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Correlated-cell-model calculation of the high-pressure phase diagram of helium
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A correlated cell model which takes into account the low-frequency collective sliding mode along the
t110] direction in the bcc crystal is shown to reproduce semiquantitatively the high-pressure fcc-bcc transi-
tion recently discovered in solid helium at room temperature.

Recent diamond-anvil measurements of the equation of
state of He at high pressures point to the existence of a
fcc-bcc solid-phase transition prior to melting, with a triple
point near T =300 K. This transition has been confirmed
by an isobaric-isoenthalpic molecular dynamics simulation
which revealed the sequence fcc—bcc-fluid as the tempera-
ture is increased at a pressure of 16 GPa. Such a sequence
of stable phases has also been observed in other compounds
characterized by "soft" interatomic repulsions the transi-
tion is due to a larger bcc entropy which, at sufficiently high
temperature, compensates the higher internal energy of that
phase. For metals, Friedel showed, on the basis of a
central-force nearest-neighbor model, that the excess bcc vi-
brational entropy is simply related to a lower Einstein fre-
quency. In helium this interpretation does not hold, since
the Einstein frequency, calculated from a lattice sum of the
Laplacian of the interatomic pair potential v(r), turns out
to be higher for the bcc than for the fcc lattice, indicating
that anisotropy and correlations cannot be neglected. Hone,
Alexander, Chaikin, and Pincus predicted the existence of
a fcc-bcc-liquid sequence in colloidal suspensions, on the
basis of a mean-field anisotropic cell model. The anisotrop-
ic cell model will be the starting point of our own calculation
on solid helium, but to obtain a quantitatively reliable
description of the fcc-bcc transition, the inclusion of micro-
scopic correlations will prove to be essential. The impor-
tance of correlations in determining the close packed to bcc
transition has been clearly- revealed by earlier work on the
hcp-bcc transition observed at low pressures and tempera-
tures in solid 'He.

In the cell model, ' each atom is constrained to a volume
V/N and moves in the mean-field potential due to the
N —1 other atoms. The He atoms are assumed to interact
through the modified Aziz pair potential' and we use clas-
sical statistical mechanics, since quantum corrections have
been shown to be small in the temperature range of in-
terest. ' The configuration integral reads in the cell-model
approximation

r r N

z«p= J exp[ —PC ( r ))d r

where P= I/ksT, and the mean-field potential inside a cell
centered at the origin is given by

In Eq. (2), R; and r are, respectively, the equilibrium lat-
tice positions and the displacements of the interacting
atoms. Although it turns out to be essential to include
terms of higher order than the harmonic one in the mean-
field potential rtr( r ) experienced by any one atom, the
anharmonicity of the average motion of the surrounding
atoms is a higher-order effect so that it is sufficient to as-
sume, for the evaluation of C ( r ) from Eq. (2), a self-
consistent Gaussian form for the one-particle density
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where a-'= (rz) is the mean-square displacement. We ex-
pand the pair potentials in Eq. (2) to fourth order in the dis-
placements, then perform the lattice sums taking into ac-
count the cubic symmetry of the crystal and finally perform
the Gaussian average, with the result5

4&( r ) = vp+ vzr + v4pr + v4t(r„+ r~ + r, ) (4)
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1v4p= —, gv~(R;) (Sc)

v4t= z4 X[v (R;) —3v~(R;)] (Sd)

The excess Helmholtz free energy can be calculated from
the resulting one-particle density X( r ) —exp[ —PCr(r)]
via '

X( r ) ln[X( r )]d' r

+ + Jt d' r J d' r 'X( r )X( r ')

Indicating partial derivatives by subscripts x or y, the coeffi-
cients are explicitly given by

2

vp= gv(R;) + g'7'v(R;)
6

rtr( r ) = Jtp( r ') gv(I r —r
' —K;I)d' r ' x gv(IR;+ r ' —r I) (6)
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Approximating the exponential of the anharmonic terms by
its first-order expansion, we obtain after rearrangement

uct in Eq. (10) into the product of pair averages, with the
result
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The mean-square displacement cr is determined by the
self-consistency condition
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exp( —pkF )=( ri („1„+f~))
i&j

