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For the asymptotic limit t ~, a precision Monte Carlo evaluation of correlated classical particle dif-

fusion in one dimension with quenched bond disorder, is reported. The results are accurately described by
the coherent potential approximation.

The transport of noninteracting classical particles in bond
disordered linear chains has been studied actively in recent
years (see Alexander, Bernasconi, Schneider, and Orbach'
for a comprehensive discussion). A useful analysis in terms
of continuous-time random walk (CTRW) representation
was given by Klafter and Silbey. This was followed by
some exact discussions ~ and numerous applications of the
coherent potential approximation (CPA) relevant to random
bond systems. Representative works along these lines are
those of Odagaki and Lax, Webman, Webman and
Klafter, ' 'Haus, Kehr, and Kitahara, " and that of Haley. '
From our point of view the interesting thing about these
works is that the random-bond CPA predictions, which are
known to be reasonable when the effective coordination
number of the system is large compared to unity, 5 are of
comparable accuracy to those that follow from usually more
reliable procedures (compare, for example, the renormal-
ization-group analysis of Machta'3). Indeed, some aspects
of the CPA predictions are found to be exact, ' '"' even
though the coordination number is far from being large5 in
one dimension.

In actual physical systems the neglect of interactions is
rarely justified. The best realization of a noninteracting
fluid, therefore, is the limiting case of a system with a van-
ishingly small particle concentration, i.e., c 0. For finite
concentrations, interactions have to be taken into account.
At the very least, the hard-core repulsion cannot be ignored.

Even in its disordered state, the long-time dynamics of
the interacting classical lattice gas in one dimension is
known to be qualitatively different from that of the corre-
sponding noninteracting system. ' Here, even the pres-
ence of a hard core of zero range, which forbids multiple
occupancy but otherwise leaves the gas noninteracting,
dramatically slows down the long-time wanderings of labeled
particles. Classical diffusion ceases to obtain and the parti-
cle wanderings are seriously curtailed. In particular, the
mean-square displacement A(t) acquires a non-Brownian
form

1/2

d(t) = a2 in the limit of I r » 1
2 1 —c) I' t

C 7r

(a is the lattice constant and I is the particle-hopping rate. )
Despite the relevance of the interacting system, particle

dynamics in the presence of lattice disorder has seemingly
been studied' ' only for the uncorrelated, noninteracting
case. In this Rapid Communication we report what appears
to be the first attempt at examining correlated particle hop-
ping in a bond disordered system. To keep the analysis sim-
ple, we include only the hard-core repulsion at the origin.

However, in order to extract quantitatively precise informa-
tion, we have considered "large" effective system sizes and
have proceeded for "long" effective times. The particle
concentration is chosen to be —0.5. This concentration lies
outside the scope of perturbative schemes which are valid
either at small particle concentration or at small vacancy
concentration. Thus, the results provide a "real" test for
possible theories.

A set of five different "macro" samples was prepared.
(For convenience, these samples will be referred to as
I, . . . , V, respectively. ) All macros were, in turn, made up
of 10 intermediate sized systems, i (referred to as
i =1, . . . , 10) each of which totaled 120000 bonds (links).
Nine of the i systems were again broken up into five equal
chains of 24000 links each. In contrast, the i =10 system
comprised 120 "mini" chains of 1000 links each. Periodic
boundary conditions were used throughout. The objective
here was to test for any possible size dependence. The
average results for each of the 10 i systems were combined
to form a grand average for the relevant macro sample.
Fluctuations from the grand average were then tabulated for
each of the five constituent chains of the i systems
(i = 1, . . . , 9) and also for each of the five groups of 24
mini chains in the i =10 system. We were prepared to
throw out of consideration any effective constituent chain of
system i for which the deviation from the grand average was
20 times, or more, of the corresponding average root-
mean-square deviation (AMSD). [The AMSD was deter-
mined for each macro sample for 10000» t ~ 100 MCS/P
(Monte Carlo steps per particle) measured in intervals of 25
MSC/P. ] We found that for macros I—IV (see below) the
overall performance of the different i's (including i =10)
was similar. Moreover, it was not necessary to reject any of
the constituent chains. '

4(t) was measured for samples I—V as a function of t for
t ~ 10000 MCS/P. The large effective sizes (1.2 x 106

bonds, 0.6X 106 particles) helped reduce the natural fluctua-
tion of the data to 1-3 parts in 10 . Similarly, the availabili-
ty of data over an extended time range enabled us to defini

tively rule out any possibility that bond disorder might re-
store some measure of classical diffusion and/or cause addi-
tional structure in b, ( t) (e.g. , terms of the form r",

T & n & 0) to appear. Thus, the representation

1/2

&(r) = 2(1—c), rra + const, in the limit of I"t && 1
C 'fr

(2)

was established to a high degree of confidence.
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TABLE I. CPA predictions of the long time effective hopping rate-, I'cpA, are compared with the corre-

sponding Monte Carlo results I Montec (o In samples I IV I 2 I '20 and I is 50. The relative

concentrations, x", x~, x of the corresponding bonds as well as the average particle concentration, c, are
recorded. For sample V, the bond distribution is a rectangle for bond strengths I lying in the range

1 1
20 2'

No.

