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Size-dependent photoabsorption and photoemission of small megal particles
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The dynamical electronic response properties of small metal particles are calculated within the
frame of the self-consistent spherical jellium model. The method used is the TDLDA (time-
dependent local-density approximation) with the inclusion of exchange and correlation. In this way
we obtain for the first time insight into the nonlocal electronic response properties at a strictly mi-
croscopic level. The size dependence of photoabsorption, photoemission, and of the static polariza-
bility, is discussed in detail. The emergence of the collective volume mode (the volume plasmon) as
a function of the numbers of electrons is shown here for the first time. Likewise, the size-dependent
Landau damping of these modes is obtained in a quantitative fashion. Compared with the results of
any non-self-consistent model, we conclude that only a self-consistent theory like the TDLDA (or an
improvement of it) is able to account for all the complexity of the electronic response in small di-
mensions.

I. INTRODUCTION

In recent years, the physics of small metal particles' has
attracted much interest mainly for two reasons: On one
hand this is an interesting field of research per se because
the physical properties as a function of size are expected
to show a more or less smooth transition from atomiclike
behavior to solid-state-like features. On the other hand,
small metal particles are of technological importance for
the wide field of the heterogeneous catalysis and for this
reason size-selective chemical properties (like cluster
chemisorption) are of special interest.

Whereas the ground-state properties of clusters such as
the cohesive energy, adhesive energy, and chemisorption
energy can now be obtained at a microscopic level (if the
number of atoms is not too large) the situation is much
worse as far as the dynamical properties are concerned.
The reason for this is twofold. First, for the excited states
of a system, a simple calculational scheme such as the
local-density approximation (LDA) for the ground state
does not exist. Second, we always need to know the com-
plete spectrum instead of just one state (for the descrip-
tion of the ground state) to learn something on the
dynamics of the system. It is mainly for these reasons
that nearly nothing is known, at a strictly microscopic
level, about the dynamical properties of aggregates con-
sisting of more than two atoms.

However, quite recently it was experimentally con-
firmed by Knight eI; al. ' that theoretical predictions
based on a relatively simple model, namely the spherical
jellium particle, reproduce well part of the experimen-
tal observations concerning the ground state of small clus-
ters of the light metals of Na and K. Even more recently
Knight et aI. were able to show that the theoretically
predicted size dependence of the static polarizability as
calculated within a self-consistent spherical jellium
model " agrees well with the experimental data on Na.
Hence, it is both tempting and promising to extend this
model to the description of the dynamical behavior of

small metal particles. First results of this method were al-
ready published elsewhere, and it is the aim of the
present work to present the results in more detail and to
extend the method to photoemission. It is hoped that (as
it was the case with the static polarizability) at least for
the light metals such as Na there is some relevance of the
model description for the dynamical behavior of the loose-
ly bound valence electrons.

II. THEORY

If the metal particle is placed in an oscillatory external
potential V,„(r;co)e ' ', an induced electronic charge den-
sity is set up which is given by (within linear-response
theory and with neglect of retardation) '

p;„o(r,co) = f dr'X(r, r', to) V,„(r',co) . (l)

In this equation X(r, r;co) is the dynamical density-density
correlation function.

An exact determination of g is impossible, of course.
However, for both metal surfaces' and for atoms' ' and
molecules' ' it has been shown that the so-called time-
dependent LDA (TDLDA)' seems to reproduce most of
the experimental data very well. '

Within the TDLDA, which has the same structure as
the random-phase approximation with exchange, ' ' the
density-density correlation function is determined by the
following integral equation:

X(r, r';co) =X (r, r';co)

+ f f dr" dr"'X (r, r";co)IC(r",r'")

XX(r"',r', co) .

This equation results from the self-consistency condition
of the independent-particle response to the total effective
potential V,tt(r;co) in the following way:

p;„o(r,co) = f dr'g (r, r', co) V,tt(r', co), (3)
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V,ff(r, m) = V,„(r,co)+ f dr'K(r, r')p;„q(r', co) . (4)

+ g P;(r)P*;(r')G'(r, r', e; —fm) . (6)

In Eq. (6) the sum is over all occupied states Ii I in the
ground-state and G is the retarded Green's function of the
ground state Hamiltonian. Within the TDLDA the
single-particle wave functions P; are assumed to be given
to a good approximation by the Kohn-Sham orbitals in
the ground state, and this assumption is an unproven step
in the formalism. However, experience has shown that
this seems to be a quite good (or excellent) approximation
for the description of the dynamical response of the loose-

