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A parameter-free, self-consistent method for calculating the gradient of the total energy (i.e.,
forces on atoms) of point defects in semiconductors is described. It is shown that under two condi-
tions, (i) the pseudopotential approach and (ii) the inclusion of basis-set derivatives, the Hellmann-
Feynman theorem can be applied. The convergence properties of the force calculation are exam-
ined, and the method is used to study the breathing distortions of the vacancy in silicon. The re-
sults, such as the direction and amplitude of the distortions and the force constants, are compared to
other calculations and to available experimental data. :

I. INTRODUCTION

Many properties of point defects (i.e., vacancies, substi-
tutional impurities, and interstitial atoms) in semiconduc-
tors depend on the positions of the nearby atoms.!~® For
the example of deep centers, which represent a well-
localized perturbation of the crystal, the knowledge of the
atomic geometry can be essential for an understanding of
the electronic properties. On the other hand, the electron-
ic structure, or more precisely the defect induced change
in the electronic charge density, locally alters the perfect
crystal’s chemical bonds, the lattice stability, and the
atomic geometry. Thus there is a close interdependence of
the electronic and the atomic structure of a defect. The
equilibrium atomic geometry is determined by the
minimum of the total energy or by the zero of the forces
on the atoms (i.e., the gradient of the total energy) with
respect to the atomic positions. A theory which allows
one to calculate either the total energy or the forces is
therefore of paramount importance. Such a theory is re-
quired for a detailed understanding of the defect’s elec-
tronic properties and it is also needed for calculations of
force constants and vibrational frequencies. Furthermore,
we note that deep-level defects can usually exist in dif-
ferent charge states. The Franck-Condon shift and the
stability of the defect are again determined by the total
energy or the forces. Recent examples which demonstrate
the important implications of the charge-state dependence
of the defect stability are the “negative U” behavior of the
vacancy in Si,? and the diffusion of defects.”°

Little is known about the local geometry at defects, as
for example interatomic distances. Experimental studies
(e.g., optical and infrared absorption) give information on
the symmetry of the defect. However, it is not clear
whether these methods can be developed to a state which
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allows the determination of distances between atoms. Ex-
tended x-ray absorption fine structure experiments or re-
lated techniques are the most promising methods to pro-
vide such detailed geometric informations.!®!! Also
electron-spin resonance, if combined with a quantitative
theory to calculate spin densities, might evolve into a tool
to determine the atomic positions at a paramagnetic de-
fect.!? So far, such analyses have, however, not been per-
formed systematically.

With respect to the theory,'> the development of the
self-consistent Green’s-function method'*~1¢ is a mile-
stone in the investigations of electronic properties of local-
ized defects (for recent reviews on these calculations see,
e.g., Refs. 17 and 18). This approach allows a parameter-
free, self-consistent calculation of the electronic structure
of a defect system once its atomic geometry is known.
The current status of experiments is such that they cannot
fully determine the local atomic geometry around deep de-
fects. Therefore the early calculations used to take the lo-
cal lattice geometry as an input parameter. Only in some
cases the geometry was varied to check its influence on
the final theoretical results.!®~2!  Such calculations have
shown that a change of calculated ionization energies up
to half an electron volt (over a typical semiconductor gap
of about one electron volt) is in fact possible as a conse-
quence of modest lattice distortions. For the case of the
vacancy in silicon Baraff, Kane, and Schliiter combined
the results of self-consistent Green’s-function calculations
with those of a semiempirical valence-force model.>? This
allowed them to deduce the amount of the Jahn-Teller dis-
tortion. The breathing distortion, however, could not be
determined that way, and had to be fixed by analogy with
the amount of the relaxation of a free silicon surface.
Lindefelt?> has recently determined the direction of this
breathing distortion using the Hellmann-Feynman
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theorem. He also gave a semiempirical estimate of the
distortion amplitude.

Parameter-free, self-consistent calculations of the lattice
distortion around a defect have only been attempted very
recently. Three main routes are currently followed: the
supercell,>>® the Green’s-function total energy,””® and
the Green’s-function force method.>~> The supercell
technique is a particular form of a cluster approximation,
where the cluster is repeated periodically. This allows to
apply standard band-structure programs for the calcula-
tion of the electronic structure and the total energy. One
disadvantage of this technique is that it is limited to small
unit cells (8—16 atoms is a typical number) and usually to
quite small distortions: The interaction between the dif-
ferent cells implies that the impurity induces a band
within the gap rather than a discrete level; independent of
that, one also accepts an artificial elastic interaction be-
tween neighboring defects. As a consequence, the method
usually breaks down for distortions where either the im-
purity band enters the valence band, or the elastic defor-
mation clearly propagates from one cell to the next.
Nevertheless, excellent results have been obtained in cases
of interest (see, for example, Ref. 8). The Green’s-
function total energy and force methods consider an iso-
lated point defect in an otherwise perfect, infinite crystal.
They allow an accurate calculation of the electronic
charge density, which then is used to evaluate the total en-
ergy>”® or its gradient, i.e., the force.3~> A possible ad-
vantage of a force method arises, because, as will be
shown below, it is possible to recover the Hellmann-
Feynman theorem.?*~26 Then the calculated force be-
comes particularly transparent because it can be interpret-
ed in a purely electrostatic picture. Such analysis is ob-
scured in the total energy, because of double counting and
exchange-correlation terms.

In this paper we give a more detailed description of the
Green’s-function force method of Ref. 3. Section II deals
with the basic theoretical arguments. In particular we
mention two independent tests which can be used to check
the accuracy of the results. In Sec. III we apply the
method to the doubly positive and neutral charge states of
the vacancy in silicon. We demonstrate the convergence
properties of the method and compare the results to those
of earlier semiempirical calculations.

