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where V denotes a valence electron which is 6d, 7s or 5f
like. This process enhances the Sf component of the
valence band (within —1 eV of Ez) more effectively than
that due to 6d, 7s states (super —Coster-Kronig process).
The h v dependence of the 04 VV and 05 VV Auger emis-
sion is shown in Figs. 1 and 2. The OVV emission is also
expected to sample preferentially the 5f part of the
valence band. As the on-site Coulomb energy between
two 5f electrons is sufficiently small [ U-1.5 eV (Ref.
10)] as compared to the 5f band width ( JY-5 eV), the
OVV Auger spectra are expected to give self-convolutions
of the 5f DOS "'

Intensity profiles of the valence band and Auger emis-
sion features are plotted in Fig. 3 together with a partial-
yield spectrum representing the photoabsorption profile.
Three absorption features. are labeled by A, B, and C.
The absorption profile is qualitatively similar to that of
the La 4d~4f absorption given in the inset of Fig. 3,
where 3, B, and C correspond to 'P&, D&, and P& com-
ponents of the 4d 4f' multiplet, respectively. Only the
P& state is dipole allowed in the LS-coupling limit, and

the D I and P
&

lines gain finite oscillator strengths
through mixing with the P j state in the intermediate cou-
pling scheme. In the case of Th, peaks B and C are
stronger than in La because the above LS-coupling terms
mix more strongly due to the larger spin-orbit splitting of
the Th 5d core level than the La 4d core level. ' Note
that peak B is above the 5d5/2 threshold in Th whereas it
is below the 4ds/2 threshold in La. One can see from Fig.
3 that the OVV Auger decay channel is more important
around peak B than around peak A. In the case of La
only the Auger decay channel has been observed for peak
B. Around peak 2, both the direct recombination and
Auger deexcitation channels are equally important in Th
and LaB6.

In order to explain the Auger versus direct-
recombination decay behavior in each Sd~Sf
absorption-peak region, we distinguish between ordinary
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FIG. 3. Constant initial state I,'CIS) curves for two valence-
band photoemission features at 0.6 and 2 eV below EF, a partial
yield spectrum taken at a constant final-state energy of 4 eV,
and intensity profiles of the 04VV and Oq VV Auger emission.
The CIS's represent the peak height in the EDC's, while the
Auger intensities have been obtained by integrating peak areas
by assuming smooth backgrounds. The 2-eV CIS for hv=86
eV is not shown because of an overlap of the 05 VV Auger emis-
sion. The binding energies of the 5d5/2 and 5d3/2 core levels
CRef. 15) are indicated by arrows. In the inset, a partial-yield
spectrum for LaB6 in the 4d~4f region (Ref. 5) is shown for
comparison.

Auger transitions, where an electron excited from the core
level does not interact strongly with the Sd (4d) core hole
in the Auger initial state, and resonant Auger transitions,
where the excited electron interacts with the core hole
through exchange interactions. For photon energies above
the core-level threshold, the excited electron has a proba-
bility of leaving the core-hole site and entering a continu-
um. ' Then the core hole decays via an ordinary OVV
Auger transition:
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where ef denotes an electron in a spatially extended state
outside the potential barrier of the core-hole site, and the
relaxed core hole in the third stage is screened by an elec-
tron V, which is predominantly Sf-like. ' lf the excited
electron stays at the core-hole site during the OVV Auger
decay, the following process may be considered:

5d' V"+hv~Sd Sf'V"~Sd' V" Sf"+e, (3)

Sd' V"+hv~Sd Sf'V"~Sd V, V"ef~Sd' V" ef+e,
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FIG. 2. Energy distribution curves for Th in the 04VV and
05 VV Auger emission regions as a function of electron kinetic
energy relative to EF. For 96&hv& 101 eV, the intense 6p3/2
core level overlaps the O5 VV Auger emission.

where 5f* denotes an electron which is released from the
strong exchange interactions with the 5d core hole in the
Sd 5f' excited state and enters a 5f state above EF. '