In these equations X (r, r', co) is the independent particle
density-density correlation function and the kernel K(r, r')
is given by

dVC
K(r, r')=, + "' 5(r—r') . (5)

~

r —r'
I dp

In Eq. (5), d V„,/dp is the density derivative of the
exchange-correlation potential in the ground state and the
independent-particle density-density correlation function
is given by'

OCC

X (r, r';co) = g P';(r)P;(r') G(r, r';e; +fico)

ly bound valence electrons of atoms, molecules, and solid
surfaces. Thus it seems reasonable to expect that this ap-
proximation also works quite well in the case of atomic
aggregates. The physical content of the formalism
described so far is that of all the many-particle effects the
important dielectric effects are fully included whereas re-
laxation effects are completely neglected (however, see
Ref. 18). Thus if one wants to study the evolution of col-
lective effects like plasmons etc. the formalism seems to
be quite adequate.

A prerequisite of the TDLDA ia the knowledge of the
"Kohn-Sham ground state" of the system and these calcu-
lations were already performed ' "for the spherical jelli-
um particle. Hence, we are ready to solve for the response
equations.

Due to the spherical nature of the system, the equations
considerably simplify for completely filled shells in the
ground state since, in this case, the response is diagonal
with respect to the angular momentum I. of the external
perturbation V,„.' In this paper we are exclusively con-
cerned with the dipole response properties. Therefore we
need to specialize the response equations to the case
L, =1. These special equations were already published in
Ref. 9 and they are only shortly reproduced here. If an
angular representation is used for all quantities, Eq. (2)
simplifies to

Xi(r, r';co)=Xi(r, r",co)+ f dr"(r") Xi(r, r";co)[dV„,/dp]Xi(r", r';co)

+ f dr'"(r"') f dr "r"Xi(r, r";co)[4ir/(21 +1)]Bi(r",r"')Xi(r"', r';co), (7)

where we have introduced Bi(x,y)=2x & /y )+' and Xi is the lth component of the independent particle susceptibility.
As was shown by Zangwill and Soven (see also Ref. 21) this quantity is given by (for I. = 1)

OCC

X)(r, r';co) = g (1/2ir)Ri „,(r)Ri„,(r')[(I +1)Gi+)(r,r';ei „,+co)+le )(r, r', ei „,+ci))
l, nI

+(1+1)Gi*+)(r,r', ei„, co)+lG(* )—(r, r';ei„, —co)] . (8)

In Eq. (8), Ri „(r) is the radial part of the occupied state

Il, ni J in the ground state with energy ei „,co is the fre-

quency of the external photon, and the Green's function
Gi(r, r', E) is obtained by two solutions of the ground-state
Schrodinger equation in the following way

j~(r ,'&)E(hri),'E)
Gi(r, r', E)= (9)

Ir W(ji, hi)J„

In this equation jI is regular at the origin, hI fulfills the
outgoing-wave boundary condition, 8' is the Wronskian,
and c is an arbitrary constant. Having obtained X,(r, r', co)

we are ready to calculate every physical quantity which is
characteristic to the linear dipole response of the small
metal particle.

III. STATIC POLARIZABILITY

Once X~(r, r';co) is known the complex induced charge
density and the complex polarizability a(co) are given as
follows:9

p;„(r,co) = —(4ir/3) yi, o(9)Eo

2 7 g) P' P' CO P'

I.

a(cu) = dr ra(r, co),
0

(10)

a(r, co) = (4'/3)r 2— dr'X~(r, r';co)r' . (12)
0

To obtain the static dielectric behavior- we have to solve
Eq. (2) and to calculate Eqs. (10)—(12) for co=0.

In Fig. 1 the dots show the static polarizability a(0), in
units of its classical value a,~

——R, for the various com-
pletely filled shells of a small jellium sphere correspond-
ing to sodium. R is the particle radius related to the
number of particles via R =r,N' . The result is com-
pared with the polarizability obtained from various non-
self-consistent theories like the quantum infinite-barrier
model, the semiclassical infinite-barrier model, or the
step-density modified Thomas-Fermi approximation. In
sharp contrast to the results of these models the self-
consistently obtained polarizability per atom of a Kohn-
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FIG. 1. Static polarizability a of a small jellium sphere for
r, =4, corresponding to the bulk density of Na, in units of its
c assical value, a,~

——8, as a function of its size. A is the jelli-
um background radius, R =r,2V', in a.u. Dots, present theory;
dashed line, step-density Thomas-Fermi approximation, Ref. 24;
dashed-dotted line, semiclassical approximation, Ref. 23;
crosses, quantum infinite-barrier model, Ref. 22.
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FIG. 2. Evolution of the normalized polarization charge den-

sity as a function of size. The striking feature here is that
a(r;0} across the surface looks very similar to the corresponding
value at a planar jellium surface. As a consequence, the location
of the apparent image sphere is similar to the location of the im-

age plane. For a detailed discussion see text.