II. HELLMANN-FEYNMAN THEOREM FOR FORCE
CALCULATIONS

In this section we derive the Hellmann-Feynman
theorem from density-functional theory.?’” In particular
we discuss the problems of an application of this theorem
to localized systems and we describe how these problems
can be solved. Rydberg units are used.

A. Gradient of the total energy

The electronic energy of an interacting many-electron
system with charge density n(r) in an external potential
v(r) is given by?"%8
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“E,[n]= f v(r)n(r)dr

w1 [T El—(:Lr(,rlldrdr’+Ts[n]+Em[n] Y
The functional T is the kinetic energy of noninteracting
electrons. E, is the exchange-correlation energy and thus
contains the whole complexity of the quantum-
mechanical many-electron problem. We note that the fol-
lowing discussion does not depend on the actual form of
this functional. Therefore the discussion is valid in gen-
eral but also for the local-density or the Xa approach.
The external potential v(r) might be the potential of the
nuclei, or, in a frozen-core approximation, the potential of
the ions. In a pseudopotential approach, it is given by the
ionic pseudopotentials. Below we refer to v(r) as the po-
tential of the ions. The ground-state total energy is a
minimum for the correct electron density. Taking into
account that the total number of electrons is conserved,
this minimization can be expressed as

o0 ondr=0, (2)

OE,
8E,[n]= [ l—~u

where p is a Lagrange parameter. Thus, Eq. (2) deter-
mines the electron density of the electronic ground state,
for a given external potential v (r). If E,[n] is stationary,
SE,/6n is constant and equals u. Let us now consider
that the external potential depends on a set of parameters
Q; (hereafter collected in a vector Q) which determine the
atomic geometry. Obviously, each Q represents a dif-
ferent external potential v(r,Q), giving rise to a different
electron density n(r,Q). From Eq. (1) it follows that the
gradient of the ground-state energy is given by

oE, v (r,Q) 8E, 9n(r,Q)
—_aQi __f 30, n(r,Q)dr— f on —aQi dr

(3)

The first term in Eq. (3) is the Hellmann-Feynman force,

FA[n]=— fév(,;g—.Q)n(r,Q)dr. )

This term describes the pure electrostatic interaction of
the electron charge density n(r,Q) and the potential of
the ions, v(r,Q). As noted already above, 8E, /8 is con-
stant if the variational problem [Eq. (2)] has been solved
exactly. If this is the case, the second integral in Eq. (3)
vanishes because the number of particles does not depend
on Q. Unfortunately, as will be discussed in Sec. IIB
below, the variational problem of Eq. (2) is not solved ex-
actly in actual calculations, and therefore the use of the
Hellmann-Feynman theorem [i.e., the neglect of the
second term in Eq. (3)] is usually not justified. In other
words, the Hellmann-Feynman theorem does not usually
work in actual calculations. We recall that the total ener-
gy is variational [Eq. (2)] and thus insensitive to small
changes in n(r,Q). However, the two integrals in Eq. (3)
depend linearly on little density changes®>* and small er-
rors in n(r) might have significant effect on each of
them, even if their sum is nearly unaffected. As a conse-
quence, the use of the Hellmann-Feynman theorem re-
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quires a more accurate charge density than a total-energy
calculation. The second term of Eq. (3) is due to inaccu-
racies in the calculated electron density, i.e., to inaccura-
cies in solving the variational problem of Eq. (2).3"32 We
therefore refer to the second term of Eq. (3) as the varia-
tional force,

SE,
[ o)y ©

8n aQ;

It is clear from Egs. (3)—(5) that, when the Hellmann-
Feynman theorem is used, it is crucial to keep careful con-

Fiy[n]:""

trol on the variational force, either to show that it is negli-

gible, or to include it, if necessary. These two possibilities
are the two routes being used for force calculations in
quantum chemistry.33

So far, the discussion dealt only with the electronic part
of the total energy. The atomic geometry is, however,
determined by both the electronic and the internuclear (or
ion-ion) interactions. Consequently, the ith component of
the force is given by

Fi[n]=F[n]+F/[n]+F°" . (6)

The ion-ion interaction is of pure electrostatic origin. If
the ionic potentials are spherically symmetric, and their
central-cell (non-Coulombic) parts do not overlap, F°"
can be evaluated in a point-charge model. Further details
are presented in Appendixes A and B.

B. Recovery of the Hellmann-Feynman theorem

The calculation of the variational force F*[n], is not
particularly complicated [see Eq. (10) below]. However,
F” does not describe any physical interaction, but is only
due to inaccuracies in the solution of Eq. (2). Therefore,
the occurrence of this force obscures the transparency of
the Hellmann-Feynman theorem and thus the mechanism
which drives the atomic rearrangement. Obviously, an
approach which allows to neglect the term F” would be
important. This is discussed in this subsection. We first
analyze the origin of the variational force and then
describe the conditions which make it negligible.