I
II
III
IV
V

0.500625
0.500 667
0.500375
0.500667

xA

0.749 729
0.499750
,0.249 604
0.334 167

0.250271
0.500250
0.750396
0.333041

0
0
0
0.332 792

~CPA

0.153 731
0.090 872
0.064486
0.041 721
0.195433

~Monte car]o

0.1535 + 0.0005
0.0907 i 0.0003
0.0645 R 0.0002
0.0418 + 0.0002
0.1935 k 0.0020

Rectangular between I ~,„= 2
1

1and I I;„=20.

For an accurate determination of the effective particle
hopping rate, I, it was found best to proceed as follows:
Choose a starting time to (which should be long compared
to n, e.g. , 100) and find

a(r r, ) =A(r—) —b, (ro) (3)

This eliminates any constant term in Eq. (2). Now the best
fit to the single parameter, S(ro),

S(ro) = [A(r) —A(ro) J/(r'~' —rg') (4)

is determined. - The procedure is then repeated for the next
higher starting point, i.e., for t0 = t0+ 25 MCS/P, until
t0 = 9475 MCS/P is reached.

In the thermodynamic limit, and for I t0 ~, the slope
S(to) should be independent of ro In pra.ctice we get a dis-
tribution of such slopes. The average of the distribution, s,
consisting of 23S values of S(ro), is determined for each
macro system and the mean-square deviation from s is com-
puted. In order to get a confidence level of —90% or so,
we take our estimated error to be three times such root-
mean-square deviation. However, since I is proportional to
the square of the slope s, the error estimates displayed in
Table I are proportionally double those for the correspond-
ing slopes, s.

Samples I, II, and III consisted of random mixtures of
only two types of bonds with hopping rates I"~=~ and
I's=

~0 (in units of inverse MCS/P). The relevant concen-

tration of these bonds (see Table I) was approximately ~,
~, for sample I, T and Y for sample II, and ~ and 4 for
sample III. In sample IV, three sets of hopping rates were
included. Here, I" and I ~ were, as before, T and ~0 and

I = ~. These bonds were mixed randomly in roughly

equal proportions. Sample V was prepared differently,
wherein a rectangular distribution of bonds ranging between
the limits I',„=T and I";„=~ was used.

The natural fluctuation of the h(t) data in I—IV followed
the ~N law. For a system with a total of W —106 bonds
(and W' —5&& 10' particles), the relative size of the fluctua-
tions was between 1 and 3 parts per thousand. For sample
V, the fluctuations were approximately three times larger.

where z is the coordination number of the lattice. In one
dimension z = 2, and accordingly we get

r

Xxx/I x (6a)

For the rectangular distribution lying between, I,„=~ and

I';„=~, Eq. (6a) becomes

(6b)I'cpA = 0.4S/ln( 10)

Implicit in the use of the CPA is the statement that disor-
der does not affect the asymptotic form of the mean-square
deviation. This fact is corroborated to a high degree of ac-
curacy by these simulations. Moreover, as we also observe
from Table I, the Monte Carlo results for I. are accurately
reproduced by the CPA formulas given in Eqs. (6a) and
(6b). This happenstance, nevertheless, leaves open the
deeper question as to why the CPA theory is seemingly ex-
act in this particular instance.
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gratefully acknowledged. My thanks are also due to the
Royal Society for financial support and the Department of
Theoretical Physics, Oxford University, for its gracious hos-
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A plausible explanation for this lies in the fact that the lim-
iting factor in the determination of h(t) is always the
slowest set of hopping rates. Thus, for the given rec-
tangular distribution, 5 ( t ) was most affected by a narrow
range of bonds near I;„.The effective width of this range
is only about, '0 that of the entire rectangle. Hence, an ad-

ditional factor of three in the overall size of the fluctuation.
The CPA formula for I, which is the zero frequency (in-

finite time) effective hopping rate5 in the presence of a ran-
dom distribution of bonds (of strength I'" and concentration
x, such that g „x"= 1) is the following

X x"(I ~ —I')/[(z —2)I + I'"]= 0
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