When the excitons relax on the
two-dimensional dispersion curve and accumulate on the
low-energy portion of the density of states, the excitons
become more and more immobile and can be considered

I

(a) (Rb'nq+1
I H,„ph I

R„'nq),

Eg ——RQ /SM.

By using the experimental data

T, =20 K and Tl ——4.2 K,
where TL is the lattice temperature and, choosing the ma-
terial parameters of GaAs given in detail in Sec. VII, the
energy relaxation rate is calculated as

IV. ONE-PHONON-ASSISTED
TRANSFER OF LOCALIZED

QUASI- TWO-DIMENSIONAL EXCITONS

(a)
I
R, ;nq) I Rb,'nq+1),

ex-ph

b) IR. ;nq&
I
R. 'nq+1& IRb, nq+1

ex-ph $$

(c) IR. 'nq) ~ IR»'nq& ~
I Rb, n +QI

$$ ex-ph

(4.1)

(4.2)

(4.3)

where nQ represents the occupation number of phonons
relevant to the exciton transfer. Term (a) arises from the
first-order perturbation process with respect to H,„„h,
whereas terms (b) and (c) are the contributions from the
second-order perturbation, process using both H ph and
H~ once for each. ' As will be seen later, term (a) is pos-
sible through the overlap of exciton wave functions and is
short ranged in nature, while terms (b) and (c) are effec-
tive over a long range, in general. The transition ampli-
tude of the exciton transfer for each process in (4.1)—(4.3)
is given as follows:

(4 4)

Let us now consider the quasi-two-dimensional exciton
transfer among localized sites, such as the islandlike
structures in a QW that are induced by the well-thickness
fluctuation in the lateral direction. A general theory will
be developed without recourse to the details of the local-
ized sites, namely the microscopic structure of the disor-
der. In the process of exciton transfer the energy
mismatch of excitons is compensated for by acoustic pho-
nons. At low temperatures only the one-phonon-assisted
process needs to be taken into account, since the relevant
energy mismatch is less than 1 meV and rather small.
The exciton state localized at site R, will be denoted by

I
R, ), assuming the lowest ls state for the electron-hole

internal motion. The relevant Hamiltonians for the
phonon-assisted exciton transfer are the exciton-phonon
interaction Hamiltonian denoted by H„„h and the- inter-
site transfer Hamiltonian denoted by H„. Then there are
three possibilities for the exciton transfer from site R, to
site Rb, namely

(b)
(Rb.,nQ+1

I

H
I

R nQ+1&(R. ;nq+1
I H...h I R.;nQ)

+RCOQ

(c)
(Rb nq+ I IH ph I Rb nq ) (Rb nq I

H
I R nq )

Q

(4.5)

(4.6)



6560 T. TAKAGAHARA 31

J(IR, R—b I
)=(Rg IH„ IR, & . (4.7)

The explicit calculation of J(R) will be given in Sec. V.
To calculate the matrix element of H,„„h, the localized
exciton state must be specified more explicitly.

The localized quasi-two-dimensional exciton state can
be represented as

where co~ is the phonon frequency with wave vector Q.
The intersite exciton transfer Hamiltonian H,, arises from
the electron-electron interaction Hamiltonian, and the ma-
trix element is independent of the phonon state. Thus it
can be written as

and thus the localized exciton state
I
R, & is normalized

correctly

(R, IR, &=1. (4.10)

The functional form of G depends on the details of micro-
scopic configuration of the localized state. Until now,
there has been no systematic study of this subject. How-
ever, the dynamical properties of the system, such as the
energy relaxation, are not expected to be very sensitive to
the microscopic details of localization, but may be charac-
terized by only a few parameters, such as the localization
length. In this paper two typical cases of exciton localiza-
tion will be examined, namely (1) the Gaussian case,

R. &=u g G(R~~ —R, )Fi,(r,
~~

—rl, ~~,z„zr, )

e
G ( R)[)= exp( —R

[[ /2g ), (4.11)

xa,', a„„I
0&, (4.8)

where the 1s exciton envelope function I'&, is given in
(2.16) and the function G describes the two-dimensional
localization of the exciton center of mass R defined by
(2.2). The notations uo, a«, and a„are given in Sec. II.ere & Uly

The function G is normalized as

and (2) the exponential case,

exp( —
I R/[I /2k)

1

2m('
(4.12)

f d (4.13)

where g is the characteristic localization length. Then, in-
troducing the two-dimensional Fourier transform of the
localization function by

f d R)( I G(R(( —R, )
I

=1, (4.9) one obtains

I
R. & =uo g G(R(( —R. )Fi,(r, ((

—rr, ((,z„zh)a
re r

d 1~((g(K(( Ra)uo g e Fu(r, ((
—rr((,z„za)a„a„,2 iKII Rll

re ra

=L f d K((g(K(),R, )
I K((& . (4.14)

where use is made of (2.1). Thus, evidently, the localized
exciton state consists of the superposition of extended ex-
citon states. The explicit expression of g is given as fol-
lows: (1) Gaussian case,

g(K)(,R, )= —exp( —iK(( R, —g K))/2),
2rr ~Fr

—iKII R~

g(K~~, R. ) = f dR RJo(IC~~R) exp( —R/2$)
2m 2m/

—sKII R

(4.16)
~1+(2~+„)

where (K~~ ——
I K~~ I, Jo(x) is the zeroth-order Bessel func-

tion, and the following formula' is used:

(4.15)
dx x e '"Jo(bx) =

2 2 3&o (a +b )
2/23

(4.17)

and (2) exponential case,
The matrix element of the exciton-phonon interaction can
be calculated by using the expression (4.14) as

(Rs, gn+1 IH,„„a I R, ;no&=L f d~Kjl f d Eil g (Kj~ Rb)g t~'R )&Kji'"@+1IH,„„h I K~~,'nQ& . (4.18)

The matrix element on the right-hand side is taken between the two-dimensionally extended exciton states and can be
written as