In order to analyze the force F¥ we note that the charge
density is usually determined from a self-consistent calcu-
lation of the Kohn-Sham equations:®

{ —V2 4 Vegln (r);r]} dr(r) =€rdp(r) , (7
with
r) . OB
Vegln (r);r]=v(r)+ f ,1 dr' + on ’ (8)
and
N .
nir=3 |é(n)|?, 9

k=1

where the sum runs over all occupied states.
With these equations, F” is written as
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F| [n]——zRez f a‘g‘ 5.~ bdr (10a)
:—ZRC aQ, ‘V2+Veff[n(r);r]
——-le¢kdl‘ . (10b)

Here the normalization conditions,
an [ #u(n)gi(ridr=0,

have been added for convenience of the later discussion.
Equation (10b) allows to calculate the F” directly from
the single-particle results. Furthermore, it allows a de-
tailed analysis of its origin. We emphasize again that Eq.
(10b) would be zero if Eq. (2) or Egs. (7) to (9) had been
solved exactly, i.e., if the calculated wave functions ¢
were exact eigenfunctions of {—V2+ Vg[n(r);r]}.

will show below that this is never achieved in actual cal-
culations. Equation (10b) has been discussed recently by
Satoko®* in the framework of the Xa approximation and
was applied by him to cluster calculations. Bendt and
Zunger® studied this equation in the context of their sug-
gestion to simultaneously relax the nuclei and the elec-
trons.

We have so far stated that the force F” should be con-
sidered because the charge density »(r,Q) is usually not
an exact solution of Eq. (2). One reason for this is that
the consistency between the effective potential [Eq. (8)]
and the charge density [Eq. (9)] after a finite number of
self-consistent iterations might be excellent for many pur-
poses, but is never exact. The potential in Eq. (10b)
should be obtained from a charge density [Eq. (9)], which
is constructed with the wave functions of the last itera-
tion. However, if the calculation is not completely self-
consistent, these wave functions are calculated for a dif-
ferent potential, say Vg[#], related to the previous itera-
tion. We therefore add and subtract this potential inside
the brackets of Eq. (10b), and obtain

F/[n]=—2Re 2 f — V24 Ve[ A]— €} drdr

aQ,

Vegs[n]—Veg[#]}drdr .

_2Rek§1 f ﬁ{
(11)

The first term contains the eigenvalue problem which one
should have solved in the last iteration. Let us assume for
a moment that this has been achieved without the need of
any approximation. Then this term is zero and the force
F" is only due to the difference between the input poten-
tial Vg[#'], which was used for the last iteration, and the
new (output) potent1a1 Vegg[n]. Thus, in order to neglect
the force FV it is important to bring the calculation very
close to self-consistency. Part of the problems in all-
electron calculations arose from this difficulty. In this
respect a frozen-core approximation provides an impor-
tant advantage: It is well known that the influence of a
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little rearrangement of the highly localized core charge
density on the potential can be quite significant.
Nevertheless, such a rearrangement is usually unimpor-
tant for the chemical binding, which is determined by the
valence electrons. Therefore the calculation gets more
stable if the core electrons are kept fixed.*® A further step
toward a stabilization of self-consistent electronic struc-
ture calculations is provided by the pseudopotential ap-
proach, where the core is frozen and the valence charge
" density is smoothened in the region of the core. As a
consequence, a high degree of self-consistency can be
reached and the self-consistency part of the variational
force [last term of Eq. (11)] can be made arbitrarily small.

We now come back to the first term on the right side of
Eq. (11). This term includes the single-particle equations
which should have been solved in the last but one itera-
tion. However, this solution is usually not exact, because
a finite (M dimensional) basis set is introduced. The wave
functions are then expanded as

M
r(r,Q)= Y Cu(Q)X;(r,Q), (12)

I=1
and the first term in Eq. (11) reads

9X7(Q)
—2Re 2 2 2 CiCim [ —"—aIQ
k=1l=1m=1 i

M
X{ = V24 Ve[l — €} X (Q)dr= 3 Flogs, (13)
I=1
with
X7 (Q)
Fba51s —2Re 2 2 Cklckm f —L=0 Q
k=1m=1 9Q;
X{—V +Veff[ﬁ]—~6k})(m(Q)dr . (14)

We note that the terms (13) and (14) are usually different
from zero, because the matrix equation of Eq. (7), which
is studied in an actual calculation, is

f_lfx}*{

_V2+ Veff[ﬁnxmdrckm

M
— €k 2 Ckm fX?deI'ZO .
m=1

V + Veff[n ] }X drckm

M ax7
—E€, Cim | —X,dr
km2=1 ki f 30

is usually different from zero.

The derivatives of the expansion coefficients C; do not
appear in Eq. (14) because of the normalization condition.
In Egs. (13) and (14) the variational force F? is decom-
posed into M contributions, where each is associated to
one basis function X;. The corresponding equation in
Hartree-Fock theory was recently discussed by Nakatsuji

and co-workers.’”3® They also showed that F!. van-
ishes if the derivative 8X;(Q)/Q; lies entirely in the Hil-
bert space spanned by the basis. In other words, the part
of the variational force associated to a given orbital can be
eliminated just by including its derivative in the basis set.
This scheme provides a systematic way for improving the
basis set and to reduce the value of F”. In fact, it has
been shown for molecular calculations that the variational
force can be made arbitrarily small.?’

At this point it may be of interest to apply our method
to two types of basis sets which are particularly useful.
First, Gaussian orbitals x’yizke ~ar® have the advantage
that their derivatives are also Gaussian orbitals with the
same decay.’’ Therefore the variational force due to an s
function will be eliminated just by including the corre-
sponding p Gaussian. In general, the force F{,,, where /
is now the angular momentum quantum number, is can-
celed by the / 4 1 Gaussian orbitals. An even better basis
set, appropriate for calculations of phonon modes,***!
surface structure (with the repeated slab method), and de-
fects (with the supercell method), is plane waves. As they
are independent of the positions of atoms, all forces F!
vanish exactly. To be precise, the variational force van-
ishes if the Hilbert space spanned by the basis is indepen-
dent of the atomic distortions (see also Ref. 39). Thus, the
variational force would vanish if the plane-wave basis is
defined by an energy cutoff, but it would not vanish if the
basis set were defined by a fixed number of reciprocal-
lattice vectors. It is remarkable that F” can be reduced
significantly or even eliminated even if the basis set is not
complete.