This process is analogous to the Auger resonant Raman
effect with core holes in the final state, ' and should be
considered as a one-step process with the 5d 5f ' virtually
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excited state. Alternatively this process may be viewed as
a two-electron excitation ( V—+sf and V~5f') en-
chanced resonant'ly by the 5d ~Sf virtual excitation. We
refer to this process as a resonant Auger electron emis-
sion. An electron emitted by Eq. (3) reflects the unoccu-
pied 5f DOS through 5f* in the final state and therefore
would have a constant binding energy rather than a con-
stant kinetic energy as the empty 5f DOS has a peak (4
eV above Ez. ' ' Thus if resonant [Eq. (3)] and ordi-
nary [Eq. (2)] Auger emission lines overlap and are not
resolved into separate features, then one would expect an
apparent kinetic energy shift of the Auger emission to
lower energies as the photon energy is lowered.

The kinetic energy of an electron emitted by the
resonant Auger emission (3) is given by Ex'-hv

E(V —) E(Sf—*), while the ordinary Auger electron
kinetic energy is given by Ex E(Sd——q~2 ) —E ( V ),
where E(V ), E(Sd&&2), and E(5f') represent, respec-
tively, the energies of the two-V-hole, 5d5&2-hole, and
Sf*-electron states relative to the ground state. For pho-
ton energies around peak B, the two kinetic energies Ez
and E&' are close to each other because hv-E(Sd && )+4
eV and E ( 5f'

) (4 eV (Refs. 8 and 17) for these photon
energies. Therefore, the observed 05 VV feature for pho-
ton energies around peak B may be assigned to overlap-
ping ordinary [Eq. (2)) and resonant [Eq. (3)] Auger emis-
sion. A similar kinetic energy shift has been observed for
the 05P3 VV Auger emission of Th in the same photon
energy region B and has been interpreted as due to over-
lapping ordinary Auger and a two-electron excitation
Sd' 6p V"~Sd' 6p V" '5f' enhanced by the resonant
Auger process of the type of Eq. (3). '

Now we are in a position to discuss the relative impor-
tance of the above three competing decay channels
(1)—(3). First, we consider the region of peak B In.
LaB6, the ordinary Auger decay channel is closed at peak
8 since it is below the La 4d threshold and the 4f~sf
step [the second step in Eq. (2)] is not open. Thus the ex-
cited state 4d 4f 'V" must decay either via direct recom-
bination [Eq. (1)] or a resonant Auger transition [Eq. (3)].
The relative importance of the latter two channels can be
determined by the dipole oscillator strength for the
nd nf ' multiplet line: Strong dipole moment favors

nf~nd direct recombination which simultaneously ex-
cites emission of a photoelectron. This would explain the
observation that direct recombination for the peak B is
appreciable in Th but not in La86 (Ref. 5), as the absorp-
tion peak 8 is much stronger for Th than for La (see Fig.
3).

In the region of peak A, the virtually excited discrete
state nd nf' partly makes a transition to a continuum
state nd V,ef and then decays via an ordinary Auger
transition [Eq. (2)], and partly decays via direct recom-
bination [Eq. (1)] or resonant Auger emission [Eq. (3)].
However, direct recombination dominates resonant Auger
emission because of the very large nf nd os-cillator
strength. This would explain the observation that both
the direct recombination and ordinary Auger recombina-
tion channels are equally important but that the resonant
Auger deexcitation channel (3) is negligibly small in the
region of peak A for Th and La86.

In conclusion, decay processes in the 5d —+Sf excitation
region of Th metal have been studied. Following photo-
absorption 5d' V"+hv~Sd Sf 'V„,the excited state de-
cays either via an ordinary Auger transition after escape
of the 5f electron out of the potential barrier and relaxa-
tion of the core hole, or decays (as a virtually excited
state) via one of the two channels, direct recombination or
resonant Auger deexcitation. The relative importance of
the latter two channels is determined by the 5 d Sf oscil-
lator strength of the multiplet term of the virtually excit-
ed Sd 5f' state. Photoemission and Auger intensity pro-
files of metallic LaB6 are also well explained in terms of
these processes. In heavier actinides and rare earths with
more f-electron transitions between multiplet states, the
appearance of satellites and their different resonance
behaviors would complicate deexcitation processes. ' '
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