(277)2

( K~~,'n~+1
I Hex-ph I K~~,'ng & =5&, + K (K~~ I Hex-ph I K~~ &q

——
2 5 (K~~+Q~~ —K~~)H~„ph(Q~~~Qi)

I I

—~l I' ll L 2 (4.19)

where in the second equality the Kronecker 6 function is changed to the Dirac 6 function and a factor related to the pho-
non absorption or emission is not written explicitly by incorporating the factor in H,„ph(Q~~, Q, ). As shown in Sec. II,
the matrix element (Kj~ I

H,„ph I K~~ &~ depends only on the phonon momentum Q and thus is written as H,„ph(Q~~, Q, ).
Then, in the case of Cxaussian localization one obtains
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Qll (R, +Rb) g Qll
Rb n'g+I

I

~ - h I
R 'ng) =exp

2 4
(R, —Rb)

Hex-ph(QII~Qz) & (4.20)

while, in the case of exponential localization, the result is given as

8$
( Rb,'no+1 H„„I

R.;nq) = exp[ —iQII (R.+Rb)/2]

exp iKII (Rb —R, )

2 3j2 Z 3ZZ ~z-ph[1+(2~ ~ll Qll/2 I
) ] [ I+(2~ +II+QII/2

Now, the transition amplitude of the exciton transfer from site R, to site Rb for the case of Gaussian localization is
calculated as

E'2' 2 (R, —Rb)

4g
~..ph(Q„, Q, )

J(
I
R, —Rb

I );q, , ;q„. g' Qll+ (e '
' —e " ') exp — H,„ph(QII, Q, ) .

a b

(4.22)

The first term on the right-hand side is the contribution
from process (a) in (4.1) and the second term combines the
contribution from processes (b) and (c) in (4.2) and (4.3).
The first term contains the Gaussian factor
exp[ —(R, —Rb) /4g ] arising from the overlap integral
between two localized exciton states and has a short-range
character. On the other hand, the second term in (4.22)
depends on the distance

I
R, Rb

I

thro—ugh the function
J(

I
R, —Rb

I
) and the coherence factor

exp( iQII Rb ) —exp( —iQII'R. »
which are generally effective over a long range. The com-
mon factor exp( —g Qll /4) implies that the magnitude of
the wave vector of phonons which can interact with the
localized exciton is limited within a few times the inverse
localization length. In the case of exponential localiza-
tion, the transition amplitude shows similar features, al-

though its expression is more complicated. When the

transition amplitude is obtained, the exciton transfer rate
can be calculated by

T( IE. Eb
I

—IR.—Rb )= 2 1&Rb
I

T IR. &g I'

X5(E, Eh+%cog) .—

(4.23)
In the absolute square of the transition amplitude, there
appears the interference between two terms in (4.22).
However, this interference term will be neglected since the
relevant spatial range of the two terms is quite different
and the contribution from the interference term may be
small. To calculate the exciton transfer rate more expli-
citly, the matrix element of the intersite transfer Hamil-
tonian H„must be calculated. This matrix element,
J(R), will be studied in the next section.

V. INTERSITE TRANSFER MATRIX ELEMENT FOR LOCALIZED QUASI-TWO-DIMENSIONAL EXCITONS

In this section the matrix element J(R) of the intersite transfer Hamiltonian H„ is calculated, and it is shown that
J(R) behaves like the dipole-dipole interaction at a distance much longer than the exciton Bohr radius and the localiza-
tion length. As given in (4.8), the localized quasi-two-dimensional exciton state can be represented as

I
R. & =uo 2 F(r. rb R.)a'.,a-„ l0& =uo g G(RII —R )F~ (r

II
—

rbll "'b)". a-„ I
o& (5.1)

re, r re rh

The intersite transfer Hamiltonian H„ is given by the electron-electron interaction Hamiltonian, namely

2

H„=—,
' j d r J d r'gt(r)Pt(r'), g(r')P(r),

eo fr —r'
f

(5.2)

where eo and 1t(r) are the dielectric constant and the electron-field operator, respectively. Then the matrix element is cal-
culated as

J(
I
R, —Rb I

) = (Rb
I
H„

I
R, )

g F*(r,', rj, ;Rb)F(r„rb, R, )(0
I
a, a,H„a„a„„I

0)
re, r&

=uo g g F*(r,', rb, Rb)F(r„rb, R, )[V(cr,', urb, cr„urj, ) —V(cr'„urb, urb„, cr, )],
r, r& re rh

(5.3)
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with

V(a&n„a2n2, a3n3, a4n&)= —,
' f d r f d r'P* „(r)P*„(r'), P „(r')P „„„(r),a~n~ a2n2

& r r~ a3n3 a4n (5.4)

where P«(r) is the Wannier function of the ath band at site n. When the intersite distance is longer than the localiza-
tion length g' and the two-dimensional exciton Bohr radius aP, i.e.,

I
R. Rb—

I »g, ~a

it turns out that the exchange term, namely the first term in square brackets on the right-hand side of (5.3), is dominant.
Then, by using the usual multipole expansion of the Coulomb interaction, ' one obtains

2

J(IR, Rb —I)= 3 p (1—3n n)p g g 6, ,„6, , F*(r,', rh, Rb)F(r„rh, R, ), (5.6)

with

p, =e d r *„r r —r, „r and n= R, —Rg R, —Rg (5.7)

where the Wannier functions are assumed to be well localized at each site. To calculate (5.6) more explicitly, the Gauss-
ian localization in (4.11) will be employed as

F(r„rh,'R, )= exp( —
I Rif Rg

I
/2g )F„(le() rh((, ze—,zh) .

mg

Using the normalization factor N„ in (2.31), one obtains

vo g g F*(r,', rh.,Rb)F(r„rh, R, )6, ,„$,

(5.8)

L /2 L /2f d re~exp( —
Ir~~

—RI /2k ) f,dz,
' f,dz, F*„(O,z,',z,')F„(O,z„z, )