The above discussion shows that the accuracy of an ap-
plication of the Hellmann-Feynman theorem can be tested
by improving the basis set in a systematic way. Another
independent test is possible for localized systems like de-
fects or molecules, by comparing the results of different
charge states. Let us define the difference A; as

A;(N—-N+m;Q)

=F,[nV*™(r,Q)]1-F[n"(r,Q)]

a N
I E +m . —E N,
30, {E,[n (r,Q)]—E,[n™(
The indices N +m and N indicate the number of elec-
trons. Following the concept of transition state*>** it fol-
lows that

Q1. (15

AN —N +m;Q=— T (((QN +m)+eQN)}
2 9Q;
(16a)
~—m—6(Q,N+m/2) (16b)

9Q;

Here €(Q,n), e(Q, N +m), e(Q, N +m /2) are the highest
occupied single-particle energies of the Kohn-Sham equa-
tion of the N- and (N +m)-particle systems and of the
transition state. It is well known that the replacement of
the total-energy difference in Eq. (15) by single-particle
energies*?* is a very good approximation. Therefore Egs.
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(16a) and (16b) allow us to compare the results of the
force calculation with those of a total-energy calculation.
Below in Sec. III, we give an example of this test for the
vacancy in silicon. We note that Eqgs. (16a) and (16b) are
in principle only valid if the total energy is a continuous
function of the electron number, which holds for the local
density and the Xa approach.

We summarize that the variational force [Eq. (11)] can
be made arbitrarily small if a pseudopotential approach is
used and if an appropriate basis set is chosen. This means
that the basis set should include all basis functions neces-
sary for a total-energy calculation plus their derivatives
with respect to the parameter of the distortion. This ap-
proach allows to neglect the force FY, ie., to use the
Hellmann-Feynman theorem with its great advantage in
the interpretation of theoretical results. We also note that
it can be more accurate to calculate the equilibrium
geometry and force constants with this method than from
a numerical derivative of a finite (and often quite small)
number of total-energy points. Further, our method al-
lows for a tractable test of the numerical accuracy (see for
example the discussion of Fig. 1) whereas a corresponding
test for total-energy calculations is significantly more
complicated.

C. Application to point defects
Because of the localized nature of point defects, it is
convenient to distinguish two groups of atoms. The
atoms in the immediate neighborhood of the defect are la-
beled by an index A4 and all the other atoms by an index

B. The configuration vector Q may then be written as
Q={Q,4,Qp}. The total elastic and electronic energy is

D(Q,)=D(Q,,Q%)—ADQ,), (17)
with

Q4 QB)=E, g, 00 [n(1,Q0QPI+EQ,,Q}) .

(18)

Here EU(QA,Q% )[n (r,Q4,Q%)] is the total electronic ener-

gy of Eq. (1), calculated for different distortions of the A
atoms, but keeping the other atoms at their perfect crystal
positions Q3. E™™" js the electrostatic interaction of
the ions. A®(Q,) is the correction term due to the fact
that ®(Q,,Q%}) was calculated with the constraint of
keeping the B atoms fixed. Thus A®(Q,) is the energy
released when the B atoms are allowed to relax. Because
of the variational principle this contribution is alway posi-
tive. It will lower the total energy of the system and
soften its force constant. For a sufficiently large region
4, this long-range correction is of purely elastic origin, it
is a property of the unperturbed crystal and can therefore
be calculated with a semiempirical method. On the other
hand, the energy ®(Q,,Q%) depends sensitively on the
particular defect and should be calculated self-
consistently.

Because we are concerned in this paper with calcula-
tions of the total-energy gradient, we rewrite Eq. (17) in
terms of the force on the 4 atoms:
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| 9P(Q.Q) | d
Fyln]=— 3Q, + 3Q, AD(Q,)
=F,n]] g+ 5 AP(Qu) (19)

Here the force F,[n]|,, is given by Eq. (6), which
Qp

should be calculated under the constraint of unrelaxed B
atoms. The prerequisite for a calculation of F [n] | QS is,
of course, a method which allows an accurate calculation
of the charge density 7 (r,Q) of a macroscopic solid with
a localized defect. This method is the self-consistent
Green’s-function method,'*~'® shortly summarized below.
Let H°[n°] be the Hamiltonian in the Kohn-Sham
equations of a perfect crystal [charge density n%r)]. It
can be calculated using standard band-structure methods.
n (r,Q) is the, at first unknown, density of the crystal con-
taining a defect. The defect-induced density change,

An(r,Q)=n(r,Q)—n%r) (20)

is then determined by
AnQ=—2Im [ GUE)U[n%An]
T occ
X {1—GUAE)U[n° An]}~'GYUE)dE .

(21)

The integral is over all occupied states. The perturbation
U[n° An] is defined as the difference between the Hamil-
tonians of the perfect and the perturbed crystal,

Uln,An]=H[n]—H[n°], (22)

" and the Green’s function G%(E) is

GO(E)=lin}){E-H°[n°]+in}”“‘ . (23)
n—>

The advantage of the Green’s-function approach for de-
fects is due to the fact that for such systems both An(r,Q)
and U[n,An] are well localized in real space. Equations
(21) and (22) can be solved self-consistently to a very high
degree of accuracy if a localized basis is used.