Sham sphere does not decrease but increases weakly if the
number of atoms within the particle goes downt In addi-
tion the size effect within the TDLDA is much weaker
than in any non-self-consistent theory. The microscopic

reason for this behavior can be seen from Fig. 2, which
s ows the (normalized) polarization charge densitensi y,

a(r;0)—:a(r;0) f dr a(r;0),
for four different particle numbers. There are two strik-
ing features. First, the big hump across the jellium sur-
ace shows only a very weak size dependence. Second, the

cr(r;0) across the surface looks very similar to the normal-
ized induced charge density at a planar jellium surface.
Consequently the location of the static apparent image
sphere 5, defined as a=(R +5), is very similar to the lo-
cation of the planar image plane. For instance, the values
of 6 for the completely filled s shells 2s, 3s, and 4s, corre-
sponding to particle numbers 20, 92, and 198, respective-
ly, are given by 52, ——1.098, 5&, ——1.035, 6q, ——1.182 a.u.
Whereas the value for the semi-infinite half-space is
5 = 1. a.u. Having no strictly monotonous behavior of5 =1.3

cles.
5 relates to the quantum size effects in small metal parti-

The mtcroscopic origin of why a/a, i is always larger
than 1 relates to the fact that, due to the diffuse nature of
the electronic ground-state density, ' the induced charge
resides partly outside the classical surface of the particle.
In alln a the other models this relaxation is toward the22 —24

interior of the particle which makes the polarizabilit
smaller than its classical value R .

' aiiy
Quite recently ' this behavior has been experimentally

confirmed. The static polarizability per atom of small
clusters of Na in the gas phase is a weak size-dependent
quantity and decreases if the number of atoms is enlarged.
This is exactly the behavior shown by the dots in Fig. 1.
Furthermore, because the magic numbers found by
Knight et al. agree with those of the spherical jellium
model we conclude that the originally made assumption
concerning the usefulness of the self-consistent spherical
jellium model is approximately fulfilled, at least for the
light metals like Na and K.

To conclude this section we show in Fig. 3 the radial
component of the total self-consistent potential
V ff —V + V' g and the radial component of the electro-
static field across the particle. Two striking features
are: (1) V,fr(r =R) is approximately zero, and (2) the
electrostatic field across the surface is very similar to the
one obtained for a semi-infinite half-space. The approxi-
mate vanishing of the total effective potential is due to the

means p ysica yelectrostatic force sum rule ' which means h 11

that the particle does not move under the influence ofceo a
omogeneous electrostatic field. This means that the total

electrostatic part of the potential at the jellium edge equals
zero. A mathematical convenient form of this statement,
namely

R 001= (4'/3) f dv(v/R) —dr'2+i(r, r', 0)r'
0

—(4m. /3) f dr f dr'2Xi(r, r';0)r', (13)

has been used as a check on the numerical work. Typi-
cally, Eq. (13) is fulfilled to within a relative accuracy of

Finall y, we want to compare our results with similar
work of Refs. 10, 11, and 28. The results of Ref. 10 and
the present work should be nearly identical (for r, =4) and



31 SIZE-DEPENDENT PHOTOABSORPTION AND. . . 6363

t3 ~o
Cb

O 0.5-
/Veff - 16.21

Both kinds of this behavior seem to have been observed
experimentally, as we shall see later.

IV. PHOTOABSORPTIGN
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FIG. 3. Radial part of the total effective potential and radial
part of the radial component of the electrostatic field for r, =4,
N =198, and co=0. Both quantities are "normalized to one, "
which means they are to be multiplied with the numbers given
in the figure as X,~„,——198 and X,ff ——254. The dashed-dotted
line in the upper part gives the external potential V„=—r. Due
to the electrostatic force sum rule the electrostatic part of V,ff at
r =R is equal to zero. The behavior of the electrostatic field
across the surface is similar to that at a planar jellium surface,
recently discussed by Andersson et al. (Ref. 26). The classic
electrostatic field is also shown for comparison. The classical
zero. field inside the particle can roughly be understood a's the
macroscopic average of the microscopic quantum oscillations.

ct( ) ~3& ~
(14)

E(co)+2

If the Drude dielectric constant is used to calculate a"(co),
the dynamical response is governed exclusively by the
classical Mie resonance of the particle which peaks at
co&/V3. The imaginary part of u(co) in this case is given
by

1m[a(co)]/8 =Ql /[(1 —0) +I 0 ], (15)

with A=co/(co„/V 3) and I =5/(co~/v 3), where 5 is the
damping of the single particle states in the Drude dielec-
tric constant. A resulting Drude-absorption spectrum for
small damping (5=10 meV) is given, for instance, by the
continuous line in Figs. 4—6.

