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Binding energies of Wannier excitons in GaAs-Gat Al„As quantum-well structures
in a magnetic field
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Binding energies of the ground state of both the heavy-hole and light-hole excitons in a GaAs
quantum well sandwiched between two semi-infinite layers of Gal Al„As, are calculated as a func-
tion of the size of the well in the presence of an arbitrary magnetic field. A variational approach is
followed where the trial wave functions are expressed in terms of Gaussian basis sets. The applied
magnetic field is assumed to be parallel to the axis of growth and the binding energies are calculated
for a finite value of the height of the potential barrier. As expected, for a given value of the magnet-
ic field, the binding energies are found to be larger than their values in a zero magnetic field. The
contribution to the binding energy due to the magnetic field, at a given field, increases slowly as the
well size is reduced. A comparison with the available experimental data is made.

INTRODUCTION

The study of Wannier excitons in a quantum-well struc-
ture consisting of a single layer of GaAs sandwiched be-
tween two semi-infinite (generally larger than 200 A in
practice) layers of Gal „Al„As has attracted a great deal
of interest in recent years. ' Owing to the reduction in
symmetry along the axis of growth and the presence of
conduction- and valence-band discontinuities at the inter-
faces, the degeneracy of the valence band of GaAs is re-
moved. This leads to the formation of two exciton sys-
tems associated with the two valence bands, namely, the
heavy-hole exciton and the light-hole exciton. Miller
et al. calculated the binding energies of the ground state
(1S) and of an excited state (2S), and later Bastard et al.
also calculated the binding energy of the ground state, of
these excitons as a function of the well size (L) using in-
finite potential barriers at the interfaces. Both these
groups followed a variational approach using different tri-
al wave functions and obtained essentially the same re-
sults. Greene and Bajaj ' were the first to calculate the
binding energies of the ground state and of several excited
states of both even and odd parity, of a heavy-hole and a
light-hole exciton as a function of well size for finite
values of the potential barrier. They found that both the
magnitude and the qualitative behavior of the energy lev-
els calculated using finite barrier heights were quite dif-
ferent from those obtained using infinite barriers, especial-
ly for thin (L &100 A) wells. Recently Shinozuka and
Matsuura have also calculated these energy levels using
an infinite potential barrier. Using a variational-
perturbation method, Jiang has calculated the binding en-
ergies of the ground state of these excitons for finite bar-
rier heights. In addition, several groups' ' ' have re-
ported measurements of' the binding energies of these exci-
tons.

In this paper we report a calculation of the binding en-
ergies of the ground state (from hereon referred to as
binding energies) of both the heavy-hole exciton and the
light-hold exciton in a GaAs-Ga& ~A1 As quantum well
as a function of the size of the GaAs well in the presence
of an arbitrary magnetic field. We follow a variational
approach in which the trial wave functions are expressed
in terms of Gaussian basis sets. We assume that the ap-
plied magnetic field is parallel to the axis of growth and
calculate the binding energies for finite values of the
height of the potential barrier. As expected, we find that
for a given value of the magnetic field, the binding ener-
gies are larger than their values in a zero magnetic field.
In addition, the contribution to the binding energy due to
the magnetic field, at a given field, increases slowly as the
well size is reduced. We compare our results with the
available experimental data.

THEORY

The Hamiltonian of an excitonic system in a GaAs
layer sandwiched between two semi-infinite layers of
Ga& „Al As grown along the [001] direction can be ex-
pressed, within the framework of an effective-mass ap-
proximation, as

H =H, —iAV+ —A —H~ iAV+ —A
C c

2

+ V, (z, )+ Vh (zp) .
EpP'