As shown above, the Green’s-function method splits the
problem into the perfect crystal [charge density n%r)] and
the defect-induced change [An(r,Q)]. When we intro-
duce this splitting also in the calculation of the
Hellmann-Feynman force, we get

F{T[n]=FF[An]+F[n°] . (24)
The first term on the right side of Eq. (24),
HF, v (r,Q)
F[An)=— [ TQiAn(r,Q)dr, (25)

is just the integral of a well-localized function. It can be
computed by standard numerical procedures. The second
term arises from the electron density of the perfect crys-
tal:

FHF 0] = @éQ’Q{QnO(r)dr . 26)
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Because the external potential can be easily obtained in
analytic form and because the charge density n%r) is
periodic, this term is evaluated in reciprocal space. De-
tails for a breathing distortion are given in Appendix B.

We emphasize that Eq. (26) does not have its counter-
part variational force. Because of the splitting defined by
Eq. (20), n%r) is independent of the atomic rearrange-
ment. Thus only FHF[An] is sensitive to inaccuracies in
the charge density. Following the ideas of the preceding
paragraph it is then straightforward to estimate and to
reduce the inaccuracies by systematically improving the
basis set used for solving Egs. (21) and (22).

III. VACANCY IN SILICON

The above described method has already been applied to
study the breathing distortion at Ga-site single donors in
GaP,? the As antisite in GaAs,* and chalcogens in Si.> In
this section we discuss its application to the vacancy in
silicon. We use the self-consistent Green’s-function
method in the formulation described in Ref. 20. It is well
known that the undistorted Si vacancy has a threefold de-
generate (without spin) level in the band gap (see for ex-
ample Refs. 14 and 15). The corresponding wave func-
tions are built from those sp> hybrids of the four neighbor
atoms, which point toward the vacant site. In p-doped
material, the level is empty and the vacancy is in its dou-
bly positive charge state, ¥2*. Only a breathing distor-
tion is expected for this charge state.** If the Fermi ener-
gy moves up in the band gap, the next possible charge
states are the singly positive and the neutral state. Here
the deep level is filled with one and two electrons, respec-
tively. As the level is orbitally degenerate and only par-
tially filled, the system will reduce its energy by going to a
lower symmetry, which lifts the degeneracy of the level
(Jahn-Teller effect). This Jahn-Teller distortion was stud-
ied by Baraff, Kane, and Schliiter?. by combining a self-
consistent Green’s-function calculation of the single-
particle energies with a semiempirical valence-force model
to describe the elastic restoring forces of the crystal. They
found that the first donor level €(0/+) lies below the
second donor level €(+ /24 ), due to different lattice dis-
tortions of the different charge states. Thus, the silicon
vacancy forms a “negative U” system and the V' * charge
state is not stable. Independently of this symmetry lower-
ing distortion, a breathing distortion exists. This breath-
ing distortion was not calculated from the valence-force
model. More recently, DeLeo, Fowler, and Watkins® have
shown that models which are based on a valence-force
treatment can give completely unreasonable results for the
breathing distortion. It is not clear to us if this conclusion
is really a failure of the valence-force model, or if it arose
because of additional approximations.

It might be argued that breathing distortions at defects
can be estimated from the covalent radii of the atoms.
However, it is well known that such arguments can be
quite misleading for predicting the distortion: Such an
approach should take into account that the “radius of an
atom” depends on the type of chemical bonds that are
formed with the adjacent atoms. But for deep-level de-
fects these bonds can be significantly different from those
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known from perfect crystals or molecules. In turn, it ap-
pears that breathing distortions are often even less under-
stood than Jahn-Teller driven distortions. Below we dis-
cuss only the breathing of the Si vacancy and not its
Jahn-Teller distortions. In subsection A we discuss the
convergence properties of the force calculation. Subsec-
tion B deals with the discussion of the results, with the
comparison to experimental data and to semiempirical
calculations.

A. Convergence properties of the Hellmann-Feynman force

For silicon we use the ionic pseudopotential of Schliiter
et al.** The exchange-correlation potential is treated in
the Xa form with @=0.8. This potential was used by
Thm and Cohen*® to study the equilibrium properties of
bulk Si and of the unreconstructed (111) surface. The
equilibrium lattice constant and the crystal energy were in
good agreement with experiment. However, the calculat-
ed bulk modulus was clearly overly high. Nevertheless,
the calculated equilibrium relaxation for the Si(111) sur-
face was in excellent agreement with measurements.

In Sec. IIB we discussed the problems related to a
Hellmann-Feynman study. We noted that the accuracy of
the force calculation should be tested by improving the
basis set in a systematic way. We therefore performed
self-consistent calculations with four different basis sets.
Each set contains s, p, d, and f functions at the vacant
site. The sets differ with respect to the angular momen-
tum functions at the four neighbor atoms: set 1 has only
s functions, set 2 has s and p functions, set 3 has s, p, and

-d functions and set 4 has s, p, d, and f, functions. For

each angular momentum three Gaussian radial functions

—a.rl
are used (rle” ") with the decays a;=02 au.”?

a,=0.4 a.u.”2, and a3=0.6 a.u. "2

Figure 1 shows the results of the force calculations with
these four different basis sets. Only the four nearest
neighbors of the vacancy are moved. The long-range dis-
tortion [compare Eq. (19)] will be included later. We note
that each calculation is carried to self-consistency. This
implies that the difference between different calculations
arises from two sources: In part the difference is due to
the variational force F” and in part it is due to the differ-
ence in the variational flexibility. The latter aspect would
also affect a total-energy calculation. Thus Fig. 1
represents a complete test of the accuracy of the calcula-
tion. ‘'We see that at the undistorted geometry the basis set
2 already gives a sufficiently accurate result. However, in
order to predict the amplitude of the distortion with an
accuracy*’ of +0.2% of the perfect-crystal Si—Si bond
length, one needs to include at least d orbitals at the
neighbors. Figure 1 thus also indicates the possible diffi-
culty with this approach. For systems with larger distor-
tions the amount of the required basis functions might in-
crease significantly. Then it might be preferable to calcu-
late the variational force [Eq. (11)] and to include it in the
calculations explicitly. Figure 1 also displays the single
particle eigenvalues of the four calculations. Clearly, the
results of the smallest basis set (only s orbitals at neigh-
bors) are worse than those of the other calculations. How-
ever, even this calculation differs by less than +0.1 eV
from the better ones.