Quantum mechanically, we expect the following general
equation to be valid instead of Eq. (14):

1P'

10

If Eq. (2) is solved for a variable frequency co, the
dynamical polarizability and the induced polarization
density are obtained via Eqs. (11) and (12). With the help
of this, a(co), the cross section for photoabsorption is
given by o(co) =4m. (co/c)Ima(co). '" Hence, the important
quantity is the imaginary part of a(co).

In the classical theory of local optics the frequency-
dependent polarizability a(co) of a metal sphere of radius
R and with a local bulk dielectric constant e(co) is given
by

indeed they are (more or less). Small differences can be
caused by the use of a different approximation for the
description of correlation and, may be, due to different
numerical details. The results of Ref. 11 are similar, how-
ever a direct comparison is not possible, simply because no
results are given there for r, =4.

The results obtained within a statistical treatment of
the kinetic energy of the electrons agree more or less
with the present ones. Hence, we think that the problem
of the static polarizability is basically solved.

Before we continue with a discussion of the dynamical
response, we shortly comment on the static polarizability
of embedded clusters compared to their classical value,
which is known to be given by R (F. Gd)I(6+2Ed), wlth'— '

ed the static dielectric constant of the embedding host.
As we have seen above, in a self-consistent-field (SCF)-
like theory, the induced charge density is mainly deter-
mined by the electronic ground state profile across the
surface. Hence if, due to strong repulsive forces, the
embedding leads to a steeper electronic profile a reduction
of the static polarizability is to be expected. If, on the
other hand, the density profile upon embedding looks
softer an enlarged polarizability will be the consequence.
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FIG. 4. Imaginary part of the dynamical polarizability, in
units of R ', for r, =4 and X = 198. The frequency ~ is scaled
with co,

' =co~/V 3. The classical Drude result, the solid line, is
also shown for comparison. The various fine cusps correspond
to the excitation of single-particle-hole pairs, the large hump
around 1.8 is the Landau-damped volume plasmon, and the cen-
tral feature around 0.9 is the red-shifted Mie resonance of the
particle. In sharp contrast to classical optics, due to the nonlo-
cal nature of the electronic response the volume plasmon can be
excited by photons.
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part of a(co) for "sodium spheres" (r, =4) of N =198, 92,
and 20 valence electrons. These numbers correspond to
completely filled 4s, 3s, and 2s shells, respectively. Com-
pared to' the size-independent continuous line there are
several striking features. First, the surface-plasmon peak
position is red shifted compared to its classical value

co&/v 3. Second, this mode shows —compared to the clas-
sical curve —additional damping which obviously means
that the collective mode decays in electron-hole pairs.
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FIG. 5. The same as Fig. 4, but for N =92. The size-
dependence of the quantum size effects can clearly be seen.
Note that, compared to N =198, the volume plasmon around
1.9 is further blue shifted and starts disappearing. This is noth-
ing else than increased Landau damping of the collective mode.
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where the factor P shows structure due to:

(i) The excitation of single electron hole pairs.
(ii) The excitation of collective volume modes (the

plasmon whose optical excitation is forbidden within local
electrodynamics).

(iii) The excitation of the quantum-mechanical analog
to the classical Mie resonance.

Due to the quantum size effect and due to the changing
volume to surface ratio all these features can be expected
to be both size dependent and density dependent.

This is verified in Figs. 4—6, which show the imaginary
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FIG. 6. The same as Fig. 4, but for N =20, now, the volume
plasmon has disappeared.
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FIG. 7. Dynamically induced polarization charge density,

a(r, co)=a(r, co)/
~

dra(r, m) ~, where a(r, co) is defined by
0

Eq. (12) of the text, for frequencies co—=~/co," around the Mie
resonance. Solid line, real part; dashed line, imaginary part.
The exact location of the surface resonance is where the phase
switch from 0 to m of the real part of a(r, co) occurs in the sur-
face region.
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This is nothing else than size-dependent Landau damping.
Third, there is a size-dependent feature around the classi-
cal plasmon frequency co~, which is—compared to co~-
blue shifted. This blue shift is the stronger the smaller the
particle is. Fourth, this mode is considerably Landau
damped and, for %=20, has eventually been destroyed.
Fifth, there are additional narrow cusps in Ima(co) which,
obviously, correspond to the direct excitation of particle-
hole pairs. The size dependence of all these features is
more or less well pronounced. Hence, we see clearly that
the use of an e(co) certainly does not make sense.