=N„mgL, =(ag) ./I(2PL, ),

where the function I(x) is defined in (2.29). Then the
matrix element in (5.6) becomes

(5.9)
l

By choosing the values ALT ——0.08 meV, az ——136 A, '

/=150 A, a '=100 A, and pL, =0.37," it is calculated
as

J(IR.—R, I)= 2I (2PL, )
(5.10)

This is a typical form of the dipole-dipole interaction. In
the following the angular dependence in (5.10) is dropped
and the isotropic form will be assumed as

R —R
21(2PL. ) IR.—R, I' '

with

2 =[((I—3n.n) )]'~ =( —", )'~ (5.12)

J(IR, RbI)-
b,LTag(ag') A

8I (2PL, )

1 J
I R' —Rb

I

'
I
Ra RbI—

(5.14)

where the angular brackets denote the angular average.
As is well known, the longitudinal-transverse (LT) split-
ting of excitons at the zone center is given by'

b.LT(k=O) = (5.13)
ag

where az is the Bohr radius of the three-dimensional exci-
ton. Finally, one arrives at the expression

J(theor) =5.3 X 10 eV A (5.15)

This value will be compared with that which gives the
best fit of theory to experiment for the energy relaxation
in Sec. VII.

So far, the behavior of J(R) has been studied at long
distances, i.e., under the condition of (5.5). In the inter-
mediate range, in which the intersite distance is compar-
able to the exciton Bohr radius and/or the localization
length, the calculation of J(R) is a rather involved prob-
lem. In this range, an exponential-type tunneling transfer
is usually assumed without a rigorous theoretical basis.
Some interpolation between tunneling-type transfer and
dipole-dipole type transfer may be appropriate to simulate
the true behavior of J(R). However, the details of the
distance dependence of the intersite transfer do not affect
sensitively the energy relaxation of localized excitons,
since the energy relaxation rate is determined by the spa-
tial integral of J (R) multiplied by other functions. In
this paper both cases, dipole-dipole type transfer and
tunneling-type transfer, will be examined.
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Now that the matrix elements of the quasi-two-dimensional exciton-phonon interaction and the intersite transfer Ham-
iltonian have been determined, the exciton transfer rate can be estimated explicitly. The transition amplitude is given by
(4.22) for the case of Cxaussian locahzation. As mentioned there, the interference between the two terms in (4.22) will be
neglected. Then one has

$2Q 2

1&Rb I
T

I R. &q I '-=exp— IR, —Rb
f

2/2 I
H,„ph(Qii, Q, )1'

.R. , $2Q 2

2
IH..pb«~(, Qz) I

' (6.1)

G((4+ b,')'"PL„Q,L, )

[1+(b,/2) ] ~

G((4 +b b)'i 13L„Q,L, )
C

—D,
[1+(b /2)']'"

where the exciton-phonon matrix element is abbreviated as H,„„h, and the arguments Q~~ and Q, are the components of
the phonon wave vector parallel and perpendicular to the QW interface, respectively. In the second term, there appears
the coherence factor

I
exp( —iQ~~. Rb) —exp( —

iQ~~ R, )
I

due to the interference between phonon emission or absorption
at different sites. The matrix element of the quasi-two-dimensional exciton-phonon interaction for the deformation-
potential coupling is given by (2.32) as

&( '+, )'
HDF (Q2D)(Q Q ) I(2', ) (6.2)

2pu V

(6.3)

bb =ab
I
. Q~~ I

/a and b, =a,
I Q&& I

/a,
where a factor related to the phonon absorption or emission is omitted and:-~ is defined by (6.3).
over Q=(Q~~, Q, ) in (4.23), the magnitude

I Q I =(Q~~+Q, )' is fixed by the energy-conservation factor and only the
angular integration remains. The integration of the coherence factor over the polar angle P results in

f d@
I
e " —e " '

I

=4ir[1 —Jo(
I Q)( I I R, —Rb

I
)], (6.4)

where Jo is the zeroth-order Bessel function. Then the transition probability for the deformation-potential (DF) coupling
is calculated as

TDF( IE. Eb
I

IR—. Rb
I
)=— 2 1&Rb I

T IR. &Of'@E.—Eb+~e)
Q

Q2
expP

I
R.—Rb

I

'
sin 8

2/2 f d8sinO exp — =D(Q sinO, Q cosO)
0

Q J(IR Rbf) — . gQ sinO+ 2
d 0 sinO expMu IE, Ebf— 2

X [1—Jo(Q I
R, —Rb

I
sinO)]:-D(Q sinO, Q cosO), (6.5)

where the magnitude of phonon wave vector Q is denoted simply by Q and is given by
I E, Eb

I
/fiu with the so—und

velocity u of the longitudinal-acoustic phonon mode. Similarly, in the case of exponential localization, one has
2

TDF( I Eo Eb I I
R.—R—b I

) = f dW f dOsinOK (Q~~, R, —Rb ):-D(Q sinO, Q cosO)
(2m) A' u

Q J ( IR, Rb I
)—f d8sinOI (Q sinO)[1 —'

Jo(Q I R, —Rb
I

sinO)]
irfi2u

I
E, EbI—

where

)& =D(Q sinO, Q cosO), (6.6)

I(
I Q~( )= d2IC~~

['+(2&
I K-ii —Qii/21)']'"[ +(2&

I Kii+ Qii/21)']'" ' (6 7)
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8$
2 exp[iK~~. (Rb —R, )]K(,R, —R )= d K„ [I+(2& I

K„—Q„/2 I

)']'"[ +(2&
I K,~+Q, ~/2 I

)']'" (6.8)

Here, I is a function of only the magnitude of Q~~, while the function K is dependent also on the angle between Q~~ and
R, —Rb. These are the complete expressions of the exciton transfer rate for the case of deformation-potential coupling.
In practice, however, the calculation of the angular integrals in (6.5) and (6.6) is rather cumbersome, and it is desirable to
simplify these expressions by introducing a reasonable approximation. It is confirmed numerically that the function
:-D(

I Q~I I,Q, ) is a slowly varying function with respect to
I Q~~ I

and Q, for a physically important range of parameters,
where IQ~~ I, IQ, I

&10 cm ' and L, &100 A. Thus one may safely set 8=m/2 in =D(Qsin8, Qcos8) and put it out-
side the integral and further replace the integral over 8 by vr times the arithmetic mean of the values of the integrand at
8=0 and 8=m/2. Then the transition probability in (6.5) can be approximated as

Q2T»(IE. Eb
I

IR—.—Rb I)= exp
4R u

IR, —Rb
I g2Q2

2$
:-D(Q,O).