31 TOTAL-ENERGY GRADIENTS AND LATTICE DISTORTIONS . . . 6547

Distortion (A) Distortion (A)
0 002 004 006 008 01 g 002 004 0.95 [].98 U;l
5‘ -
\3\ 086
0j
| 2 082
o< -5 1 =
= =
- = 078
g 1 g
15k 1 Yom
-20r 070

0 1 2 3 4
Distortion (%)

Distortion (%)

Convergence test for the calculation of the breathing
distortion of the neutral vacancy in Si moving only the four
nearest neighbors. Zero distortion refers to the geometry of the

FIG. 1.

perfect Si lattice. The distortion is defined positive if the
nearest neighbors of the vacancy move away from the vacant
site. Four different basis sets are used. The most complete one
is 4 (see text). Left: Calculated force on the four nearest neigh-
bors. Right: Single particle energy of the ¢, level in the gap; the
zero of energy is at the top of the valence band.

We now turn to the other test of the force calculation,
i.e., to the comparison of the force differences of different
charge states to eigenvalue derivatives [compare Eqgs.
(16)]. As noted above in Sec. II B, this comparison re-
flects the differences between the Hellmann-Feynman
force and the derivative of the total energy. Table I
displays the results. The numerical accuracy of these cal-
culations is about +0.1 eV/A. Thus it is clear that the
basis set 3, which contains s, p, and d functions at the
neighbors is -already sufficiently complete in order to
neglect the errors due to Eq. (11).

B. Results and comparison to other calculations
and to experiment

In this section we analyze our results and we compare
them to those of other calculations. We will now also in-
clude the long-range (elastic) distortions [compare Eq.
(17)], which are calculated from

AD(Q,)=—DP2(Q,)+D2(Q4,Q%) . Q7

Here ®°(Q ) is the deformation energy of a vacancy in a
fully relaxed lattice. It is calculated using the semiempiri-
cal model and the parameters of Baraff, Kane, and
Schliiter’ (see also Ref. 22). The atoms of reglon A are
the four nearest neighbors of the vacancy. ®2(Q,,Q%) is
calculated in the same model, but freezing the B atoms
into their undistorted crystal positions. This approach is
particularly suited for covalent systems, like Si, where the
elastic properties are well described using only short-range
interatomic forces. We emphasize that the function
A®P(Q,) does not depend on the particular defect, as it
only accounts for the (elastic) relaxation of more distant
atoms. The inclusion of this term softens the force con-
stant of the nearest neighbors and it also affects their
equilibrium geometry.

We start with the doubly positive charge state of the va-

TABLE 1. Convergence test of the force calculation for the
Si vacancy for four different basis sets (see text). The difference
of the energy gradient for the neutral and the doubly positive
charge state as directly derived from the force calculation
[APr(0—2 4 )=F(2+4)—F(0)] is compared to the same quan-
tity as obtained from the numerical derivative of the energy
(AY(0—2+ )= +(9/0Q)[e(2+)+€(0)]). The distortion is
taken as + 2%.

Aforee Acnerey Difference
Basis €V/A) (eV/A) (€V/A)
1 (s) 3.73 2.99 + 0.74
2 (s,p) 1.39 1.71 —0.32
3 (s,p,d) 1.01 0.95 +0.06
4 (s,p,d,fo) 1.04 0.98 + 0.06

cancy ( ¥27), which has tetrahedral symmetry.>* Figure
2 shows the calculated force on the nearest neighbors:
These atoms move away from the vacant site by 0.15 A,
thus increasing the distance from the center by 6.5%
compared to the perfect-crystal Si-Si distance. Because
we are dealing with a breathing distortion, we omit in the
following the vector notation. The vector Q, which de-
scribes the positions of the four neighbors of the vacancy,
is replaced by the distance qRg; between the center and its
neighbors. Ryg; is the perfect-crystal Si—Si bond length.
In the distortion range of interest the force is found to be
approximately linear:

F(g)=—K(qRs;

Here g* is the equilibrium 3eometry The force constant
K is calculated as 29 eV/A% This value depends sensi-
tively on the accuracy of the calculation. The numerical

—q*Rg;) . 28)

accuracy*’ of K is estimated as +12 eV/A It is an im-
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FIG. 2. Force on the four nearest neighbors of the Si vacancy
as a function of a breathing distortion for two different charge
states (neutral: ¥ doubly positive: ¥?2+). The long-range elas-
tic distortions are included via a semiempirical model (see text).
Zero distortion refers to the geometry of the perfect Si lattice.
The distortion is defined as positive if the nearest neighbors of
the vacancy move away from the vacant site.



6548 SCHEFFLER, VIGNERON, AND BACHELET 31

portant advantage of the force method that a test as in
Fig. 1 is tractable and an estimate of the numerical accu-
racy is possible. A corresponding estimate of the force-
constant accuracy from a total-energy calculation is sig-
nificantly more costly and complicated.