Here A is the vector potential associated with the mag-
netic field B, eo is the static dielectric constant of GaAs,
H, is the conduction-band Hamiltonian and H~ is the
valence-band Hamiltonian. The explicit expression for
H~ 1s
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H, = 1
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and H~ is described by the well-known Kohn-Luttinger
Hamiltonian. ' The relative coordinate r=r, —r~, where
r, and rI, are the positions of the electron and hole,
respectively. In our expression of the exciton Hamiltoni-
an we have assumed the same values for the conduction-
and valence-band mass parameters and the static dielectric
constant in GaAs and Ga& Al As. For most practical
quantum-mell structures these should be good approxima-
tions, since for the most commonly used values of x, these
physical parameters are not too different in the two ma-
terials. ' The potential wells for the conduction electron
V,~(z, ) and for the holes V»~(z») are assumed to be
square wells of width I.,

0, iz, i
(L/2

V„
i
z,

i
)L/2 (3a}

m+ is the heavy- (+ ) or light- ( —) hole mass along the z
direction, and p+ is the reduced mass corresponding to
heavy- (+ ) or light- ( —) hole bands in the plane perpen-
dicular to the z axis. Both p+ and m+ can be expressed
in terms of the well-known Kohn-Luttinger band parame-
ters y ~ and y2 as"

and

1 1+ (1'l+)'2)
me mp

1 ()'l+2)'z»
mp

where mp is the free-electron mass. In these equations the
upper sign refers to the J,=+—', (heavy-hole) band and
the lower sign to the J,=+—,

' (light-hole) band. The rela-
tive electron-hole coordinates in the cylindrical coordinate
system are designated by p, P, and z. We use a cylindrical
gauge and define vector potential A as

0, iz» i
(L/2

Vh„(z» ) = (3b)
A= —,(BXr) .

Here we have chosen, without any loss of generality, the
origin of the coordinate system to be the center of the
GaAs well. The values of V, and V» are determined from
the Al concentration in Ga& ~Al~As using the following
expression for the total energy-band-gap-discontinuity'

The parameter y is a dimensionless measure of the mag-
netic field and is defined as

eABy=
2p+eR

7

where the effective Rydberg

EEg ——1.155x +0.37x e p+
R+ ——

2eph'
(10)

in units of electron volts. The values of V, and V» are as-
sumed to be 85% and 15% of EEg, respectively.

As pointed out earlier, due to reduction in symmetry
along the axis of growth and the presence of energy-band
discontinuities, the degeneracy of the valence band of
GaAs is removed, leading to the formation of heavy-hole
and light-hole excitons. In principle, one would like to
solve for the energy levels of these excitons using the full
Kohn-Luttinger Hamiltonian which is expressed in terms
of a 4&&4 matrix, " neglecting the split-off valence band.
This is a complicated problem to solve. In order to make
the problem tractable and to gain some insight into the
behavior of these excitons in a magnetic field, we ignore
the contribution of the off-diagonal terms (we discuss this
point later in this paper) as has been done in all previous
calculations in a zero magnetic field. With this approxi-
mation the Hamiltonian of an exciton associated with ei-
ther the heavy-hole or the light-hole band can be ex-
pressed as"

a+ ——

p+e

We have calculated the binding energy of the ground
state of the Hamiltonian described by Eq. (5) following a
variational approach. For commonly used values of x
and L, the barrier heights V, and V~ are considerably
larger than the effective Rydbergs. Thus, the energy asso-
ciated with the Coulomb interaction will, except for large
well widths, be small compared to the electron and hole
subband energies in the square well. Because of this, it is
helpful to factor explicitly the solutions to the ground
state of an electron and a hole in the one-dimensional
square well, f, and f», out of the variational wave func-
tion l/J

p+ Q2

me Bze

1 9 8 1H= — — p +
P dp dp p ~4'

I + 8 2 1+yL, + yp + V,„(z—,—)—
m+ Bzl, (12)P =f, (z, )f» (z» )6 (p,z,P),

In Eq. (5), L, is the z component of the angular momen-
tum operator (in units of ill'). Finally it should be noted
that the exciton Hamiltonian [Eq. (5)] is in dimensionless
'form where the energies have been expressed in terms of
R+ and lengths in terms of effective Bohr radius

+ Vh„(z» ) (5)

Here m, is the effective mass of the conduction electron,

where G(p, z, g) describes the internal state of an exciton.
For an electron, for instance, the solution of the squre-
well problem f, (z, ) can be written as'
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cos(k, z, ), i
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e =cos
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meEe I.