Q2 J'( IR, —Rb
I

) g2Q2 =2exp — [1—Jo(Q
I
R.—Rb

I
)]=-D« o)

2r'u IE.—E, I'
(6.9)

With use of relation (2.35), :-D(Q,O) can be written as

gQ D,I((4+bb )
'/ PL, )

:-D(Q,O) =
2pu [1+(bb /2)']'/

D,I((4+b, )
' PL, )

[ 1 + (b /2)2]3/2
I(2f3L, ) . (6.10)

Noting that b, =bb & 1 for—the wave vector
I Q I

& 10 cm ', it can be approximated as

D, D„

[ 1 + ( b /2 )
2
)

3 /2 [ 1 + ( b /2 )
2]3 /2

(6.11)

In a similar way, one can simplify (6.6) for the case of exponential localization. As seen from (6.8), the function
K (Q~~, R) is sensitively dependent on the angle between Q~~ and R. However, when integrated spatially over R, the an-
gular dependence vanishes and the result depends weakly on

I Q~~ I. In the rate equation for the exciton distribution
function, as will be shown later, the spatial integral of K is physically relevant. Thus, in anticipation of their later use
in the rate equation, the 8 and P integrations in (6.6) can be simplified as

2

E, I, IR. R, I)=, X'(Q, R.—Rb):-D(Q, O)

Q J'(
I
R.—Rb

I
)+, , I'(Q)[1 —Jo(Q I R.—Rb 1)1:-D(Qo) . (6.12)

Equations (6.9) and (6.12) with (6.11) are the basic expressions of the exciton transfer rate via the deformation-potential
coupling that will be used in the rate equation.

Next, the probability of exciton transfer via the piezoelectric coupling will be calculated. In this case the coupling is
highly anisotropic. Let us introduce a piezoelectric coupling function =p'(

I Q~~ I,Q, ) defined by

4m.ee &4:-5(
I Qii I Q. ) =

2pu (Qll+Q )

G((4+ bb )
' PL„Q,L, )

[1+(b /2)']'"
G((4+ b,') ' "PL„Q,L, )

[1+(b,/2)']' ' I(2PL, ),

(6.13)

where the functions G and I and the variables bb and b, are the same as in (2.32) and the suffix o. specifies the
longitudinal-acoustic (LA-) or transverse-acoustic (TA-) phonon mode. Then, for the case of Gaussian localization the
exciton transfer rate via the piezoelectric coupling is calculated as
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TPz( IE4 E—b I, IR. —Rb
I

)

g I (Rb I
T

I
R, )q I 5(E, E—b+fzcoq)"Q

1
exp

(2iriri)

IR, —Rb I'
2g

Q 2m n.2

f dP f dOsinOexp
u~

g Q~ Sill 8

2

X [:-p(g sinO, Q cosO)] 2 (8,$)

J(IR —RbI) Q 2nf dP f dOsinOexp
(2irIII)2

I
E, Eb

I

—'
gg sinO

2

&&
I

e ' —e '
I

[:-p(g sinO Q cosO)] A (8$), (614)

where the magnitude of phonon wave vector Q is determined by
I
E, Eb

I
/I—Ilu with the sound velocity u for o. (LA

or TA) phonon mode, and the anisotropy factor A (8,$) is given as

~LA(8 0) z sill 8cosOsln2$,

ATA(8, $)= —,(sinO —3sin38) sin2$ or —, sin28cos2$,

(6.15)

(6.16)

where the results are shown for two possibilities of the polarization direction of the TA mode. Formula (6.14) is quite
general, but its calculation is rather complicated. Thus it is desirable to simplify the expression by introducing the same
kind of approximation as to reduce (6.5) to (6.9). As noted before, the function 6 in (6.13) is a slowly varying function
with respect to

I Q~~ I
and Q, for the physically important range of parameters, and thus "p(

I Q~~ I,g, ) is also such a
function. Furthermore, since the main contribution to the transfer rate comes from the range gg &1, the localization
factor exp( —g Q sin 8/2) may be regarded as slowly varying with respect to 8. Thus one may suppose that O=ir/2 in
both:-p and the localization factor and put these factors outside the integral. The piezoelectric coupling function is re-
duced to

877ee )4
:-p(Q, O) =

Ep

with

I((4+b')'"131-.) I((4+b,')'"131., )

2tou. g [1+(b /2)']'" [I+(b /2)']'" I(2PL, ), (6.17)

bb abg/cr. and——b, =Iz, g/a .

By noting that bb =-b, & 1, the piezoelectric coupling function is further simphfied to
1/2

8mee&4 1

[1+(b /2)2]3/2
1

[1+(b /2)2]3~2
:-p(g,o) =—

2pu QEp

Then performing the angular integration of the anisotropic factor and the coherence factor, one obtains

(6.18)

Tpz( IE —Eb
I IR. —Rb I

)—= exp
1

(2irIII )'
IR.—Rb I' g'

2/2 u
exp — [=-p(Q. ,o)]'B.g 2Q 2

2

+ 1

(2rrfi)

J (IR4 —RbI) Q
2 g exp

2 2

I::- (Q o)]'f (6.19)

BLA = 12'/35, BTA = 16m /35,

f„A =2BLA — dOsin Ocos 8[JO(QLAR, b sinO) —J4(QIAR, b sinO) cos(4$,b)],
9m.