(10)

where AF„„denotes the correlation part of the free energy
and the f&J are the Mayer functions

j;,=exp[ —pu s(R~)r; rjs] —1

To illustrate the validity of the various approximations made
in deriving Eq. (7), we quote typical results obtained in the
fcc phase at T=400 K and a molar volume V=4.515
cm3/mole (the bcc phase leads to similar conclusions)
a. = 4.68 &(' 10 A; pv() = 9.28; pvz = 32; pv4p = 42; pv4)
= —27. From these results it can be verified that the
anharmonic part of the free energy is only 5% of the har-
monic contribution, indicating a good convergence of the
potential expansion; moreover the exponential of the anhar-
monic term ( = 0.09) is well approximated by its linear ex-
pansion.

In Table I we report the total free energies of both phases
for various volumes at T =400 K. At that temperature the
experimental melting pressure is P=183 kbar, while the
volume of the coexisting solid is 4.32 cm /mole. Hence, we
conclude that the anharmonic cell model does not predict a
stable bcc phase before melting. This, failure of the cell
model must be traced back to the neglect of correlated
motions between neighboring atoms.

In order to include correlations, we write the exact con-
figuration integral of the crystal in the form

z =z )((exp( —phH))

where 60 is the difference between the exact Hamiltonian
for N interacting He atoms and the cell model Hamiltonian;
the statistical average is over a cell-model ensemble. Taking
50 to second order in the Taylor expansion of the poten-
tial, we obtain

where v' and v-" denote the first and second derivatives of
the pair potential. It can be seen from the results given in
Table I that pair correlations lower the free energies of both
phases by roughly equal amounts so that there is still no
stable bcc phase before melting. The pair-correlation ap-
proximation can be expected to be adequate for the fcc
phase, since the predicted free energies lie very close to
those obtained from the Domb-Salter approximation of lat-
tice dynamics, an approximation which is known to be very
good for close-packed rare-gas crystals. " The predicted fcc
free energies lie also very close to the results of a variational
calculation based on "exact" Monte Carlo data for the
close-packed phase. ' On the other hand, the pair-correlated
cell model may not be sufficiently accurate for the bcc phase
in which anharmonic collective modes are known to yield
significant contributions to the entropy. In particular, for
hard spheres the bcc is known to be unstable with respect to
a sliding motion of the 110 planes in the direction of the
face diagonal. The 110 plane is almost close packed and if
alternate such close-packed layers are shifted parallel to each
other in the direction of the face diagonal, holding the
remaining layers fixed, it is possible to convert a bcc crystal
into a fcc structure. For continuous interatomic potentials
this sliding motion is expected to give rise to a low-
frequency mode and could hence stabilize the bcc phase by
increasing the entropy. We have incorporated this mode

, into our correlated bcc cell model by adding strong correla-
tions in the 110 plane. To achieve this we let an atom and
its four nearest neighbors in the 110 plane move as a rigid
unit. We neglect the resulting correlation effects on the
anharmonic terms, whereas the harmonic part v~r of the
mean-field potential is changed into an anisotropic contribu-
tion v~r„+vpyfy +Upr, ', ~here the x and y directions are
now in the 110 plane; the previously considered pair correla-
tions are unchanged in the orthogonal (z) direction. Be-
cause of the Gaussian. average, the difference in free energy
comes from the entropic term

In Eq. (11) summation over repeated indices (n, p=x,y, z)
is implied. Restricting ourselves to the contribution of pair
correlations, we decouple the statistical average of the prod-

11pp~~corr ] uz)(uzy
2 (13)

TABLE I. Total free energies of the fcc and bcc phases of solid
4He at T =400 K within various approximations; the 'free energies
are given in their reduced form f=PF/N.