2A
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The parameter k, is determined from the energy of the
first subband, and 3, and a, are obtained from k, by re-
quiring continuity of f, and its first derivative at the in-
terface. The hole wave function f» is obtained in a simi-
lar fashion.

The Hamiltonian of our system [Eq. (5)] has cylindrical
symmetry. The z component of the angular momentum is
therefore a good quantum number and the P dependence
of the wave function thus has the form e™,where m is
an integer. In addition, the Hamiltonian is also invariant
under reflections through the origin. The wave function
therefore has a definite parity. In view of this knowledge,
the function 6 (p,z, P) can be written in the form

6( y) ~m ~e&mfa g 6 (p z) (14)

This choice is made because of the success of a similar
basis set which Aldrich and Greene' used to solve the
problem of a hydrogen atom in a magnetic field. They
found that the use of Gaussian basis sets yielded good re-
sults for the ground and several excited states throughout
the range 0 & y & 10. The set of parameters o;; used in this
work are taken from the results of Huzinaga' who per-
formed a detailed study of the use of Gaussian basis func-
tions in the calculations of the energy levels of a hydrogen
atom. This set of a; gives energies of 1s, 2s, and 2p free-
hydrogen atom states accurate to within 0.001 Ry. The
parameter P was varied in each case to minimize the ener-

gy and is primarily determined by the value of the mag-
netic field.

The energies are obtained by solving the following
equation:

det(H —EU) =0,
where H and U are the Hamiltonian and overlap ma-
trices, respectively. For computational reasons we restrict
the basis functions by requiring A,J =0 for

~

i —j ~

&0.
This has little effect on the energies obtained. The num-
ber of basis functions used (and hence the order of the
Hamiltonian and overlap matrices) in our calculation is 5.
The binding energy of the ground state Ez is then given
as

The basis functions 6;i(p,z) are taken to be the products
of Gaussians in p and z variables:

—a, z2 —(a +P)p

1/2
h =cos

' 1/2
m+EI,

L
2A

(18b)

This procedure results in our variational binding energies
being rigorous lower bounds for the true binding energies.

RESULTS AND DISCUSSION
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We have calculated the values of the binding energies
(Ez) of the heavy-hole exciton and the light-hole exciton
as a function of L for several values of the magnetic field
using finite potential barriers. The values of the various
physical parameters pertaining to GaAs (Ref. 7) used in
our calculations are m, =0.067mp, Ep=12.5, &1=7.36
and yz ——2.57. The values of the heavy-hole mass (m+ )

and the light-hole mass (m ) obtained using these values
of y1 and y2 are 0.45mO and 0.08mp, respectively. The
reduced mass in the x-y plane for the heavy-hole
(J,=+—', ) exciton (p+) is 0.04mo and the light-hole

(J,=+
z ) exciton (p ) is 0.051mo. The value of p+ is

less than that of p due to the anisotropic nature of the
kinetic energy expressions in the diagonal terms of the
Kohn-Luttinger Hamiitonian of an exciton. "

In Fig. 1 we display the variation of E~ of a heavy-hole
exciton as a function of L for several different values of
the magnetic field, for a commonly used value of Al con-
centration x=0.3. Similar results for the light-hole exci-
ton are displayed in Fig. 2. For comparison, we also show
the variation of Ez with L for zero magnetic field. There
are several interesting features to be noted in these plots.

E~ =E,+E~+y —E, (17)
y&0.0

where E, and E» are the lowest subband energies of the
electron and the hole„respectively, y is the energy of the
first Landau level, ' and E is the eigenvalue of the Hamil-
tonian [Eq. (5)] corresponding to the 1S level, which has
been determined variationally. The values of E, and EI,
are obtained by numerically solving the following tran-
scendental equations "
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FIG. II. Variation of the binding energy of the ground state
(E~) of a heavy-hole exciton as a function of the well size (L)
for Al concentration x=0.3. Five different values of the mag-
netic field parameter y (defined in the text) are shown.
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FIG. 2. Variation of the binding energy of the ground state

(E~) of a light-hole exciton as a function of the well size (L) for
Al concentration X=0.3. Five different values of the magnetic
field parameter y (defined in the text) are shown.