(6.20)

frA =2BTA ——f dOsin 8(sin 8—2 cos 8) [Jo(QTAR, b sinO) —J4(QTAR, b sinO) cos(4$,b )]

——f dOsinO sin 28[JO(QTAR, b sinO)+ J4(g&AR, b sinO) cos(4$,b)],
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where Jo and J4 aie the zeroth- and fourth-order Bessel function, respectively, and R,b
——

~
R, —Rq

~

and P,b is the an-

gle between R, R—b and one of the crystallographic axes in the QW interface plane. These formulas are sufficiently
simple to be useful in practical calculation of the exciton transfer rate.

For the sake of completeness, the results for the case of exponential localization will be given. The general formula is
given as

7pz(
~
E, E~—,

~
R, —Rb

~

)= g f dP f dOsinOK (Q,R, —Rb)[:-$(Q sinO, Q cosO)] 2 (O, p)
(2~&) ~o o o

J'(
I
&a &b —

I
)

+
(2m') .

i
E, E~

i

—'-

Q 2~
X g - f dP f dOsinOI'-(Q sinO)

u~

&&
~

e —e '
~

[:-~(Q sinO, Q cosO)] A (O, p) .

Introducing the same kind of approximation as used in reducing (6.14) to (6.19), one can simplify (6.21) to

TPZ(
I
E Eb

I I

R—.—Rb
I

) —=—,g &'(Q R.—Rb)[:-$(Q 0)]'&.
(2m-A)'+, , -g I'(Q )[:-PQ,0)l'fJ (iR, —Rbi) Q

(2~m)' ~E. Eb '—

(6.21)

(6.22)

where 8 and f are the same as defined in (6.20), and
the meaning of K (Q, R) is given above (6.12).

In the rate equation for the exciton distribution func-
tion, there appears the two-dimensional spatial integration
of the transfer probability T
Let us now calculate the spatial integral assuming a suit-
able form for the inter-site matrix element J(R). In Sec.
V, lt ls shown that J(R) behaves as

J(R)= J/R (6.23)

like the dipole-dipole interaction in the region where 8 is
larger than both the localization length and the Bohr ra-
dius of the two-dimensional exciton. However, it is quite
difficult to derive, theoretically, the behavior of J(R) over
the entire range of R. Thus a dipole-dipole type transfer
will be assumed for J(R), with a lower cutoff at the local-
ization length g. As another choice, the tunneling-type
transfer given by

J(R)=J exp( —M/2) (6.24)

F(R)=exp( rrR /oo), — (6.25)

where pro is the areal number density of islandlike struc-
tures. Since o o is of the order of 10 " cm, F(R ) can
often be neglected, in comparison with other more rapidly
decaying functions. Then the typical spatial integrals are
calculated as

will be examined, where 6 ' is the order of the two-
dimensional exciton Bohr radius and J is a phenomeno-
logical constant. In this case it is not necessary to intro-
duce a cutoff. Since there appear a few types of spatial
dependence on

~
R, —Rb

~

in the exciton transfer rate, it
is sufficient to give the results for typical terms. In the
integration the spatial distribution function F(R) of
nearest-neighbor sites at a distance R must be included.
In the two-dimensional case, F(R) is given by

f d R exp( —R /2g )=2rrg (6.26)

d'R I~ '(Q~~, R) =256~4
[1+(2$'

~ K(( —Q(~/2
~

) ] [1+(2g'
~ K()+Q([/2 ~

) ]

For the dipole-dipole type transfer (6.23), one obtains

f dR R f dP J (R)F(R)[1—Jo(QR)]= f dR R f dP J (R)F(R)[1—Jo(QR)+cos(4$)J4(QR)]

-I ( —2, erg' /ao) —II(Qg)

(6.27)

(6.28)

with

M(x) =x f dz Jo(z) exp( rrz /ooQ )/z— (6.29)
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1

[1+(Q/g)2]3/2

where formula (4.17) is used. By combining all of the results, the exciton transfer rate and its spatial integration can be
calculated for both the deformation-potential and piezoelectric coupling, for both cases of the Gaussian and exponential
localization, and for both cases of the dipole-dipole type and tunneling-type transfer.

Finally, for illustrative purposes, let us calculate the spatially integrated transfer rate for the simplest case of Gaussian
localization and tunneling-type transfer. For the deformation-potential coupling, making use of (6.9), (6.11), and (6.31),
one obtains

where I (z,p) is the incomplete I" function defined by.

I (z,p)= f dte 't' (6.30)

Here, the nearest-neighbor site distribution function F(R) is included explicitly, because both the dipole-dipole type
transfer J(R) and the zeroth-order Bessel function Jo(QR) show rather slow spatial decay. Similarly, for the tunneling-

type transfer (6.24) the above quantity is calculated as

2 J 2

f d R J (R)[1—Jo(QR)]= 1— (6.31)

3 i 2 J2
d R TDF(E,R)= 2 + 1—

2fipu 2 o E [I+(Q/5) ]
exp

2

D,
X

[1+(ai,Q/2a)']' '
D,

[1+(a,Q/2a) ] i
2

(6.32)

Similarly, for the case of piezoelectric coupling, it is calculated as

f d R Tpz(E, R) =
4m'

2
8m.ee I4

&o

J'fo Q$8+ 2 2 exP5E u

$2Q 2

2

with
BLp, ——12ir/35, BT~——16ir/35,

X
l

[I+(at Q /2a)']'" [1+(a,Q /2a) ] ~
(6.33)

9m. 1fL~= dOsin Ocos 8 1—
0 [1+(QLA sing/5) ]

(6.34)

fTA ———f d8sin 8(9sin 8—16sin 8+8) 1—
[1+(QT~ »n8/&)']'"

where the suffix cr indicates the LA- or TA-phonon mode.
The material parameters chosen in the numerical calcula-
tion are given in Sec. VII. The results are shown in Fig.
1. It is found that the contribution from the piezoelectric
coupling is smaller than that from the deformation-
potential coupling, but it is not negligible. The energy
dependence is similar for both cases of ~the deformation-
potential and piezoelectric coupling. Roughly speaking,
the peak position is determined by the localization factor
exp( —g Q /2), namely E=fiu g '. In fact, t—his esti-
rnate gives the right order of 0.3—0.4 meV. The overall
features in Fig. 1 are preserved for other cases of com-
bination of the Gaussian and exponential localization, and
the tunneling- and dipole-dipole type transfers.