The fact that the particle-hole lines are not 5 functions
is due to having used a complex photon frequency co+i5
with 5=10 meV (for numerical convenience) instead of
co+iO+ in solving Eq. (2). Hence each particle-hole line
has this "intrinsic numerical damping. " Furthermore,
every particle-hole line being located in the particle-hole
continuum of any other bound-continuum transition re-
gion will get additional damping for exactly the same
reason why the collective modes are decaying via size-
dependent Landau damping. This damping is present for
every bound-bound transition with a frequency above the
first bound-continuum threshold. These transitions are
nothing else but the well-known autoionization resonances
of atomic and molecular physics.

The physical character of a certain excitation as being a
single-pair or a collective surface mode or, virtually, a
strong coupling between all these excitations can be visu-
alized by looking at the frequency-dependent complex po-
larization charge density a(r, co). This is shown in Figs.
7—9. Figure 7 shows the normalized quantity cY(r, co)—=a(r, co)/~ dra(r, co) ~, for frequencies co around the

0
large maximum in Fig. 4. 'We see that the imaginary part
of a(r, ~) (from which the absorption is calculated) grows
up in the surface region whereas the real part (the con-
tinuous line in the figure) undergoes a phase switch by m.

This is the typical behavior of a driven "surface oscilla-
tor." In the light of these remarks the large surface hump
at co=0 (see Fig. 2) is nothing else than the Virtual excita-
tion of the surface plasmon.

The next figure (Fig. 8) shows the same phenomenon
for. a single-pair transition, namely for frequencies around
the first spike in Fig. 4. The imaginary part of a is
switched on at co=0.2'~ and is quickly switched off at
co=0.23coz. A careful line-shape analysis shows that the
full width at half maximum agrees with what has been
put in numerically. The phase switch from 0 to m of the
real part takes place in the interior of the sphere but not in
the surface region There is only a. small distortion of the
surface charge density at resonance and this tells us that it
does make sense to speak of single pairs and collective
modes (despite the fact that all things are coupled togeth-
er).

This simple picture changes if the particle number de-
creases. For N =20 the collective volume mode has al-
ready disappeared (see Fig. 6) and the dynamical charge
density around the collective surface mode is quite com-
plex. Figure 9 sho~s the real and imaginary part of
a(r, co) for 0.75&co/co,"0.91 which means, around the
large cusp and the large hump of Fig. 6. Both the real
and the imaginary part of a(r, co) are strongly distorted
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both in the volume region of the particle and across the
surface. From these figures we conclude that most prob-
ably the term "single-pair" or "collective mode" starts los-
ing its meaning.

On the other hand for larger particles, e.g., %=198,
this terminology does make sense and we continue to
comment on an approximation which has been termed in
the past "surface-plasmon-pole approximation. " Under
the assumption that all the optical oscillator strength is
stored in just one collective pole, namely the surface-

0 ~l
R-01—

-02-
I I I I I I

0 4 8 12 16 20 24 28 32 36

FIG. 8. The same as Fig. 7, but for the first particle-hole-pair
transition (see Fig. 4). Here, the phase switch occurs in the inte-
rior of the sphere between 0.20(co&0.22. The charge density
in the surface region is only slightly distorted. This tells us that
it does make sense to speak of a single pair, simply because its
coupling to the collective mode is small.
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FIG. 9. The same as Fig. 7, but for X =20, in the frequency range 0.75 & co &0.91. For this small number of electrons, the surface
mode is not as good decoupled from the interior of the sphere as it was the case for X = 198 (see Fig. 7). Hence, all "oscillators" are
strongly coupled together. Another consequence of this strong-coupling case is the disappearance of the volume plasmon as a well-
defined collective excitation.

plasmon pole, one can show that its peak position is given
24, 29

pole = 1/v a(co =0)/R
3

198

1BS

168 20

138
34

132

106
58

1.6 1.B 2.0 16 1.8 2.0
QP/~g

FIG. 10. Imo, {u)/R for various completely filled shells for
X between 8 and 198 in a frequency range around the volume
plasmon frequency. This figure shows explicitly how the
plasmon emerges if the number of electrons increases. Every
horizontaj bar corresponds tg the beginning of a logarithmic
scale at 10 ', belonging to the curve above this bar.