As expected, the presence of a magnetic field leads to
more binding. The value of Ez, both for the heavy-hole
exciton and for the light-hole exciton, increases as L is re-
duced until it reaches a maximum and then decreases
quite rapidly. The value of L at which Eis reaches a max-
imum (L, ) is larger for the light-hole exciton. The reason
for this behavior of Ez is quite simple and has been dis-
cussed elsewhere. ' For a given value of x and for a
given exciton system, the value of I., is about the same
for all values of the magnetic field. In addition we find
that the separation between curves of different values of y
increases as I decreases. This happens because at smaller
well widths the extension of the wave function in the x-y
plane is reduced. This decreases the contribution of the
magnetic term of the Hamiltonian [Eq. (5)] which is pro-
portional to p . A reduction of this positive term leads to
an increase in the binding energy.

As noted earlier, we have assumed the conduction-band
discontinuity to be 85%%uo of the total band-gap difference.
It has recently been suggested that 57% may be a more
appropriate value. ' For a given value of Al concentra-
tion, the binding energies of both the heavy-hole exciton
and the light-hole exciton are found to be relatively in-
sensitive to this suggested change in the barrier height.

Several groups' ' ' have attempted to measure the

values of the binding energies of these two exciton sys-
tems in GaAs-Ga~ Al As quantum well structures in
recent years. Recently Maan et al. and Miura et al. '

have studied the behavior of these excitons in GaAs-
Ga& Al„As quantum well systems as a function of L in
the presence of high magnetic fields (& 230 kG) using ex-
citation spectroscopic and absorption techniques, respec-
tively. At zero magnetic field both Maan et al a.nd
Miura et al. ' find that the values of the binding energies
of both the heavy-hole exciton and the light-hole exciton
they measure are considerably larger than those deter-
mined by Miller et al. For instance, the value of Ets for
the heavy-hole exciton for the 50-A well they measure is
about 17 meV as compared to 12 meV determined by
Miller et al. Similar results are found for the other well
sizes. In addition, they also find that the values of Ez for
the heavy-hole exciton are always larger than those of the
light-hole exciton, a result contrary to that of Miller
et al. and to our result. The reasons for the difference
between the experimental results of Miller et al. and
those of Maan et al'. , and Miura et al. ' are not clear.

The values of Ez for the excitons in a zero magnetic
field that we calculate, are considerably smaller than those
measured in Refs. 9 and 10. Maan et al. have also de-
rived the reduced exciton masses from their measurements
of Landau levels and find that these are considerably
larger than those in bulk GaAs, namely, the values we
have used. For instance, the reduced mass of the heavy-
hole exciton varies from 0.069mo to 0.084mo for well
sizes 125 to 50 A. When we use these values in our calcu-
lations we find that our results agree rather well with the
experimental values of the binding energies. Maan et al.
and Miura et al. ' have studied the variation of binding
energies with magnetic field up to fields of 230 kG. Our
results agree qualitatively with the observed variation.
However, if we use the larger reduced masses in our calcu-
lations the theoretical results agree very well with the ex-
perimental values. Recently several groups' have ex-
amined the dispersion relations of free holes in a quantum
well using the Kohn-Luttinger Hamiltonian. They find

i

that for finite values of wave vectors in the x-y plane
there is a considerable mixing of light- and heavy-hole
bands leading to strong nonparabolicities. It appears that
to get a good quantitative agreement between theory and
experiment one really needs to solve the problem of exci-
tons in a quantum well in a magnetic field using the full
Kohn-Luttinger Hamiltonian and thus take into account
properly the interband mixing. This, as mentioned earlier,
is a complicated problem to solve. Our approach in
which we treat the valence-band structure in terms of two
decoupled bands is primarily intended to provide an in-
sight into the behavior of these excitons in a magnetic
field.
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