The 110 correlations are limited to groups of five atoms;
each atom has probability ~ to be at the center and proba-

bility ~ to be at the edge of a rectangle in the 110 plane.
With lattice sums weighted accordingly, v~ and Upy are
given by

(cm3/mole)

3.31
3.91
4.51
5.11
5.71

Cell model

ffm fb~

Pair-correlated
cell model

fbccffcc

14.19
8.23
4.78
2.65
1.23

14.35 14.56 13.98
8.39 8.56 8.07
4.94 5.08 4.66
2.79 2.91 2.55
1.35 1.45 1.15

Correlated. cell
model

14.02
8.06
4.62
2.49
1.07

uza = u2 () uaa(R24) +"una(R01) 'f u&g~(R tz), (14)

where 0 and 1,2,3,4 label the center and edge atoms,
respectively.

As can be seen from Table I, the resulting bcc free energy
falls now below the corresponding fcc free energy for
volumes greater than 3.90 cm3/mole at T = 400 K; this
volume being less than the melting volume, a stable bcc
phase is found between the fcc and fluid phases. Our calcu-
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TABLE II. Pressure and molar volumes (in cm /mole) at the
fcc-bcc transition as functions of temperature.

15—

T (K) P (kbar)
4He

+bcc P (kbar)
3He

+fcc ~bcc

200
250
300
350
400

61.47
95.82

137.85
188.75
249.3

5.608 5.632
5.022 5.040
4.577 4.592
4.217 4.229
3.916 3.927

60.39
94.49

136.20
186.70

5.668 5.692
5.066 5.085
4.611 4.627
4.245 4.258

lO
CL
(g 1 0—
CL

5
200 250 300

PFp
N 8m

(15)

where A. is the thermal de Broglie wavelength.
Summing the cell model, correlation, and quantum contri-

butions, we have plotted the total free energy versus
volume curves for both phases at several temperatures and
determined the fcc-, bcc transition line by the Maxwell
double-tangent construction. Results are summarized in
Table II and in Fig.' 1. The melting curve is determined in a
similar way, using the theoretical fluid free energies calcu-
lated in Ref. 1 with the same interatomic potential. The cal-
culated, ppp volume discontinuity at the fcc-bcc transition is

in good agreement with the results of molecular dynamics
simulations. The predicted triple point of He at 216 K can
be regarded as being in good agreement with experiment' in
view of the sensitivity of the results to alterations of, the
model. The isotopic shift of the triple point in going from
'He to 'He (215 K) is negligible and this finding is expected
to remain valid for more accurate calculations.

A final important point relates to the interatomic poten-
tial. All the results quoted in this Rapid Communication
were obtained with the modified Aziz potential which is

lation confirms the essential role played by the low frequen-
cy 110 modes in stabilizing the bcc phase. 7

Since quantum corrections are not entirely negligible, ' we
have added the leading k term of the Wigner-Kirkwood ex-
pansion to the free energy of both solid phases. Retaining
only the dominant harmonic part of the mean-field poten-
tial, the correction reads

FIG. 1. The high-pressure phase diagram of 4He (full lines) and
of He (dashed lines).

known to yield a reasonable description of the high-pressure
thermodynamics of helium. ' The standard Lennard-Jones
potential yields melting pressures which are systematically
too low. If the Lennard-Jones potential is used in our cal-
culations, the bcc free energy is always found to lie above
its fcc value. This illustrated the sensitivity of the phase di-
agram to the pair potential and represents a good test of the
validity of the correlated cell model, since it is generally ac-
cepted that a "hard" interatomic repulsion (like in the
Lennard-Jones potential) favors the close-packed solid
phase, while a "softer" repulsion favors the bcc phase.
The exponential repulsion in the Aziz potential becomes ef-
fectively softer with increasing pressure and temperature, so
that the appearance of a bcc phase above a triple point may
not have been totally unexpected.

In summary, by improving the crude cell model, we have
been able to pin down the essential physical ingredients of
the fcc-bcc phase transition and understand semiquantita-
tively the high-pressure phase diagram of helium. Our cal-
culation has shown that a description of the solid phases
with an accuracy of better than Ippp is needed to obtain the

proper transition line.
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