For comparison, Fig. 2 also shows the results of the
breathing distortion of the neutral charge state of the va-
cancy. We see that the force constant is nearly un-
changed. However, for Vo, the nearest neighbors move
less than for V21, i.e., by 0.11 A (i.e., + 5% of the per-
fect crystal Si—Si bond length).

These results can be understood as follows. For the
doubly positive charge state the vacancy-induced deep lev-
el is empty. The direct interaction between the four atoms
around the vacancy is weak. Because of the absence of
the central atom for each of the neighbors, the symmetry
is broken, and their electronic structure is no longer re-
quired to form sp> bonds. In fact, the geometry might be
expected to favor sp? bonds with the next shell of atoms.
As a consequence, each of the four neighbors moves away
from the vacant site, toward the center of the three atoms
of the second shell to strengthen its bonds with them.
However, a perfect sp? bond is hard to realjze, because it
would require that the atoms move by 0.8 A, which is by
far too large, as it would induce a significant long-range
distortion. Nevertheless, it seems that the tendency to
form a more sp -type bonding drives the atoms away
from the_ vacant site, giving rise to an outward distortion
of 0.15 A and 0.11 A, respectively. The comparison of
the results for the two charge states shows that the force
of the neutral-charge state is higher than that of the dou-
bly positive one. This comes about because the neutral
state has two electrons in the ¢, dangling bonds. Because
the center of gravity of the electronic charge of these dan-
gling bonds is inside the cage of the four Si neighbors, the
neutral-charge state has more negative charge in this cage
than the doubly positive charge state. As a consequence,
this higher negative charge pulls the nearest ions (positive
charges) closer to the center. We note, however, that this
effect is not very dramatic, and that the neutral charge
state also shows a slight outward distortion.

The above results show that (close to the equilibrium
geometry) the force for the neutral charge state is smaller
than that for the positive one. According to Eq. (16) this
just reflects the fact that the deep-level wave function of
the vacancy is nonbonding in character and that its orbital
energy increases with an outward breathing distortion.
Therefore we can qualitatively expect the same behavior
for all acceptors (bonding deep-level wave function) and
the reverse for deep donors (antibonding deep-level wave
function) (see also Ref. 5).

We now compare our results to those of other calcula-
tions. The slope of the single particle energies is calculat-
ed as 0.48 eV/A. This quantity was previously calculated
by Jaros et al.,?! Lipari et al.,'” and Baraff et al.? All
these authors attain nearly the same result. Baraff et al.?
have also calculated the force constants of the vacancy
distortions from a semiempirical valence-force model.
For the breathmg distortion, they obtained K=7.5 eV/A2,
This result is significantly smaller (i.e., by about a factor
of 4) than our value. In fact, using only the semiempirical

model, i.e., ®2(Q,) of Eq. (27), we obtain the same num-
ber as Baraff et al. In such a model the interaction be-
tween the four neighbors of the vacancy is assumed to be
zero. However, this assumption is not confirmed by the
self-consistent calculations: In the case of the vacancy
there is an a; resonance at the top of the valence band
which is due to a bonding combination of sp> dangling or-
bitals. This resonance is filled with two electrons and
thus implies a weak attraction between the four neighbors
and therefore an increase of the breathing-mode force
constant if compared to a model which neglects this in-
teraction. In Table II we compare the results of Baraff
et al. to those of a similar semiempirical calculation of
Larkins and Stoneham! and to recent experimental esti-
mates given by DeLeo, Fowler, and Watkins.* We see
that DeLeo et al. estimated values which are significantly
higher than those derived from the valence force treat-
ments. In fact, these experimental estimates lie within the
range of accuracy of our result. Furthermore, we note
that the calculated direction and the amount of the calcu-
lated distortion of the four neighbor atoms of the vacancy
are consistent with the experimental results of the un-
reconstructed Si(111) surface.*® Such a comparison is
meaningful, because locally the Si vacancy looks like the
Si-vacuum interface. The only difference is due to the
fact that the dangling orbitals of the vacancy can interact,
which gives rise to the above mentioned increase in the
force constant. Neither the direction nor the amount of
the breathing distortion could be determined by Baraff
et al. from the valence-force model. Therefore these au-
thors estimated the breathing distortion of the neutral va-
cancy from the analogy to the unreconstructed (impurity-
stabilized) Si(111), surface.*® They obtained an outward
distortion of 0.1 A for the neutral vacancy and of 0.23 A
for the doubly positive-charge state. Their value for the
neutral vacancy is practically equivalent to our number.
However, as a consequence of their small force constant,
their value for the double positive vacancy is somewhat
higher than our result. The important point is the energy
gain due to the breathing relaxation occurring if one goes
from the V° to the V2% charge state. From Fig. 2 we
derive that this energy is quite small, i.e., about 0.03 eV.
Therefore we conclude that our calculations roughly con-
firm the breathing distortion which was used by Baraff,

TABLE II. Comparison of the breathing mode force con-
stants of the Si vacancy. The results of Baraff, Kane, and
Schluter (Ref. 2) and of Larkins and Stoneham (Ref. 1) are ob-
tained from a semiempirical valence-force model. The experi-
mental estimates are from DeLeo, Fowler, and Watkins (Ref. 6).
They are derived from an analogy to the vacancy in diamond
using two different models. (To be consistent with our defini-
tion of the force constants, the values given in Ref. 6 simply had
to be multiplied by 4.) )

K (eV/AR%)
This work 29+12
Baraff et al. 7.5
Larkins and Stoneham ~4
Experimental estimates 20.4,27.2
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Kane, and Schliiter for their suggestion and analysis of
the negative- U properties of the Si vacancy.