VII. RATE EQUATION FOR EXCITON
DISTRIBUTION FUNCTION AND NONEXPONENTIAL

BEHAVIOR OF ENERGY RELAXATION

Now that the transition probability of the exciton
transfer is derived, one can set up the rate equation for the
exciton distribution function. In the following the inter-

I

layer transfer of excitons through the A1As barrier layer is
neglected and only the exciton transfer within a QW will
be taken into account. Thus the problem is reduced to
that of a single QW. As noted in the Introduction, due to
the fluctuation of the well thickness in the lateral direc-
tion of a QW, the quasi-two-dimensional excitons can be
localized at such islandlike structures. The energy relaxa-
tion occurs through the exciton migration in search of
lower-energy sites. Now for simplicity an assumption will
be introduced that the line broadening is microscopic,
i.e., that there is no correlation between the energy of the
localized exciton and its position in space. Thus the ener-

gy distribution of the localized exciton at any particular
site depends only on the overall density of states but not
on the nearby configuration of the localized site. In addi-
tion, the density of states of localized excitons is assumed
to be proportional to the absorption spectrum at low tem-
peratures. This assumption is reasonable bemuse in the
low-energy tail of the density of states the contribution
from the localized. excitons is dominant. Under these as-
sumptions the rate equation for the distribution function
f(E,t) of the localized exciton with energy E is derived as
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E)«D(E')f(E' I
) J d2~ Q(R)f(E t) = —QQfdt

n(E —E)

f
R)I)]e(E—E )I T( ~E —E+(1+n(E —E
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almost constant rate. At first, let us assume for J(R) the
dipole-dipole type transfer in (6.23). In Fig. 3 the theoret-
ical result for the case of Gaussian localization is com-
pared with the experimental data of Ref. 30. The best fit
is obtained by adjusting J as

1.619
4.2K

J(Gaussian)=11. 7&(10 eVA (7.5)

A similar result is obtained in the case of exponential lo-
calization by taking

J(exponential) = 10.2X 10 eV A (7.6)

In the latter case the magnitude of the wave vector of
phonons participating in the exciton transfer, or,
equivalently, the possible energy mismatch of excitons, is
larger than that in the former -case, as seen from (4.15)
and (4.16). This leads to the faster energy relaxation in
the case of exponential localization than in the case of
Gaussian localization for the same localization length g,
and thus the smaller value of J is obtained in the former
case. For the tunneling-type transfer in (6.24), the param-
eter 5 is assumed to be 10 cm ', which is on the order of
the inverse Bohr radius of the quasi-two-dimensional exci-
ton. From the fitting to the experimental curve, the
phenomenological constant J is determined as 0.44 and
0.31 meV for the case of Gaussian localization and ex-
ponential localization, respectively. These values are on
the same order as those of the dipole-dipole type transfer
in (6.23) estimated at R—=g. For the case of dipole-
dipole —type transfer, the agreement within a factor of 2
or 3 between the theoretical value in (5.15) and the values
estimated from the experiment in (7.5) and (7.6) is quite
satisfactory in view of ambiguities in the material parame-
ters. This confirms the adequacy of both our model for
the localized excitons in QW heterostructures and our
theory of the energy transfer.

Let us now explain the observed nonexponential
behavior of energy relaxation. Experimentally, the aver-
age energy of luminescence showed decay with an almost
constant rate. The average energy of luminescence at time
t is defined by

1.615 ' ~ I ~ ~ ~ ~ I I ~ I ~ I ~ 4 0 E I i ~ ~ s I ~ ~ i ~ I 0 I E ~ I ~ ~ I I I ~ ~

O 500
T I ME DELAY (ps}

FIG. 3. Comparison of the theoretical calculation of the
average energy of luminescence with the experimental data cited
from Ref. 30.

T(iE E'i)= —f d RT(iE E'i, R) —F(R). (7.8)

Furthermore, the time dependence due to the radiative
and nonradiative decay processes will be separated out by
setting

f(E,t)=e 'f(E, t) .

Then the rate equation for f(E,t) can be written as

(7.9)

(E}(t)=f dEED(E)f(E, t) f dED(E)f(E, t), (7.7)

where D(E)f(E,t) is proportional to the intensity of
luminescence with energy E at time t. The energy relaxa-
tion rate is then calculated by d(E) Idt. On the basis of
the analytical expression of d (E }/dt, the nonexponential
behavior of energy relaxation will be clarified. To simpli-
fy the rate equation (7.1), the spatial integral of the exci-
ton transfer rate will be denoted by T, namely

f(E,t)= —f dE'D(E')f(E, t)T(
~

E —E'
~

)[n(E' —E)e(E' —E)+[1+n(E—E')]e(E —E )I
dt

+ f dE'D(E')f(E', t)T(
~

E E'
~

) In (E —E'—)e(E E')+[1+n (E'——E)]e(E'—E)I . (7.10)

It is easily found that

dt f dED(E)f(E, t)=0, (7.11)

and, correspondingly,

f dED(E)f(E, t)=Do, (7.12)

where D is the initial value of the total exciton population. This relation implies simply that the total luminescence in-
tensity or the total exciton population decreases with the decay rate yo. Next, by multiplying ED(E) on both sides of
(7.10) and by integrating over E, one obtains
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dEED E E, t = dE dE'D E D E' E', t E —E' T E —E'
dt

&& [n (E —E')e(E E—') + [1+n (E' —E)]e(E'—E) ] . (7.13)