If we put in the values for a(co=0) and R pertaining to
X =198, namely a(0)/R =1.16 we get co "'/
(co&/~3) =0.93 compared to 0.88 from the exact calcula-
tion. Hence, the surface-plasmon-pole approximation is
not so bad to get a first information on the collective pole.
The advantage of this "method" is obvious: The only
thing we need to know is the static polarizability which is
much easier to obtain than the complete dynamical re-
sults.

To conclude this section we show in Fig. 10 the line
shape of the collective volume mode (the plasmon) for
spheres with uppermost filled shells of symmetry: 4S
(X= 198), 2G (186), 1J (168), 3P (138), 1I (132), 2F (106),
3S (92), 1II (90), 2D (68), 16 (58), 2P (40), 1E (34), 2S
(20), and 1P (8).

We comment now on the microscopic origin for the
blue or red shift of the collective frequencies compared to
their classical counterparts co&/V3 and co~. Obviously a
diffuse surface profile makes all the collective frequencies
softer, simply because the local reference point of the fre™
quency goes down. On the other hand, the level quantiza-
tion of the single-particle levels certainly leads to a blue
shift, simply because the coupled oscillators are replaced
with those of a "stiffer" force constant. Hence, there are
two competing effects: The blue-shift. level quantization
and the red-shift surface diffuseness. Which effect will
dominate, cannot be answered a priori. Obviously (but
not surprisingly) the surface diffuseness dominates the
surface mode whereas the level quantization dominates
the volume mode. The reason why, for instance, the static
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polarizability of the particle calculated in a completely
self-consistent theory shows only a minor additional size
effect (see Fig. 2) seems to relate to the competition be-
tween these two effects.

Finally it is only fair to say that Appell was the first (to
the best of my knowledge) who predicted a red shift of the
surface mode on the basis of an asymptotic expansion of
the optical response of the sphere to account for the dif-
fuse surface profile of the electronic charge. Howev-
er, he never gave numeric/ results and my own calcula-
tion of his definition of d„/R yields, on the basis of the
Kohn-Sham (KS) results, rather strange results. Here, d„
is the quantity 5 we have discussed above. So it remains
doubtful whether or not his formulation of the problem
gives useful results (at least for larger spherical objects).

V. PHOTOEMISSION

On the experimental side both the enormously enhanced
photo yield of small Ag particles and the giant van der
Waals forces between them gave an important impact
for the theoretical investigation of whether, and if so why,
small metal particles show so radically different response
properties when compared with a planar semi-infinite
half-space. Quite recently, the same authors found that
contamination of rest gas seems to play an important
role. As we shaH see later in this section there is possi-
bly a natural explanation for this experimental finding.

Within the TDLDA, the photoemission cross section
from a bound level Ini, l, m, s) to the continuum of states
Ik', l', m', s'I is given as follows

2

crt, n, (»=4& ~ $ fn, t .(1 fk', I'm—'s') $ I
&k I m ~ VscF«co)

I ni, I;m, ~ &
I
'&(~+&n, t &, k

—) .

In this equation the single-particle states are to be calculated with the help of the single-particle ground-state potential '

and the self-consistently determined driving potential for photoemission VscF is given within linear-response theory by
1/2 3

4~ r r' 00

VscF(r, co) = — yi o(8) r+r dr'
3 3 0 p. 0

dr "(r") 2Xi(r', r";co)

+ f dr' f dr"(r") [2Xi(r', r",co)]+ V„,(r) f dr'(r') Xi(r, r';co) (19)

Here, V„,(r) is the density-derivative of the exchange-correlation potential in the ground state and X~(r, r;co) has been
discussed above.

Inserting the expression for .VscF(r, co), Eq. (19), in the matrix element, Eq. (18), and summing over all occupied states
I ni, l, m, sj leads to the following expression for the total photoemission cross section cr(co) (after spin and angular iri-
tegration, respectively):

4 2 2

cr(co) = fico(fun+ e„ t )
3 Ac nI,

X & [(l + 1) I
&k' I +11 VscF«co)

I
ni, l & I +l [

&k' I 11 VscF(" co)
I
"i ~ & I j~(~+~,, i) .

nl, 1

In this equation, VscF(r, co) is the radial part of the self-
consistent potential, Eq. (19), Int, lI and Ik', l'I are the
radial parts of the wave functions, 8 is the unit step func-
tion, and the energy of the final state is given by
ek —k —fico+ e„ I.