IV. SUMMARY

We discussed a parameter-free method for calculating
the gradient of the total energy and lattice distortions at
defects in semiconductors. The approach is based on the
self-consistent Green’s-function method,'*1>2° which al-
lows a highly accurate calculation of the electronic charge
density at a defect. From this charge density we calculat-
ed the gradient of the total energy using the Hellmann-
Feynman theorem. We have considered that the
Hellmann-Feynman force is linear in little inaccuracies in
the electronic charge density and therefore usually not
very accurate. The origin of this problem is analyzed and
it is shown how it can be overcome by taking two condi-
tions into account, i.e., (i) the pseudopotential approach
and (ii) the inclusion of basis set derivatives. It is shown
that then the Hellmann-Feynman force gives results at the
same level of accuracy as a corresponding total-energy
calculation. Two tests of the accuracy are proposed and
they are demonstrated for the breathing distortions of the
vacancy in silicon. This investigation shows that the pro-
posed Green’s-function force method works and that a
test of the numerical accuracy*’ is tractable.

Furthermore, the results for the Si vacancy are
analyzed and compared to previous (semiempirical) calcu-
lations as well as to available experimental estimates. We
find that the nearest neighbors of the vacancy move away
from the center by about 0.11 A for the neutral charge
state and by 0.15 A for the double positive charge state.
The direction and the amount of this calculated breathing
distortion agree with those experimentally known for a
J

somewhat similar system, namely the relaxation of the un-
reconstructed Si(111) surface.*®* The yacancy force con-
stant is calculated as K =29+12 eV/A? which is signifi-
cantly different to that of the semiempirical methods, but
it is consistent with the experimental estimates by DeLeo,
Fowler, and Watkins.®
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APPENDIX A: ION-ION INTERACTION

This appendix deals with the evaluation of the ion-ion
force for a defect of tetrahedral symmetry and a breathing
distortion. We assume a frozen-core approximation where
the core is sufficiently localized such that there is no
core-core overlap. The ion-ion interaction is then purely
Coulombic, which implies that ions can be treated as
point charges. Taking the origin of the coordinate system
at the center of the defect, the positions of the four
nearest-neighbor atoms at the undistorted geometry are
R,, R,, R;, R,. For a breathing distortion their positions
are gR;, gR,, qR;, gR,;. The charges of the perfect-
crystal ions at the center and at the four nearest neighbors
are Z;, with k=0,1,2,3,4. The ionic charge of the impur-
ity is Zjy, which for a vacancy is zero. The ion-ion in-
teraction is then

. 1 . 4 i .
Fire 3 AT 621 /1) 3 216 7O S Z,iGRye PO
G G 1 k=1
4 4 R2—_R,-R 4
94Xk 1" R
8>3 3 ZiZip(g |qRe—R; | ) +2> 3 Zih(g g —1] |Ri|)g —DR]
k=1i=1 |qR—R; | k=1
(is£k)
1| & ¢ ZyZy & (Zimp—Zo)Zy & & qR —Ry
+— |5 “+ — 2 Zkale'—"““"— . (Al)
112 : kgl k'=1 |Rk—Rk [ 2 |Rk l kgl k'= KQRk—RkVIS
(k') (ksk")
In this expression, 7; is the position of the /th atom in the 477
unit cell and the sum over [ runs over all atoms within Fig" o= — 2 Z, 2 iG- Rk 2" , (A4)
one cell. V. is the unit cell volume, g is the Ewald G- } k=1 G G=0

space cutoff, and the functions p and % are

2 2
_ e * Vire* erf(x)
p(x)———‘/;r X 1+ Tx ) (A2)
and
h ()= — —2—[xe " — (V7 /2)erf(x)] . (A3)

Virx

The G =0 contribution of this expression is divergent due
to the long-range nature of the Coulomb interaction.
However, this particular term, which reads

is exactly canceled out by a corresponding divergence in
the electronic contribution to the force (see Appendix B),
because of the charge neutrality of the perfect crystal.

APPENDIX B: FORCE FHF[°]

Here we examine the contribution of the perfect-crystal
charge density to the total force. Again we discuss the
breathing distortion of a tetrahedral defect. The notations
are the same as in Appendix A. According to Eq. (26),
the perfect-crystal charge density gives rise to the contri-
bution
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FH[n%)=— [ aLg;’L)n%r)dr. (B1)

Here v(r,q) is the sum of the ionic pseudopotentials of the
four neighbors of the defect, i.e.,

4
ving)= > v(r—qRy) . (B2)
k=1

The use of a Fourier expansion of the perfect-crystal
electron density in this equation immediately leads to the
following reciprocal space summation:

4
F[n01=_— 3 Cg 3 SEVE, (B3)
G k=1
with
Sk =iG-Rye' O * (B4)
and
vk = f ve(r)e’Srdr . (B5)

For a local pseudopotential given in the analytic form,
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‘ V4 s —akr?
v (r)= ~Tkerf(\/ Bir)+ > ajke “ar, (B6)

Jj=1

the ionic potential is spherically symmetric, and its
Fourier transform only depends on the modulus of G:

, ArZy  _G2 s 3624k
vk—_ 2k, ﬂ"-%—zak 7 e “

2 J k
G i=1 7|9

(B7)
The expression (B3) contains a diverging part which reads
4 477 k

Cs 3 iGRe——
k=1 G

FEE [n°]1= (B8)

G=0
Cg—o is the mean particle density in the crystal and thus
is given by

CG=0=Vi >z, (B9)
¢ T

where the sum extends over all atoms in the unit cell
(volume V,). It is thus obvious that Eqgs. (B9) and (A4)
cancel each other.
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