As shown in Fig. 1, the function T(E) is a rapidly decreasing function compared to the density of states D(E) and the
phonon occupation number n (E). This is simply due to the exciton localization factors in (6.5), (6.6), (6.14), and (6.21).
Thus it is allowed to expand as

dD E'
D(E)=D(E')+, (E E')—+ (7.14)

Substituting this expansion into the integrand on the right-hand side of (7.13) and changing the integration variables
from (E,E') to (E', E E'), one—finds

f dEED(E)f(E, t) = —f dE'D'(E')f(E', r) f dEET( iE i
)

f dE'D(E'), f(E', t) f dE E T(
~

E
~

)[1+2n (E)]+.. . (7.15)

The average energy of luminescence defined by (7.7) can
be rewritten as

(E)(t)= f dEED(E)f(E, r) f dED(E)f(E, t)

=Do ' f dEED(E)f(E, t), (7.16)

where the equation (7.12) is used. Then the energy relaxa-
tion rate is calculated as

= —D " f dEED(E)j(E,r)
dt dt

=-Do f dEET(
i
E

i
) f dE'D (E')f(E', t),

=D f dE ET(E), (7.18)

(7.17)

where only the first term on the right-hand side of (7.15)
is retained. As shown in (7.12), the integral

f dED(E)f(E, t) is exactly time independent. Thus it is
expected that the right-hand side of (7.17) is almost time
independent, if the functional form of D (E) is not very
different from that of D(E). This may be the case be-
cause at the later stage, after photoexcitation, the excitons
have accumulated on the low-energy tail of the density of
states. In this energy region, D(E) is a smooth function
and one may approximate (7.17) as

= W' f dE'D2(E')f(E', r)
dt

=-8'D f dE'D(E')f(E', t)

I

relaxation rate. The generality of the above argument
suggests that the nonexponential behavior of energy relax-
ation is a universal feature to be observed in the tail region
of optical transitions which is induced by any kind of in-
homogeneity or disorder.

VIII. DEPENDENCE OF ENERGY RELAXATION
RATE ON THE QUANTUM-WELL

THICKNESS

x106

20- - ZO

10-

Cl)
S I-0

I
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4
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8

lh 4(

't

E
10
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Here the dependence of energy relaxation rate on the
QW thickness L, is discussed. Experimentally, the depen-
dence of l., is observed along with the same dependence
of the absorption bandwidth, as shown in Fig. 4. This
experimental result suggests that there is some kind of
correlation between the energy relaxation rate and the ab-
sorption bandwidth. In fact, according to (7.18), the L,
dependence of the energy relaxation rate arises from D

with

W =Do ' f dE ET(E),
where D is a representative value of D (E) at the peak re-
gion of f(E, t). The final expression is exactly time in-
dependent. This explains qualitatively the observed
nonexponential behavior of energy relaxation. In fact, ex-
pression (7.18) gives the right order of the observed energy

20
I I I N I I I

10 SO 100 200

I Lz &A

FIG. 4. Observed dependence on the quantum-well thickness

L, of the energy relaxation rate and the absorption bandwidth
of the 1s exciton. The dashed line shows the L, dependence.
The open circles represent the energy relaxation rates at the ini-

tial stage after photoexcitation, while the solid circles are those
at the later stage.
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since the integral factor f dEET(E) is only weakly
dependent on L, . When the width of the density of states
is increased, the value D at the low-energy tail becomes
larger, since the density of states is normalized by (7.2).
Thus the above correlation can be understood qualitative-
ly. To investigate in more detail the relationship between
the energy relaxation rate and the absorption bandwidth,

I

one can make full use of the scaling property of the rate
equation.

The characteristic width of the density of states of exci-
tons will be denoted by 0., which is identified here with
the absorption bandwidth. Then, by expressing the o.
dependence explicitly, the rate equation (7.10) can be writ-
ten as

f(E,o, t) = —f dE'D(E', cr)f(Ecr, t)T(
~

E —E'
~

) {n (E' —E)e«' —E)+[1+"(E —E )]e(E
dt

f dE'D(E' o)f(E' cr t)T(
~

E. E'
~
){n(E —E')e(E —E')+[1+n (E —E)]e(E'—E)

where T(E) is defined by (7.8) and is not dependent on cr. Since the density of states D (E,o ) is normalized as

f dE D (E,o)= 1, .

the following scaling relation can be postulated,

o D(oE,o ) =D(E),

(8.1)

(8.2)

(8.3)

where D is a universal function independent of o. By scaling the variables (E,E') as (oE,oE') and using (8.3), one finds

f(oE, cr, t) = —f dE'D(E')f(crE, o, t)T(cr
~

E —E'
~

) {n(o(E'—E'))e(E' —E)+[I+n(cr(E —E'))]e(E —E')]
dt

+ f dE'D(E')f(oE', o, t)T(o ~E E'
~

) {n(—o(E E'))e(E—E')+[1+n—(o(E' —E))]e(E'—E)I . (8.4)

Furthermore, the transfer rate T is supposed to be scaled
as

I

the solution of the rate equation (8.8) can also be regarded
as universal, namely

T(cr [ E E'
~

) =o U—(
~

E E'
~
), — (8.5) f(oE,o, t/o )=G(E,t), (8.9)

where U is a universal function that is independent of, or
weakly dependent on, the scaling parameter o.. Conse-
quently, (8.4) can be rewritten as

f(crE,o, t)= —o. f. dE'K(E, E')f(crE, o, t)
dt

—f dE'L(E, E')f(oE', o, t)

(8.6)

where G is a universal function independent of o. This is
an important consequence of the scaling property of the
rate equation.