Before we continue to present the results obtained for
size-dependent photoemission a few general remarks on
the method are in order. Experience has shown that the
TDLDA is a powerful method for the interpretation of
both atomic' ' and molecular' ' photoabsorption and
photoemission spectra. Despite of these successes there
are some intrinsic flaws. First of all the use of the LDA,
instead of the exact density functional theory, leads to the
wrong absolute threshold for photoemission. Second, and
highly connected herewith, a// the thresholds for photo-
emission from the various occupied levels are wrong due
to the absence of relaxation effects in the single-particle
states. Gut of the general many-particle effects only the
linear dielectric effects are built in from the very begin-
ning. Thus, in a more general frame, the TDLDA as used
in Refs. 14—l7 and in the present work is only able to

predict trends but not absolute numbers. It is only for
systems with minor relaxation effects that all these flaws
are unimportant.

Quite recently, Zangwill and Liberman' have shown
how to modify the TDLDA (via transition-state orbitals)
to (empirically) account for relaxation effects in situations
where they are important. The interested reader is re-
ferred to their work. In the present context we do not
take into account these effects mainly because this work is
exploratory in nature. However a first way to mimic
these relaxation effects is to change the frequency scale by
a constant shift. This is justified because a detailed study
within the so-caHed "hSCF theory" shows that the relax-
ation energy within the valence band is nearly leoel in-
dependent, which means that the photoemission spec-
trum is simply shifted but not distorted upon inclusion of
relaxation. With these remarks in mind, we think the
TDLDA is a powerful microscopic working scheme to at-
tain first realistic insight into the importance of many-
particle effects in photoemission from small metal parti-
cles (modeled by a KS sphere). Furthermore, since the
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method works so well in both the case of atoms and mole-
cules' ' and in the case of a semi-infinite half-space' '

there is no reason to doubt the validity of the TDLDA in
the range of intermediate particle size. Hence, there
remains only the question to answer how spherical real
metal clusters of Na or K are. We think that the experi-
mental results of Knight et al. on Na and K show clearly
that a spherical approximation is not so bad in explaining
the size-dependent trends in the data. Of course this is not
to say that a dimer looks like a sphere. It simply means
that for a large number of particles within the cluster the
loosely bound valence electrons mainly feel the spherically
averaged potential of a lattice of weak pseudo-ions.

In, Fig. 11 we show the photoemission cross section
o.(co) in units of its geometrical value n.R, for a small
sphere of sodium r, =4, corresponding to X= 198 valence
electrons. The frequency is scaled with the frequency of
the classical surface plasmon of an r, =4 sphere,
co&/~3=0. 2497 Ry=3.398 eV. At the bottom of the fig-
ure the threshold energies for photoemission from the
various shells occupied in the ground state are marked by
arrows. The figure shows o(co) at three different levels of
approximations. The dashed line is the TDLDA result
obtained via (20). The crosses correspond to cr(co) if in the
calculations not the self-consistently obtained potential
VscF, Eq. (19), is used, but instead the potential of the
classical, local electrodynamics, namely
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FICx. 11. Photoemission cross section in units of its geometri-
cal value ~R, at three different levels of approximation, for
% =198 and r, =4. Dashed line, TDLDA, Eq. (20) of the text;
dotted line, bare matrix element result, that means VscF(r, co) is
replaced with V,„=—r. Crossed lirie, VscF{r,co) is replaced by
the classical Drude potential, Eq. (21) of the text. The most im-
portant differences between the TDLDA and the crossed line
are as follows: first, the missing volume plasmon peak in the
latter, second the red-shifted Mie resonance in the TDLDA, and
third the enhanced value of the TDLDA at threshold. The dot-
ted line shows that there are no pronounced features due to pure
matrix element effects. At the bottom of the figure, the thresh-
olds for photoemission from the various occupied shells are
marked with arrows.
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r

'3
e(co ) —1 r&R .e(~)+2

(21)

In this equation, e(co) is the Drude dielectric constant. Fi-
nally, the dots correspond to o(co) if no screening was
present, V= V,„=—r. Thus, this curve shows how ma-
trix element effects influence the shape of o.(co). As ex-
pected for loosely bound extended states in a shallow po-
tential there are, generally, no pronounced structures in
o(co) due to matrix element effects.

On comparing the shape of o(co) with the correspond-
ing absorption curve, Fig. 4, we see clearly that o(co) is
not strictly proportional to Ima(co) (as it is very often as-
sumed in phenomenological models of the photoyield ' ').
The reason for this is simply that for an arbitrary fre-
quency below the topmost bound continuum threshold
(the IS-continuum threshold in Figs. 11—13) the total
photoabsorption rate consists of both bound-bound and
bound-continuum transitions, respectively, and only the
latter contribute to emission. Nevertheless, there are
strong similarities between o(co) and Ima(co), even for fre-
quencies co smaller than the one corresponding to the top-
most threshold. The reason for this is that every reso-
nance in VscF(r, co) shows up as a corresponding structure
both in Ima(co) and in cr(co). Hence, the absolute max-
imum of 0(co) is at the frequency of surface-plasmon ab-
sorption and, even more striking compared to classical
electrodynamics, there is a pronounced structure in o(co)
around co& due to the resonant excitation of the volume
plasmon. Of course, this structure is missing in the other
two curves. At threshold, there is a large enhancement
over the bare photoemission rate, whereas at high frequen-
cies all the models approach the same value. The big
enhancement at threshold relates to the general fact that,
due to the electron-electron interaction, oscillator strength
is transferred to the collective poles (at the cost of single
pairs). This can be clearly seen by comparing the in-
dependent particle response with the response of the in-
teracting particles. " In a forthcoming publication it is
explicitly shown that this transfer of oscillator strength is
strongly dependent on the I value of the general response.
Whereas in the dipolar case (l =1, the case under discus-
sion in the present paper) the effect is strong, it is nearly
negligible for l values in the range of l =8,9, 10. This is
not so surprising because I can be related, via q =I/R, to
an equivalent wave vector for which a critical value does
exist, even for a spherical surface. If I exceeds a critical
value l„ the collective mode starts losing its meaning.
Hence, for I ~I, the independent-particle response and
the interacting-particle response look very similar.

From these general remarks we see that the enhance-
ment obtained for the present example is, in a certain
sense, accidental because the threshold frequency is near
the collective frequency. A study of this effect as a func-
tion of the r, value should then reveal general trends in
this enhancement mechanism.

In Figs. 12 and 13 the corresponding results for X =92
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FIG. 12. The same as Fig. 11,but for N =92. FIG. 13. The same as Fig. 11,but for N =20.

and 20, respectively, are shown. These numbers corre-
spond to an uppermost filled shell of the 3s and 2s type.
Generally, all these curves are more or less similar to each
other except for details resulting from the different num-
ber of levels being filled. The most striking feature in
photoemission is the same as in photoabsorption, namely,
the vanishing of the volume-plasmon-derived structure if
the number of particles decreases. Generally, there are no
pronounced features due to matrix element effects except
for the near threshold region in the case of X =20.

In a recent paper Aers and Inglesfield have argued
that the photoyield of a planar metal surface should be
similar to the cross section o. in Figs. 11—13. On the
basis of this "conjecture, " the cross section calculated
within the frame of the TDLDA is enhanced near thresh-
old by some orders of magnitude and this would qualita-
tively explain the experimental findings by Schmidt-Ott
et al.

However, quite recently the same authors have experi-
mentally verified that the photoyield depends sensitiuely
on residual gas contamination. Hence, this situation has
to be investigated theoretically before a definite con-
clusion can be drawn on why the yield of a cluster is so
drastically enhanced when compared to that of a planar
metal surface.

VI. CONCLUSION

A fairly complete study has been presented of the
dynamical electronic response properties of small metal
spheres within the frame of a completely self-consistent
jellium model. Not surprisingly, numerous physical prop-

erties deviate from their classical counterparts in a more
or less pronounced fashion. There are two simple reasons
for this. The smaller the particle is the more important
are both level quantization effects (so-called quantum size
effects) and all effects due to the changing surface to
volume ratio. A detailed understanding of the various ef-
fects can be obtained on the basis of a general competition
between the level quantization and the surface diffuseness
of the electronic charge. We think that in this way we are
able to rationalize Burtscher's experimental observation
on the change of the photoyield upon adsorption of rest
gas. And a study along this lines is in preparation.

The only larger problem which remains to be solved
both for the ground-state and for the response properties
is the reintroduction of the lattice of weak pseudo-ions
and this problem is presently under study. We think that,
with the exception of this lattice effect, all the main in-
gredients determining the response properties of the elec-
trons in small metal clusters of materials like Na are tak-
en into account in the present study: quantum behavior,
self-consistency, nonlocality, and a fairly faithful descrip-
tion of exchange and correlation by the use of the LDA.
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