Now the average energy of luminescence is calculated
by

f dEED(E, o)f(E,o, t)

dED E,o. E,o., t
(8.10)

Scaling the integration variable E as oE and using the re-
lation (8.3), it is rewritten as

Here, IC and L are the integral kernels corresponding to
each term on the right-hand side of (8.4) which can be re-
garded as universal functions since the parameter cr in-
cluded in the phonon occupation number n gives rise to
only a weak dependence on cr. Scaling the time variable
as

o f dEED(E)f(oE, o, t)(E).= f dED(E)f(crE, o, t)

cr f dEED(E)G(E, o t)

f dED(E)G(E, o t)
(8.1 1)

t~t jo
one finally arrives at the universal rate equation,

(8.7) where the scaling property (8.9) is used. Then the energy
relaxation rate is calculated as

dt
f(oE,o, t/o ) = —f dE'K(E, E')f(crE, cr, t/o )

+ f dE'L (E,E')f(aE', a, t/o). '

(E& =o'
dt du

f dEED(E)G(E, u)

f dED(E)G(E, u)

(8.12)
(8.8)

Since the integral kernels E and L, are universal functions,
Here the derivative term with respect to u is a universal
function since D and 6 are universal functions. It can be
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expected that the derivative term is a smooth function
with respect to u at the large argument, and that it takes
an almost constant value independent of o. at large t.
Thus the energy relaxation rate can be scaled as

(E& ~~.
dt

(8.14)

The scaling argument successfully explains the observed
correlation between the energy relaxation rate and the ab-
sorption bandwidth, though in a qualitative way. On the
other hand, the observed dependence of the absorption
bandwidth on the QW thickness L, is different from the
expected one. Since the kinetic energy of the electron and
hole confined in a QW is approximately proportional to
L, ,

' the fluctuation of the exciton energy is proportion-
al to L,, if the amount of well-thickness Auctuation is
independent of L, . In reality, however, the bandwidth of

d
(E& ~~'+

dt

in terms of the absorption bandwidth o., where the ex-
ponent u is determined by the scaling property of the
transfer rate as shown in (8.5). The exponent a can be es-
timated, in principle, from the dependence of the transfer
rate on the energy or the phonon wave vector. However,
as investigated in Sec. VI, the expression of the transfer
rate contains these variables in a rather complicated way
and the determination of the exponent a is not straight-
forward. The exponent a should be determined in the en-

ergy region in which T(E) takes a significant value and
from which the contribution to the exciton transfer pro-
cess is dominant. For example, in Fig. 1, where TDF(E)
and Tpz(E) are shown for the case of Gaussian localiza-
tion and for tunneling-type transfer, the relevant energy
region is considered to be 0.2(E &0.8 meV. In this re-
gion the exponent cz can be considered to be 0 since there
is no definite power-law dependence on energy. The same
situation holds for other cases of combinations of the
Gaussian and exponential localization and the tunneling-
type and dipole-dipole —type transfer. Consequently, it
can be concluded that a =0 and that

excitons is determined by the details of atomic-scale disor-
der of the QW interface and a naive theory fails to predict
the observed dependence on I,, A detailed theory based
on the microscopic morphology of the QW interface will

be necessary to explain the L,, dependence of the absorp-
tion bandwidth.

IX. SUMMARY

The slow energy relaxation of the quasi-two-
dimensional excitons in GaAs-AlAs QW heterostructures
is explained quantitatively in terms of the intralayer mi-

gration of excitons localized at the energetically local
minimum sites induced by the fluctuation of the well
thickness along the QW interface. The nonexponential
behavior of energy relaxation is clarified theoretically as a
general feature to be observed in the low-energy tail of the
density of states. The dependence of the energy relaxation
rate on the QW thickness is discussed along with the same
dependence of the absorption bandwidth. The correlation
between the energy relaxation rate and the absorption
bandwidth is explained qualitatively on the basis of the
scaling property of the rate equation.

Finally, let us briefly comment on the energy relaxation
of excitons in three dimensions, such as the excitons in
mixed semiconductors. The underlying physics is analo-
gous to that in the quasi-two-dimensional case discussed
in this paper, although the origin of the inhomogeneity or
disorder is different in two cases. In fact, the slow and
nonexponential energy relaxation of excitons in the band-
edge region was observed recently in mixed semiconduct-
ors. This can be regarded as one of the experimental
verifications of the general feature of the nonexponential
relaxation clarified in Sec. VII.
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APPENDIX

The explicit expressions of g(y) defined by (2.29) and G(y, 5) defined in (2.23) are given in the following. The argu-

ment 5 of G is changed to 25 for simplicity of expression:

g (y) = [3y7+ 28rj'~y~+ 96m4y3 —112m~&~+ 128m y —192~'+ 16~"e r(y'+ 7y'+4~'y+ 12m') j,
4y (y +4' ) (Al)

1/2 1/2 2 2

G(& 25) — pz pzh exp(& 25z~ —y I
ze zh

I
)(1+y

I
ze zh

I
) cos (1rze) cos (~zll)

—1/2 —& /2

P (y, 5;0) sin5+ Q (y, 5;0) cos5 P (y, 5; rr) sin5+ Q (y, 5;vr) cos5
25 ~' 5' (~+5)(4~+25)

(A2)

P(y, 5; vr) sin5+Q(y, 5—; —m. ) cos5
(~—5)(4m —25)

(A3)

with
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P(y, 5;x)=
2 2 2 z (2y +8[x +(x+5) ]y +16[x +(x+6}]y

1

(y'+4x')'[y'+4(x +5}']'
—25(2x+5)e rIy +4y +4[x +(x+g) ]y +8[g +2x(x+g)]y

+ 16x (x +5) y I }, (A4)

g(y, 5;x)= (y'+4x')z[y'+4(x +&)']'

&&( 3(2x+Q)y —4[(x+5) +6x(x+5) +6x (x+~)+x ]y

—16[3x(x +a)'+2x'(x +S)'+2x'(x +a}2+3x'(x +a)]y'

—64x (x+5)4—64x (x+5) +(2x+5)e rIy +3y +4[x +(x+5) +x(x+6)]y

+4[x'+(x +5)'+5x(x +5)]y'

+16x (x +5)[x'+(x +5)'+x (x +5)]y'

+16x(x+5)[x +(x+5) +3x(x+5)+252]yz

+64x (x+5) y+64x (x+5) I) . (A5)
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